1
|
Bhide AR, Surve DH, Jindal AB. Nanocarrier based active targeting strategies against erythrocytic stage of malaria. J Control Release 2023; 362:297-308. [PMID: 37625598 DOI: 10.1016/j.jconrel.2023.08.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/03/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
The Global Technical Strategy for Malaria 2016-2030 aims to achieve a 90% reduction in malaria cases, and strategic planning and execution are crucial for accomplishing this target. This review aims to understand the complex interaction between erythrocytic receptors and parasites and to use this knowledge to actively target the erythrocytic stage of malaria. The review provides insight into the malaria life cycle, which involves various receptors such as glycophorin A, B, C, and D (GPA/B/C/D), complement receptor 1, basigin, semaphorin 7a, Band 3/ GPA, Kx, and heparan sulfate proteoglycan for parasite cellular binding and ingress in the erythrocytic and exo-erythrocytic stages. Synthetic peptides mimicking P. falciparum receptor binding ligands, human serum albumin, chondroitin sulfate, synthetic polymers, and lipids have been utilized as ligands and decorated onto nanocarriers for specific targeting to parasite-infected erythrocytes. The need of the hour for treatment and prophylaxis against malaria is a broadened horizon that includes multiple targeting strategies against the entry, proliferation, and transmission stages of the parasite. Platform technologies with established pre-clinical safety and efficacy should be translated into clinical evaluation and formulation scale-up. Future development should be directed towards nanovaccines as proactive tools against malaria infection.
Collapse
Affiliation(s)
- Atharva R Bhide
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Jhunjhunu, Rajasthan 333031, India
| | - Dhanashree H Surve
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA 01003, United States
| | - Anil B Jindal
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Jhunjhunu, Rajasthan 333031, India.
| |
Collapse
|
2
|
Han H, Xing J, Chen W, Jia J, Li Q. Fluorinated polyamidoamine dendrimer-mediated miR-23b delivery for the treatment of experimental rheumatoid arthritis in rats. Nat Commun 2023; 14:944. [PMID: 36805456 PMCID: PMC9941585 DOI: 10.1038/s41467-023-36625-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 02/10/2023] [Indexed: 02/22/2023] Open
Abstract
In rheumatoid arthritis (RA), insufficient apoptosis of macrophages and excessive generation of pro-inflammatory cytokines are intimately connected, accelerating the development of disease. Here, a fluorinated polyamidoamine dendrimer (FP) is used to deliver miR-23b to reduce inflammation by triggering the apoptosis of as well as inhibiting the inflammatory response in macrophages. Following the intravenous injection of FP/miR-23b nanoparticles in experimental RA models, the nanoparticles show therapeutic efficacy with inhibition of inflammatory response, reduced bone and cartilage erosion, suppression of synoviocyte infiltration and the recovery of mobility. Moreover, the nanoparticles accumulate in the inflamed joint and are non-specifically captured by synoviocytes, leading to the restoration of miR-23b expression in the synovium. The miR-23b nanoparticles target Tab2, Tab3 and Ikka to regulate the activation of NF-κB pathway in the hyperplastic synovium, thereby promoting anti-inflammatory and anti-proliferative responses. Additionally, the intravenous administration of FP/miR-23b nanoparticles do not induce obvious systemic toxicity. Overall, our work demonstrates that the combination of apoptosis induction and inflammatory inhibition could be a promising approach in the treatment of RA and possibly other autoimmune diseases.
Collapse
Affiliation(s)
- Haobo Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 130012, Changchun, China
| | - Jiakai Xing
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 130012, Changchun, China
| | - Wenqi Chen
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 130012, Changchun, China
| | - Jiaxin Jia
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 130012, Changchun, China
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 130012, Changchun, China.
| |
Collapse
|
3
|
Synthesis, dynamics and applications (cytotoxicity and biocompatibility) of dendrimers: a mini-review. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Evans CW, Ho D, Marlow JB, King JJ, Hee C, Wong LN, Atkin R, Smith NM, Warr GG, Norret M, Iyer KS. Intracellular Communication between Synthetic Macromolecules. J Am Chem Soc 2022; 144:14112-14120. [PMID: 35901278 DOI: 10.1021/jacs.2c02793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Non-viral delivery is an important strategy for selective and efficient gene therapy, immunization, and RNA interference, which overcomes problems of genotoxicity and inherent immunogenicity associated with viral vectors. Liposomes and polymers are compelling candidates as carriers for intracellular, non-viral delivery, but maximal efficiencies of around 1% have been reported for the most advanced non-viral carriers. Here, we develop a library of dendronized bottlebrush polymers with controlled defects, displaying a level of precision surpassed only by biological molecules like DNA, RNA, and proteins. We test concurrent and competitive delivery of DNA and show for the first time that, while intracellular communication is thought to be an exclusively biomolecular phenomenon, such communication between synthetic macromolecular complexes can also take place. Our findings challenge the assumption that delivery agents behave as bystanders that enable transfection by passive intracellular release of genetic cargo and improve upon coarse strategies in intracellular carrier design lacking control over polymer sequence, architecture, and composition, leading to a hit-or-miss outcome. Understanding the communication that takes place between macromolecules will help improve the design of non-viral delivery agents and facilitate translation of genome engineering, vaccines, and nucleic acid-based therapies.
Collapse
Affiliation(s)
- Cameron W Evans
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Diwei Ho
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Joshua B Marlow
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jessica J King
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Charmaine Hee
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Lucas N Wong
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Rob Atkin
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Nicole M Smith
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Gregory G Warr
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Marck Norret
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - K Swaminathan Iyer
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| |
Collapse
|
5
|
Boddu SHS, Bhagav P, Karla PK, Jacob S, Adatiya MD, Dhameliya TM, Ranch KM, Tiwari AK. Polyamide/Poly(Amino Acid) Polymers for Drug Delivery. J Funct Biomater 2021; 12:58. [PMID: 34698184 PMCID: PMC8544418 DOI: 10.3390/jfb12040058] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 12/29/2022] Open
Abstract
Polymers have always played a critical role in the development of novel drug delivery systems by providing the sustained, controlled and targeted release of both hydrophobic and hydrophilic drugs. Among the different polymers, polyamides or poly(amino acid)s exhibit distinct features such as good biocompatibility, slow degradability and flexible physicochemical modification. The degradation rates of poly(amino acid)s are influenced by the hydrophilicity of the amino acids that make up the polymer. Poly(amino acid)s are extensively used in the formulation of chemotherapeutics to achieve selective delivery for an appropriate duration of time in order to lessen the drug-related side effects and increase the anti-tumor efficacy. This review highlights various poly(amino acid) polymers used in drug delivery along with new developments in their utility. A thorough discussion on anticancer agents incorporated into poly(amino acid) micellar systems that are under clinical evaluation is included.
Collapse
Affiliation(s)
- Sai H. S. Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates;
| | - Prakash Bhagav
- Advanced Drug Delivery Research and Development, Sampann Research and Development, Panacea Biotec Ltd., Ambala, Chandigarh Highway, Lalru 140501, India;
| | - Pradeep K. Karla
- Department of Pharmaceutical Sciences, College of Pharmacy, Howard University, 2300 4th St. N.W., Washington, DC 20059, USA
| | - Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates;
| | - Mansi D. Adatiya
- Lallubhai Motilal College of Pharmacy, Navrangpura, Ahmedabad 380009, India; (M.D.A.); (T.M.D.); (K.M.R.)
| | - Tejas M. Dhameliya
- Lallubhai Motilal College of Pharmacy, Navrangpura, Ahmedabad 380009, India; (M.D.A.); (T.M.D.); (K.M.R.)
| | - Ketan M. Ranch
- Lallubhai Motilal College of Pharmacy, Navrangpura, Ahmedabad 380009, India; (M.D.A.); (T.M.D.); (K.M.R.)
| | - Amit K. Tiwari
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates;
- Department of Pharmacology & Experimental Therapeutics, Health Science Campus, The University of Toledo, 3000 Arlington Ave., Toledo, OH 43614, USA
| |
Collapse
|
6
|
Gorzkiewicz M, Konopka M, Janaszewska A, Tarasenko II, Sheveleva NN, Gajek A, Neelov IM, Klajnert-Maculewicz B. Application of new lysine-based peptide dendrimers D3K2 and D3G2 for gene delivery: Specific cytotoxicity to cancer cells and transfection in vitro. Bioorg Chem 2019; 95:103504. [PMID: 31864904 DOI: 10.1016/j.bioorg.2019.103504] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 11/12/2019] [Accepted: 12/09/2019] [Indexed: 12/31/2022]
Abstract
In order to enhance intracellular uptake and accumulation of therapeutic nucleic acids for improved gene therapy methods, numerous delivery vectors have been elaborated. Based on their origin, gene carriers are generally classified as viral or non-viral vectors. Due to their significantly reduced immunogenicity and highly optimized methods of synthesis, nanoparticles (especially those imitating natural biomolecules) constitute a promising alternative for virus-based delivery devices. Thus, we set out to develop innovative peptide dendrimers for clinical application as transfection agents and gene carriers. In the present work we describe the synthesis of two novel lysine-based dendritic macromolecules (D3K2 and D3G2) and their initial characterization for cytotoxicity/genotoxicity and transfection potential in two human cell line models: cervix adenocarcinoma (HeLa) and microvascular endothelial (HMEC-1). This approach allowed us to identify more cationic D3K2 as potent delivery agent, being able to increase intracellular accumulation of large nucleic acid molecules such as plasmids. Moreover, the dendrimers exhibited specific cytotoxicity towards cancer cell line without showing significant toxic effects on normal cells. These observations are promising prognosis for future clinical application of this type of nanoparticles.
Collapse
Affiliation(s)
- Michal Gorzkiewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| | - Malgorzata Konopka
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| | - Anna Janaszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| | - Irina I Tarasenko
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoi Prospect 31, V.O., St. Petersburg 199004, Russia
| | - Nadezhda N Sheveleva
- St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia; Laboratory of Physics, Lappeenranta University of Technology, Box 20, 53851 Lappeenranta, Finland
| | - Arkadiusz Gajek
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| | - Igor M Neelov
- St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Kronverkskiy pr. 49, St. Petersburg 197101, Russia
| | - Barbara Klajnert-Maculewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland; Leibniz-Institut für Polymerforschung Dresden e.V., 6 Hohe St., 01069 Dresden, Germany.
| |
Collapse
|
7
|
DNA binding efficacy with functionalized folic acid-PAMAM nanoparticles. Chem Biol Interact 2018; 290:52-56. [DOI: 10.1016/j.cbi.2018.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/15/2018] [Accepted: 05/21/2018] [Indexed: 01/01/2023]
|
8
|
Li X, Kono K. Functional dendrimer-gold nanoparticle hybrids for biomedical applications. POLYM INT 2018. [DOI: 10.1002/pi.5583] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xiaojie Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education; School of Chemical and Material Engineering, Jiangnan University; Wuxi China
| | - Kenji Kono
- Department of Applied Chemistry, Graduate School of Engineering; Osaka Prefecture University; Osaka Japan
| |
Collapse
|
9
|
Study of non-covalent interactions on dendriplex formation: Influence of hydrophobic, electrostatic and hydrogen bonds interactions. Colloids Surf B Biointerfaces 2018; 162:380-388. [DOI: 10.1016/j.colsurfb.2017.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 11/10/2017] [Accepted: 12/07/2017] [Indexed: 11/20/2022]
|
10
|
Wilde M, Green RJ, Sanders MR, Greco F. Biophysical studies in polymer therapeutics: the interactions of anionic and cationic PAMAM dendrimers with lipid monolayers. J Drug Target 2017; 25:910-918. [DOI: 10.1080/1061186x.2017.1365877] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Marleen Wilde
- School of Pharmacy, University of Reading, Reading, UK
| | | | | | | |
Collapse
|
11
|
Li N, Luo HC, Ren M, Zhang LM, Wang W, Pan CL, Yang LQ, Lao GJ, Deng JJ, Mai KJ, Sun K, Yang C, Yan L. Efficiency and Safety of β-CD-(D 3) 7 as siRNA Carrier for Decreasing Matrix Metalloproteinase-9 Expression and Improving Wound Healing in Diabetic Rats. ACS APPLIED MATERIALS & INTERFACES 2017; 9:17417-17426. [PMID: 28447455 DOI: 10.1021/acsami.7b02809] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Overexpression of matrix metalloproteinase-9 (MMP-9) is critical for diabetic chronic wounds involved in the refractory wound healing process. We aimed to develop a strategy through RNAi to decrease MMP-9 expression and improve diabetic wound healing. We had explored β-CD-(D3)7 as a gene carrier to take siRNA and effectively interfere with MMP-9 expression. It has been proven that β-CD-(D3)7 could be used as an effective siRNA delivery system. In this study, we want to know about the efficiency and safety of β-CD-(D3)7/MMP-9 siRNA for improving wound healing in diabetic rats. β-CD-(D3)7/MMP-9 siRNA treated animals show lower levels of MMP-9 expression, which induce faster wound-close rates. Histological evaluation indicates that β-CD-(D3)7/MMP-9 siRNA significantly increases the content of collagen around the injured tissues. The number of neutrophilic ganulocytes was significantly decreased through treatment of β-CD-(D3)7/MMP-9 siRNA. In vivo fluorescence imaging assessment shows that β-CD-(D3)7/MMP-9 siRNA could not cause organ damage and organ accumulation. The results suggest that β-CD-(D3)7/MMP-9 siRNA might be developed as a novel topical agent for the diabetic wounds treatment.
Collapse
Affiliation(s)
- Na Li
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Guangdong Provincal Key Laboratory of Malignant Tumor Epigenetics and Gene Reguatioǹ Medical Research Center, Sun Yat-sen University , Guangzhou 510120, China
| | - Heng-Cong Luo
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Guangdong Provincal Key Laboratory of Malignant Tumor Epigenetics and Gene Reguatioǹ Medical Research Center, Sun Yat-sen University , Guangzhou 510120, China
- Department of Endocrinology, The Third Affiliated Hospital of Guangzhou Medical University , Guangzhou 510150, China
| | - Meng Ren
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Guangdong Provincal Key Laboratory of Malignant Tumor Epigenetics and Gene Reguatioǹ Medical Research Center, Sun Yat-sen University , Guangzhou 510120, China
| | | | - Wei Wang
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Guangdong Provincal Key Laboratory of Malignant Tumor Epigenetics and Gene Reguatioǹ Medical Research Center, Sun Yat-sen University , Guangzhou 510120, China
| | | | | | - Guo-Juan Lao
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Guangdong Provincal Key Laboratory of Malignant Tumor Epigenetics and Gene Reguatioǹ Medical Research Center, Sun Yat-sen University , Guangzhou 510120, China
| | | | | | - Kan Sun
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Guangdong Provincal Key Laboratory of Malignant Tumor Epigenetics and Gene Reguatioǹ Medical Research Center, Sun Yat-sen University , Guangzhou 510120, China
| | - Chuan Yang
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Guangdong Provincal Key Laboratory of Malignant Tumor Epigenetics and Gene Reguatioǹ Medical Research Center, Sun Yat-sen University , Guangzhou 510120, China
| | - Li Yan
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Guangdong Provincal Key Laboratory of Malignant Tumor Epigenetics and Gene Reguatioǹ Medical Research Center, Sun Yat-sen University , Guangzhou 510120, China
| |
Collapse
|
12
|
Amreddy N, Babu A, Muralidharan R, Munshi A, Ramesh R. Polymeric Nanoparticle-Mediated Gene Delivery for Lung Cancer Treatment. Top Curr Chem (Cham) 2017; 375:35. [PMID: 28290155 PMCID: PMC5480422 DOI: 10.1007/s41061-017-0128-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 02/22/2017] [Indexed: 11/28/2022]
Abstract
In recent years, researchers have focused on targeted gene therapy for lung cancer, using nanoparticle carriers to overcome the limitations of conventional treatment methods. The main goal of targeted gene therapy is to develop more efficient therapeutic strategies by improving the bioavailability, stability, and target specificity of gene therapeutics and to reduce off-target effects. Polymer-based nanoparticles, an alternative to lipid and inorganic nanoparticles, efficiently carry nucleic acid therapeutics and are stable in vivo. Receptor-targeted delivery is a promising approach that can limit non-specific gene delivery and can be achieved by modifying the polymer nanoparticle surface with specific receptor ligands or antibodies. This review highlights the recent developments in gene delivery using synthetic and natural polymer-based nucleic acid carriers for lung cancer treatment. Various nanoparticle systems based on polymers and polymer combinations are discussed. Further, examples of targeting ligands or moieties used in targeted, polymer-based gene delivery to lung cancer are reviewed.
Collapse
Affiliation(s)
- Narsireddy Amreddy
- Department of Pathology, Stanton L. Young Biomedical Research Center, University of Oklahoma Health Sciences Center, Suite 1403, 975 N.E., 10th Street, Oklahoma City, OK, 73104, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anish Babu
- Department of Pathology, Stanton L. Young Biomedical Research Center, University of Oklahoma Health Sciences Center, Suite 1403, 975 N.E., 10th Street, Oklahoma City, OK, 73104, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Ranganayaki Muralidharan
- Department of Pathology, Stanton L. Young Biomedical Research Center, University of Oklahoma Health Sciences Center, Suite 1403, 975 N.E., 10th Street, Oklahoma City, OK, 73104, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anupama Munshi
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rajagopal Ramesh
- Department of Pathology, Stanton L. Young Biomedical Research Center, University of Oklahoma Health Sciences Center, Suite 1403, 975 N.E., 10th Street, Oklahoma City, OK, 73104, USA.
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Graduate Program in Biomedical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
13
|
Fuentes-Paniagua E, Serramía MJ, Sánchez-Nieves J, Álvarez S, Muñoz-Fernández MÁ, Gómez R, de la Mata FJ. Fluorescein labelled cationic carbosilane dendritic systems for biological studies. Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2015.07.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Look J, Wilhelm N, von Briesen H, Noske N, Günther C, Langer K, Gorjup E. Ligand-Modified Human Serum Albumin Nanoparticles for Enhanced Gene Delivery. Mol Pharm 2015. [PMID: 26218774 DOI: 10.1021/acs.molpharmaceut.5b00153] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The development of nonviral gene delivery systems is a great challenge to enable safe gene therapy. In this study, ligand-modified nanoparticles based on human serum albumin (HSA) were developed and optimized for an efficient gene therapy. Different glutaraldehyde cross-linking degrees were investigated to optimize the HSA nanoparticles for gene delivery. The peptide sequence arginine-glycine-aspartate (RGD) and the HIV-1 transactivator of transduction sequence (Tat) are well-known as promising targeting ligands. Plasmid DNA loaded HSA nanoparticles were covalently modified on their surface with these different ligands. The transfection potential of the obtained plasmid DNA loaded RGD- and Tat-modified nanoparticles was investigated in vitro, and optimal incubation conditions for these preparations were studied. It turned out that Tat-modified HSA nanoparticles with the lowest cross-linking degree of 20% showed the highest transfection potential. Taken together, ligand-functionalized HSA nanoparticles represent promising tools for efficient and safe gene therapy.
Collapse
Affiliation(s)
- Jennifer Look
- Institute of Pharmaceutical Technology and Biopharmacy, University of Muenster , Corrensstraße 48, Muenster 48149, Germany
| | - Nadine Wilhelm
- Fraunhofer Institute for Biomedical Engineering , Joseph-von-Fraunhofer-Weg 1, 66280 Sulzbach, Germany
| | - Hagen von Briesen
- Fraunhofer Institute for Biomedical Engineering , Joseph-von-Fraunhofer-Weg 1, 66280 Sulzbach, Germany
| | - Nadja Noske
- apceth GmbH & Co. KG , Max-Lebsche-Platz 30, 81377 Munich, Germany
| | | | - Klaus Langer
- Institute of Pharmaceutical Technology and Biopharmacy, University of Muenster , Corrensstraße 48, Muenster 48149, Germany
| | - Erwin Gorjup
- Fraunhofer Institute for Biomedical Engineering , Joseph-von-Fraunhofer-Weg 1, 66280 Sulzbach, Germany
| |
Collapse
|
15
|
Park W, Park SJ, Lee J, Na K. Recent advances in utilization of photochemical internalization (PCI) for efficient nano carrier mediated drug delivery. BIOMATERIALS AND BIOMECHANICS IN BIOENGINEERING 2015. [DOI: 10.12989/bme.2015.2.1.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Moreno S, Szwed A, El Brahmi N, Milowska K, Kurowska J, Fuentes-Paniagua E, Pedziwiatr-Werbicka E, Gabryelak T, Katir N, Javier de la Mata F, Muñoz-Fernández MA, Gomez-Ramirez R, Caminade AM, Majoral JP, Bryszewska M. Synthesis, characterization and biological properties of new hybrid carbosilane–viologen–phosphorus dendrimers. RSC Adv 2015. [DOI: 10.1039/c5ra00960j] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hybrid carbosilane–viologen–phosphorus dendrimers were prepared, as an example of the synthetic “onion peel” approach, on the search of new physical–chemical and biological properties, respecting traditional dendritic architectures.
Collapse
|
17
|
Keswani R, Su K, Pack DW. Efficient in vitro gene delivery by hybrid biopolymer/virus nanobiovectors. J Control Release 2014; 192:40-6. [PMID: 25009978 DOI: 10.1016/j.jconrel.2014.06.060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 04/03/2014] [Accepted: 06/30/2014] [Indexed: 10/25/2022]
Abstract
Recombinant retroviruses provide highly efficient gene delivery and the potential for sustained gene expression, but suffer from significant disadvantages including low titer, expensive production, poor stability and limited flexibility for modification of tropism. In contrast, polymer-based vectors are more robust and allow cell- and tissue-specific deliveries via conjugation of ligands, but are comparatively inefficient. The design of hybrid gene delivery agents comprising both virally derived and synthetic materials (nanobiovectors) represents a promising approach to development of safe and efficient gene therapy vectors. Non-infectious murine leukemia virus-like particles (M-VLPs) were electrostatically complexed with chitosan (χ) to replace the function of the viral envelope protein. At optimal fabrication conditions and compositions, ranging from 6 to 9μg chitosan/10(9) M-VLPs at 10×10(9)M-VLPs/ml to 40μg chitosan/10(9) M-VLPs at 2.5×10(9)M-VLPs/ml, χ/M-VLPs were ~300-350nm in diameter and exhibited efficient transfection similar to amphotropic MLV vectors. In addition, these nanobiovectors were non-cytotoxic and provided sustained transgene expression for at least three weeks in vitro. This combination of biocompatible synthetic agents with inactive viral particles to form a highly efficient hybrid vector is a significant extension in the development of novel gene delivery platforms.
Collapse
Affiliation(s)
- Rahul Keswani
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, IL 61801, USA
| | - Kai Su
- Department of Chemical and Materials, University of Kentucky, Lexington, KY 40506-0046, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536-0596, USA
| | - Daniel W Pack
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, IL 61801, USA; Department of Chemical and Materials, University of Kentucky, Lexington, KY 40506-0046, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536-0596, USA.
| |
Collapse
|
18
|
Liu X, Ma D, Tang H, Tan L, Xie Q, Zhang Y, Ma M, Yao S. Polyamidoamine dendrimer and oleic acid-functionalized graphene as biocompatible and efficient gene delivery vectors. ACS APPLIED MATERIALS & INTERFACES 2014; 6:8173-8183. [PMID: 24836601 DOI: 10.1021/am500812h] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Functionalized graphene has good potential in biomedical applications. To address a better and multiplex design of graphene-based gene vectors, the graphene-oleate-polyamidoamine (PAMAM) dendrimer hybrids were synthesized by the oleic acid adsorption and covalent linkage of PAMAM dendrimers. The micromorphology, electrical charge property, and amount of free amine groups of the graphene-oleate-PAMAM hybrids were characterized, and the peripheral functional groups were identified. The PAMAM dendrimers could be tethered onto graphene surface in high density. The graphene-oleate-PAMAM hybrids exhibit relatively good dispersity and stability in aqueous solutions. To evaluate the potential application of the hybrids in gene delivery vectors, cytotoxicity to HeLa and MG-63 cells and gene (plasmid DNA of enhanced green fluorescent protein) transfection capacity of the hybrids were investigated in detail. The graphene-oleate-PAMAM hybrids show mammalian cell type- and dose-dependent in vitro cytotoxicity. Under the optimal condition, the hybrids possess good biocompatibility and gene transfection capacity. The surface modification of graphene with oleic acid and PAMAM improves the gene transfection efficiency 13 times in contrast to the ultrasonicated graphene. Moreover, the hybrids show better transfection efficiency than the graphene oxide-PAMAM without the oleic acid modification.
Collapse
Affiliation(s)
- Xiahui Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University , Changsha 410081, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Sánchez-Nieves J, Fransen P, Pulido D, Lorente R, Muñoz-Fernández MÁ, Albericio F, Royo M, Gómez R, de la Mata FJ. Amphiphilic Cationic Carbosilane–PEG Dendrimers: Synthesis and Applications in Gene Therapy. Eur J Med Chem 2014; 76:43-52. [DOI: 10.1016/j.ejmech.2014.01.061] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 01/27/2014] [Accepted: 01/29/2014] [Indexed: 01/28/2023]
|
20
|
Blood compatible N-maleyl chitosan-graft-PAMAM copolymer for enhanced gene transfection. Carbohydr Polym 2013; 98:596-606. [DOI: 10.1016/j.carbpol.2013.06.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 06/17/2013] [Accepted: 06/17/2013] [Indexed: 11/17/2022]
|
21
|
Dendrimers for siRNA Delivery. Pharmaceuticals (Basel) 2013; 6:161-83. [PMID: 24275946 PMCID: PMC3816686 DOI: 10.3390/ph6020161] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 01/17/2013] [Accepted: 01/29/2013] [Indexed: 01/18/2023] Open
Abstract
Since the discovery of the “starburst polymer”, later renamed as dendrimer, this class of polymers has gained considerable attention for numerous biomedical applications, due mainly to the unique characteristics of this macromolecule, including its monodispersity, uniformity, and the presence of numerous functionalizable terminal groups. In recent years, dendrimers have been studied extensively for their potential application as carriers for nucleic acid therapeutics, which utilize the cationic charge of the dendrimers for effective dendrimer-nucleic acid condensation. siRNA is considered a promising, versatile tool among various RNAi-based therapeutics, which can effectively regulate gene expression if delivered successfully inside the cells. This review reports on the advancements in the development of dendrimers as siRNA carriers.
Collapse
|
22
|
Hayashi Y, Mori Y, Higashi T, Motoyama K, Jono H, Sah DWY, Ando Y, Arima H. Systemic delivery of transthyretin siRNA mediated by lactosylated dendrimer/α-cyclodextrin conjugates into hepatocyte for familial amyloidotic polyneuropathy therapy. Amyloid 2012; 19 Suppl 1:47-9. [PMID: 22519861 DOI: 10.3109/13506129.2012.674581] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
RNA interference (RNAi) is a sequence-specific gene-silencing mechanism triggered by double-stranded RNA and powerful tools for a gene function study and RNAi therapy. Although siRNAs offer several advantages as potential new drugs to treat various diseases, the efficient delivery system of siRNAs in vivo remains a crucial challenge for achieving the desired RNAi effect in clinical development. In particular, when considering the siRNA therapeutics for familial amyloidotic polyneuropathy (FAP) caused by the deposition of variant transthyretin (TTR) in various organs, hepatocyte-selective siRNA delivery is desired because TTR is predominantly synthesized by hepatocytes. In this study, to reveal the potential use of lactosylated dendrimer (G3)/α-cyclodextrin conjugate (Lac-α-CDE (G3)) as novel hepatocyte-selective siRNA carriers in order to treat FAP, we evaluated the RNAi effect of siRNA complex with Lac-α-CDE (G3) both in vitro and in vivo.
Collapse
Affiliation(s)
- Yuya Hayashi
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Japan
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Potential use of folate-polyethylene glycol (PEG)-appended dendrimer (G3) conjugate with α-cyclodextrin as DNA carriers to tumor cells. Cancer Gene Ther 2012; 19:358-66. [DOI: 10.1038/cgt.2012.9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
24
|
Arima H, Motoyama K, Higashi T. Potential Use of Polyamidoamine Dendrimer Conjugates with Cyclodextrins as Novel Carriers for siRNA. Pharmaceuticals (Basel) 2011; 5:61-78. [PMID: 24288043 PMCID: PMC3763628 DOI: 10.3390/ph5010061] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/20/2011] [Accepted: 12/21/2011] [Indexed: 02/07/2023] Open
Abstract
Cyclodextrin (CyD)-based nanoparticles and polyamidoamine (PAMAM) starburst dendrimers (dendrimers) are used as novel carriers for DNA and RNA. Recently, small interfering RNA (siRNA) complex with β-CyD-containing polycations (CDP) having adamantine-PEG or adamantine-PEG-transferrin underwent a phase I study for treatment of solid tumors. Multifunctional dendrimers can be used for a wide range of biomedical applications, including the interaction and intracellular delivery of DNA and RNA. The present review will address the latest developments in dendrimer conjugates with cyclodextrins for siRNA delivery including the novel sustained release system.
Collapse
Affiliation(s)
- Hidetoshi Arima
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan.
| | | | | |
Collapse
|
25
|
Inhibitory effect of siRNA complexes with polyamidoamine dendrimer/α-cyclodextrin conjugate (generation 3, G3) on endogenous gene expression. Eur J Pharm Sci 2011; 44:375-84. [DOI: 10.1016/j.ejps.2011.08.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 08/12/2011] [Accepted: 08/22/2011] [Indexed: 11/19/2022]
|
26
|
Wang H, Shi HB, Yin SK. Polyamidoamine dendrimers as gene delivery carriers in the inner ear: How to improve transfection efficiency. Exp Ther Med 2011; 2:777-781. [PMID: 22977574 DOI: 10.3892/etm.2011.296] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 06/10/2011] [Indexed: 01/17/2023] Open
Abstract
Hair cells in the cochlea can be damaged by various insults, including noise, drugs, infections and presbycusis, which may cause sensorineural hearing loss. Gene therapy is a novel therapeutic technology that, recently, has led to the idea of treating inner ear diseases on a genetic level. Depending on their characteristics, such as a high efficiency in delivery, the capability of specific targeting, multifunctionality, biodegradability, non-toxicity, non-immunogenicity and the capability of limiting DNA degradation, nanovectors, such as polyamidoamine (PAMAM) dendrimers for cellular gene delivery, provide a promising approach to eradicate genetic diseases. They are a new class of highly branched spherical polymers that are highly soluble in aqueous solution. Their unique surface is composed of positively charged primary amine groups which allow them to form stable complexes with plasmid DNA, oligonucleotides, antibodies and drugs. This review provides an overview of the characteristics of PAMAMs which may be used in gene transfer into the cochlea as well as the efforts to improve their transfection efficiency as gene-delivery carriers.
Collapse
Affiliation(s)
- Hui Wang
- Department of Otolaryngology, Affiliated Sixth People's Hospital of Shanghai Jiao Tong University, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | | | | |
Collapse
|
27
|
Dong Z, Hamid KA, Gao Y, Lin Y, Katsumi H, Sakane T, Yamamoto A. Polyamidoamine Dendrimers Can Improve the Pulmonary Absorption of Insulin and Calcitonin in Rats. J Pharm Sci 2011; 100:1866-78. [DOI: 10.1002/jps.22428] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 10/05/2010] [Accepted: 11/09/2010] [Indexed: 11/06/2022]
|
28
|
Improved GFP gene transfection mediated by polyamidoamine dendrimer-functionalized multi-walled carbon nanotubes with high biocompatibility. Colloids Surf B Biointerfaces 2011; 84:206-13. [DOI: 10.1016/j.colsurfb.2011.01.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 11/26/2010] [Accepted: 01/03/2011] [Indexed: 11/23/2022]
|
29
|
Medina SH, Tekumalla V, Chevliakov MV, Shewach DS, Ensminger WD, El-Sayed MEH. N-acetylgalactosamine-functionalized dendrimers as hepatic cancer cell-targeted carriers. Biomaterials 2011; 32:4118-29. [PMID: 21429574 DOI: 10.1016/j.biomaterials.2010.11.068] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 11/27/2010] [Indexed: 10/18/2022]
Abstract
There is an urgent need for novel polymeric carriers that can selectively deliver a large dose of chemotherapeutic agents into hepatic cancer cells to achieve high therapeutic activity with minimal systemic side effects. PAMAM dendrimers are characterized by a unique branching architecture and a large number of chemical surface groups suitable for coupling of chemotherapeutic agents. In this article, we report the coupling of N-acetylgalactosamine (NAcGal) to generation 5 (G5) of poly(amidoamine) (PAMAM-NH₂) dendrimers via peptide and thiourea linkages to prepare NAcGal-targeted carriers used for targeted delivery of chemotherapeutic agents into hepatic cancer cells. We describe the uptake of NAcGal-targeted and non-targeted G5 dendrimers into hepatic cancer cells (HepG2) as a function of G5 concentration and incubation time. We examine the contribution of the asialoglycoprotein receptor (ASGPR) to the internalization of NAcGal-targeted dendrimers into hepatic cancer cells through a competitive inhibition assay. Our results show that uptake of NAcGal-targeted G5 dendrimers into hepatic cancer cells occurs via ASGPR-mediated endocytosis. Internalization of these targeted carriers increased with the increase in G5 concentration and incubation time following Michaelis-Menten kinetics characteristic of receptor-mediated endocytosis. These results collectively indicate that G5-NAcGal conjugates function as targeted carriers for selective delivery of chemotherapeutic agents into hepatic cancer cells.
Collapse
Affiliation(s)
- Scott H Medina
- Department of Biomedical Engineering, Cellular Engineering and Nano-Therapeutics Laboratory, University of Michigan, 1101 Beal Avenue, Ann Arbor, MI 48109, USA
| | | | | | | | | | | |
Collapse
|
30
|
Choi YJ, Kang SJ, Kim YJ, Lim YB, Chung HW. Comparative studies on the genotoxicity and cytotoxicity of polymeric gene carriers polyethylenimine (PEI) and polyamidoamine (PAMAM) dendrimer in Jurkat T-cells. Drug Chem Toxicol 2011; 33:357-66. [PMID: 20550436 DOI: 10.3109/01480540903493507] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A safe alternative to the viral system used in gene therapy is a nonviral gene delivery system. Although polyethylenimine (PEI) and polyamidoamine (PAMAM) dendrimer are among the most promising gene-carrier candidates for efficient nonviral gene delivery, safety concerns regarding their toxicity remain. The aim of this study was to scrutinize the underlying mechanism of the cytotoxicity and genotoxicity of PEI (25 kDa) and PAMAM (G4). To our knowledge, this is the first study to explore the genotoxic effect of polymeric gene carriers. To evaluate cell death by PEI and PAMAM, we performed propidium-iodide staining and lactate-dehydrogenase release assays. The genotoxicity of the polymers was measured by comet assay and cytokinesis-block micronucleus assay. PEI- and PAMAM-treated groups induced both necrotic and apoptotic cell death. In the comet assay and micronuclei formation, significant increases in DNA damage were observed in both treatments. We conclude that PEI and PAMAM dendrimer can induce not only a relatively weak apoptotic and a strong necrotic effect, but also a moderate genotoxic effect.
Collapse
Affiliation(s)
- Young Joo Choi
- School of Public Health and Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
31
|
Jang SH, Choi SJ, Oh JH, Chae SW, Nam K, Park JS, Lee HJ. Nonviral gene delivery to human ovarian cancer cells using arginine-grafted PAMAM dendrimer. Drug Dev Ind Pharm 2010; 37:41-6. [PMID: 20950058 DOI: 10.3109/03639045.2010.489563] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND A specific and effective strategy is in demand to treat ovarian cancer successfully. Epidermal growth factor receptor (EGFR) is highly expressed in ovarian cancer, and thus EGFR antisense gene therapy can be a potential therapeutic strategy. METHOD L-Arginine-grafted-polyamidoamine dendrimer (PAMAM-Arg) has been reported to be a novel nonviral gene delivery carrier. Therefore, the ability of PAMAM-Arg in transferring a luciferase gene to ovarian carcinoma SK-OV3 cells has been examined, and the cytotoxicity of the cationic polymer has been investigated. In addition, the suppression of cell proliferation has been evaluated by transferring an EGFR antisense gene to SK-OV3 cells using PAMAM-Arg. Polyethyleneimine (PEI) 25K was used as a positive control. RESULTS As a result, in vitro gene transfection efficiency of PAMAM-Arg was enhanced with increasing transfection time and N/P ratios. PAMAM-Arg transferred the luciferase gene into cells more efficiently than PEI. In addition, PAMAM-Arg was minimally toxic to the cells whereas PEI 25K was highly toxic. The polyplexes formed by the EGFR antisense gene and PAMAM-Arg significantly reduced thymidine incorporation into the cells suggesting the suppression of cancer cell proliferation. CONCLUSION These results suggest that a PAMAM-Arg/EGFR antisense gene complex can be used as a safe and efficient therapeutic agent for cancer gene therapy.
Collapse
Affiliation(s)
- Soo Hyun Jang
- Division of Life and Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
32
|
Mei M, Ren Y, Zhou X, Yuan XB, Li F, Jiang LH, Kang CS, Yao Z. Suppression of breast cancer cellsin vitroby polyamidoamine-dendrimer-mediated 5-fluorouracil chemotherapy combined with antisense micro-RNA 21 gene therapy. J Appl Polym Sci 2009. [DOI: 10.1002/app.30868] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
33
|
Thomas TP, Majoros I, Kotlyar A, Mullen D, Banaszak Holl MM, Baker JR. Cationic poly(amidoamine) dendrimer induces lysosomal apoptotic pathway at therapeutically relevant concentrations. Biomacromolecules 2009; 10:3207-14. [PMID: 19924846 PMCID: PMC2805189 DOI: 10.1021/bm900683r] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Poly(amidoamine) (PAMAM) dendrimers carrying different amounts of surface amino groups were synthesized and tested for their effects on cellular cytotoxicity, lysosomal pH, and mitochondria-dependent apoptosis. In KB cells, the PAMAM dendrimers were taken up into the lysosomal compartment, and they increased the lysosomal pH and cytotoxicity as a function of the number of surface amino groups on the dendrimer. PAMAM dendrimers that were surface-neutralized by acetylation of >80% of the surface amino groups failed to show any cytotoxicity. The positively charged, amine-terminated PAMAM dendrimer induced cellular apoptosis, as demonstrated by mitochondrial membrane potential changes and caspase activity measurements. These results suggest that PAMAM dendrimers are endocytosed into the KB cells through a lysosomal pathway, leading to lysosomal alkalinization and induction of mitochondria-mediated apoptosis.
Collapse
Affiliation(s)
- Thommey P. Thomas
- Department of Internal Medicine, Division of Allergy, Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan, 9220 MSRB III, Box 0648, Ann Arbor, Michigan 48109
| | - Istvan Majoros
- Department of Internal Medicine, Division of Allergy, Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan, 9220 MSRB III, Box 0648, Ann Arbor, Michigan 48109
| | - Alina Kotlyar
- Department of Internal Medicine, Division of Allergy, Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan, 9220 MSRB III, Box 0648, Ann Arbor, Michigan 48109
| | - Douglas Mullen
- Department of Internal Medicine, Division of Allergy, Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan, 9220 MSRB III, Box 0648, Ann Arbor, Michigan 48109
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109
| | - Mark M. Banaszak Holl
- Department of Internal Medicine, Division of Allergy, Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan, 9220 MSRB III, Box 0648, Ann Arbor, Michigan 48109
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109
| | - James R. Baker
- Department of Internal Medicine, Division of Allergy, Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan, 9220 MSRB III, Box 0648, Ann Arbor, Michigan 48109
| |
Collapse
|
34
|
Arima H, Motoyama K. Recent Findings Concerning PAMAM Dendrimer Conjugates with Cyclodextrins as Carriers of DNA and RNA. SENSORS (BASEL, SWITZERLAND) 2009; 9:6346-61. [PMID: 22454589 PMCID: PMC3312448 DOI: 10.3390/s90806346] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 08/06/2009] [Accepted: 08/07/2009] [Indexed: 01/28/2023]
Abstract
We have evaluated the potential use of various polyamidoamine (PAMAM) dendrimer [dendrimer, generation (G) 2-4] conjugates with cyclodextrins (CyDs) as novel DNA and RNA carriers. Among the various dendrimer conjugates with CyDs, the dendrimer (G3) conjugate with α-CyD having an average degree of substitution (DS) of 2.4 [α-CDE (G3, DS2)] displayed remarkable properties as DNA, shRNA and siRNA delivery carriers through the sensor function of α-CDEs toward nucleic acid drugs, cell surface and endosomal membranes. In an attempt to develop cell-specific gene transfer carriers, we prepared sugar-appended α-CDEs. Of the various sugar-appended α-CDEs prepared, galactose- or mannose-appended α-CDEs provided superior gene transfer activity to α-CDE in various cells, but not cell-specific gene delivery ability. However, lactose-appended α-CDE [Lac-α-CDE (G2)] was found to possess asialoglycoprotein receptor (AgpR)-mediated hepatocyte-selective gene transfer activity, both in vitro and in vivo. Most recently, we prepared folate-poly(ethylene glycol)-appended α-CDE [Fol-PαC (G3)] and revealed that Fol-PαC (G3) imparted folate receptor (FR)-mediated cancer cell-selective gene transfer activity. Consequently, α-CDEs bearing integrated, multifunctional molecules may possess the potential to be novel carriers for DNA, shRNA and siRNA.
Collapse
Affiliation(s)
- Hidetoshi Arima
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan; E-Mail: (K.M.)
| | - Keiichi Motoyama
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan; E-Mail: (K.M.)
| |
Collapse
|
35
|
Navarro G, Tros de Ilarduya C. Activated and non-activated PAMAM dendrimers for gene delivery in vitro and in vivo. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2009; 5:287-97. [PMID: 19523431 DOI: 10.1016/j.nano.2008.12.007] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Revised: 12/09/2008] [Accepted: 12/22/2008] [Indexed: 10/21/2022]
Abstract
UNLABELLED Nanotechnology, though not a new concept, has gained importance in medical breakthroughs. The preparation of nanosystems like polymeric nanoparticles can be used for drug and gene delivery. In this study dendrimeric nanoparticles prepared with generations 4 and 5 (G4, G5) polyamidoamine (PAMAM) dendrimers and plasmid DNA were characterized and their ability to transfect cells in vitro and in vivo evaluated. Additionally, the efficacy of these dendrimers on activation after heat treatment has been tested to attempt an enhancement in transfection activity over that of intact dendrimers. Measurements of the particle size and zeta potential as a function of the charge ratio and the generation of the polymer reveal that no significant differences were obtained in size by using G4 or G5 polymers in nonactivated dendriplexes prepared at different charge ratios. The zeta potentials of the dendriplexes are strongly positive and differ only slightly. Atomic force microscopy images of complexes showed that they are spherical, individualized, and homogeneously distributed. These vectors were also highly effective in protecting DNA from attack by DNase I and increased the efficiency of plasmid-mediated gene transfer in vitro to liver (HepG2) and colon (CT26) cancer cells as compared with naked DNA, even in the presence of 60% fetal bovine serum. Expression is enhanced at higher charge ratios with maximal values obtained at a charge ratio of 10:1 (+/-) and by increasing the dendrimer generation. Finally, the transfection activity of G4 and G5 dendriplexes was significantly enhanced in HepG2 and CT26 cells by activation of the dendrimers. In this respect we have optimized the time of activation to obtain the optimal levels of gene expression. Also, intravenously administered activated G4 and G5 dendrimer-DNA complexes are superior to the nonactivated ones in terms of gene transfer efficiency in vivo. In conclusion, our results showed that G4 and G5 PAMAM dendrimers are an effective nanosystem for gene delivery to colon and liver cancer cells in vitro, as well as for in vivo therapeutic applications. FROM THE CLINICAL EDITOR This paper describes the synthesis and potential applications of mixed nanoparticles prepared with generations 4 and 5 (G4, G5) poly(amidoamine) (PAMAM) dendrimers and plasmid DNA. These mixed nanoparticles proved to be effective for gene delivery to colon and liver cancer cells in vitro, as well as in vivo.
Collapse
Affiliation(s)
- Gemma Navarro
- Department of Pharmacy and Pharmaceutical Technology, University of Navarra, Pamplona, Spain
| | | |
Collapse
|