1
|
Wang C, Ma Z, Yuan K, Ji T. Using scaffolds as drug delivery systems to treat bone tumor. NANOTECHNOLOGY 2022; 33:212002. [PMID: 35092950 DOI: 10.1088/1361-6528/ac5017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Surgery is the principal strategy to treat osteosarcoma and other types of bone tumors, but it causes bone defects that cannot be healed spontaneously. After surgery, patients still need to receive radiotherapy and/or chemotherapy to prevent tumor recurrence and metastasis, which leads to systemic side effects. Bone scaffolds exhibit the potentials to load cargos (drugs or growth factors) and act as drug delivery systems (DDSs) in the osteosarcoma postoperative treatment. This review introduces current types of bone scaffolds and highlights representative works using scaffolds as DDSs to treat osteosarcomas. Challenges and perspectives in the scaffold-based DDSs are also discussed. This review may provide references to develop effective and safe strategies for osteosarcoma postoperative treatment.
Collapse
Affiliation(s)
- Caifeng Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zijiu Ma
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Kemeng Yuan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Tianjiao Ji
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
2
|
Prasad SR, Kumar TSS, Jayakrishnan A. Nanocarrier-based drug delivery systems for bone cancer therapy: a review. Biomed Mater 2021; 16. [PMID: 33853043 DOI: 10.1088/1748-605x/abf7d5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/14/2021] [Indexed: 02/07/2023]
Abstract
Bone cancer is a malignant tumor that originates in the bone and destroys the healthy bone tissues. Of the various types of bone tumors, osteosarcoma is the most commonly diagnosed primary bone malignancy. The standard treatment for primary malignant bone tumors comprises surgery, chemotherapy and radiotherapy. Owing to the lack of proven treatments, different forms of alternative therapeutic approaches have been examined in recent decades. Among the new therapeutic methodologies, nanotechnology-based anticancer therapy has paved the way for new targeted strategies for bone cancer treatment and bone regeneration. They include approaches such as the co-delivery of multiple drug cargoes, the enhancement of their biodistribution and transport properties, normalizing accumulation and the optimization of drug release profiles to overcome shortcomings of the existing therapy. This review examines the standard treatments for osteosarcoma, their lacunae, and the evolving therapeutic strategies based on nanocarrier-mediated combinational drug delivery systems, and future perspectives for osteosarcoma therapy.
Collapse
Affiliation(s)
- S Ram Prasad
- Rajiv Gandhi Centre for Biotechnology, Jagathy, Trivandrum 695 014 Kerala, India
| | - T S Sampath Kumar
- Medical Materials Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600 036 Tamil Nadu, India
| | - A Jayakrishnan
- Rajiv Gandhi Centre for Biotechnology, Jagathy, Trivandrum 695 014 Kerala, India
| |
Collapse
|
3
|
Jang KJ, Seonwoo H, Yang M, Park S, Lim KT, Kim J, Choung PH, Chung JH. Development and characterization of waste equine bone-derived calcium phosphate cements with human alveolar bone-derived mesenchymal stem cells. Connect Tissue Res 2021; 62:164-175. [PMID: 31581855 DOI: 10.1080/03008207.2019.1655003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Calcium phosphate cements (CPCs) are regarded as promising graft substitutes for bone tissue engineering. However, their wide use is limited by the high cost associated with the complex synthetic processes involved in their fabrication. Cheaper xenogeneic calcium phosphate (CaP) materials derived from waste animal bone may solve this problem. Moreover, the surface topography, mechanical strength, and cellular function of CPCs are influenced by the ratio of micro- to nano-sized CaP (M/NCaP) particles. In this study, we developed waste equine bone (EB)-derived CPCs with various M/NCaP particle ratios to examine the potential capacity of EB-CPCs for bone grafting materials. Our study showed that increasing the number of NCaP particles resulted in reductions in roughness and porosity while promoting smoother surfaces of EB-CPCs. Changes in the chemical properties of EB-CPCs by NCaP particles were observed using X-ray diffractometry. The mechanical properties and cohesiveness of the EB-CPCs improved as the NCaP particle content increased. In an in vitro study, EB-CPCs with a greater proportion of MCaP particles showed higher cell adhesion. Alkaline phosphatase activity indicated that osteogenic differentiation by EB-CPCs was promoted with increased NCaP particle content. These results could provide a design criterion for bone substitutes for orthopedic disease, including periodontal bone defects.
Collapse
Affiliation(s)
- Kyoung-Je Jang
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University , Seoul, Republic of Korea
| | - Hoon Seonwoo
- Department of Industrial Machinery Engineering, College of Life Science and Natural Resources, Sunchon National University , Sunchon, Republic of Korea
| | - Minho Yang
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University , Seoul, Republic of Korea
| | - Sangbae Park
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University , Seoul, Republic of Korea
| | - Ki Taek Lim
- Department of Biosystems Engineering, College of Agricultural and Life Sciences, Kangwon National University , Chuncheon, Republic of Korea
| | - Jangho Kim
- Department of Rural and Biosystems Engineering, Chonnam National University , Gwangju, Republic of Korea
| | - Pill-Hoon Choung
- Department of Oral and Maxillofacial Surgery and Dental Research Institute, School of Dentistry, Seoul National University , Seoul, Republic of Korea
| | - Jong Hoon Chung
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University , Seoul, Republic of Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University , Seoul, Republic of Korea
| |
Collapse
|
4
|
Liu Y, Qiao Z, Gao J, Wu F, Sun B, Lian M, Qian J, Su Y, Zhu X, Zhu B. Hydroxyapatite-Bovine Serum Albumin-Paclitaxel Nanoparticles for Locoregional Treatment of Osteosarcoma. Adv Healthc Mater 2021; 10:e2000573. [PMID: 33166086 DOI: 10.1002/adhm.202000573] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/28/2020] [Indexed: 12/15/2022]
Abstract
Osteosarcoma is the most primary type of bone tumor occurring in the pediatric and adolescent age groups. In order to obtain the most appropriate prognosis, both tumor recurrence inhibition and bone repair promotion are required. In this study, a ternary nanoscale biomaterial/antitumor drug complex including hydroxyapatite (HA), bovine serum albumin (BSA) and paclitaxel (PTX) is prepared for post-surgical cancer treatment of osteosarcoma in situ. The HA-BSA-PTX nanoparticles, about 55 nm in diameter with drug loading efficiency (32.17 wt%), have sustained release properties of PTX and calcium ions (Ca2+ ) and low cytotoxicity to human fetal osteoblastic (hFOB 1.19) cells in vitro. However, for osteosarcoma (143B) cells, the proliferation, migration, and invasion ability are significantly inhibited. The in situ osteosarcoma model studies demonstrate that HA-BSA-PTX nanoparticles have significant anticancer effects and can effectively inhibit tumor metastasis. Meanwhile, the detection of alkaline phosphatase activity, calcium deposition, and reverse transcription-polymerase chain reaction proves that the HA-BSA-PTX nanoparticles can promote the osteogenic differentiation. Therefore, the HA-BSA-PTX nanodrug delivery system combined with sustained drug release, antitumor, and osteogenesis effects is a promising agent for osteosarcoma adjuvant therapy.
Collapse
Affiliation(s)
- Yongjia Liu
- Instrumental Analysis Center Shanghai Jiao Tong University Shanghai 200240 China
| | - Zhiguang Qiao
- Shanghai Key Laboratory of Orthopaedic Implants Department of Orthopaedics Shanghai Ninth People's Hospital Shanghai Jiao Tong University School of Life Science and Technology Shanghai 200011 China
- Department of Orthopaedic Surgery Renji Hospital South Campus Shanghai Jiao Tong University School of Medicine Shanghai 201112 China
| | - Jian Gao
- Shanghai Key Laboratory of Orthopaedic Implants Department of Orthopaedics Shanghai Ninth People's Hospital Shanghai Jiao Tong University School of Life Science and Technology Shanghai 200011 China
| | - Fengren Wu
- Instrumental Analysis Center Shanghai Jiao Tong University Shanghai 200240 China
| | - Binbin Sun
- Shanghai Key Laboratory of Orthopaedic Implants Department of Orthopaedics Shanghai Ninth People's Hospital Shanghai Jiao Tong University School of Life Science and Technology Shanghai 200011 China
| | - Meifei Lian
- Shanghai Key Laboratory of Orthopaedic Implants Department of Orthopaedics Shanghai Ninth People's Hospital Shanghai Jiao Tong University School of Life Science and Technology Shanghai 200011 China
| | - Jiwen Qian
- School of Chemistry and Chemical Engineering State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China
| | - Yue Su
- School of Chemistry and Chemical Engineering State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China
| | - Bangshang Zhu
- Instrumental Analysis Center Shanghai Jiao Tong University Shanghai 200240 China
- School of Chemistry and Chemical Engineering State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
5
|
Elfeky SA, Elsayed A, Moawad M, Ahmed WA. Hydroxyapatite nanocomposite as a potential agent in osteosarcoma PDT. Photodiagnosis Photodyn Ther 2020; 32:102056. [PMID: 33068821 DOI: 10.1016/j.pdpdt.2020.102056] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/26/2020] [Accepted: 10/02/2020] [Indexed: 01/09/2023]
Abstract
Using Nanoplatforms as a hauler for photosensitizers is a bespoke paradigm to improve its bioavailability and to boost the PDT efficacy. Herein, the photodynamic cytotoxicity of methylene blue (MB) loaded on hydroxyapatite nanoparticles (HA-NPs) was tested against human osteosarcoma-derived cells (Saos-2 cell line). HA-NPs and HA-NPs loaded with MB (HA-NPs-MB) were prepared by a chemical precipitation method and characterized by TEM, Zeta potential, FTIR, and XRD. TEM images revealed that HA-NPs have a rod shape with a diameter of 14-17 nm and length around 46-64 nm. FTIR and Zeta potential confirmed the adsorption of cationic MB on HA-NPs. XRD pattern was identical to the standard XRD pattern of HA-NPs. Incubation of Saos-2 cells (24 h) with HA-NPs-MB then irradiation of cells (5 min) with a diode laser (808 nm), causes a higher decrement of cell viability (determined by MTT assay) than that caused by free MB. The LC50 was 57.53 µg/mL and 86.99 µg/mL for HA-NPs-MB and free MB, respectively. Thus, the nanoformulation of MB greatly reduced the dose of MB required for effective PDT. This study also investigated the mode of cell death after incubation of cells with free MB or HA-NPs-MB composite then exposure to laser radiation. The results revealed that the majority of cells died by apoptosis while a minor fraction of cells died by necrosis, especially in the case of HA-NPs-MB. Levels of caspase-3 and death receptor-4 (DR-4) were more elevated in the case of HA-NPs-MB than free MB. The effect of the prepared nanocomposite and free MB on Raw murine macrophage (RAW 264.7) viability was also examined using the MTT assay. The results indicated that HA-NPs-MB in the presence of laser has a great cytotoxic effect on macrophage cells compared to other treatments. This may present an advantage through decreasing macrophage that promotes tumor growth. In conclusion, HA-NPs-MB nanocomposite surmounts free MB and HA-NPs in destroying macrophage cells and Saos-2 cells through apoptosis in the presence of laser irradiation. This study introduces a thorough and new insight on osteosarcoma (cancer cell line Saos-2) PDT using HA-NPs-MB exploiting the biosafety of HA-NPs.
Collapse
Affiliation(s)
- Souad A Elfeky
- National Institute of Laser Enhanced Sciences, Cairo University, Giza, 12613, Egypt.
| | - Ahmed Elsayed
- National Institute of Laser Enhanced Sciences, Cairo University, Giza, 12613, Egypt
| | - Mahmoud Moawad
- Department of Surgical Pathology, National Cancer Institute, Cairo University, Egypt
| | - Wafaa A Ahmed
- Department of Cancer Biology, National Cancer Institute, Cairo University, Egypt
| |
Collapse
|
6
|
The Potential Selective Cytotoxicity of Poly (L- Lactic Acid)-Based Scaffolds Functionalized with Nanohydroxyapatite and Europium (III) Ions toward Osteosarcoma Cells. MATERIALS 2019; 12:ma12223779. [PMID: 31752084 PMCID: PMC6888250 DOI: 10.3390/ma12223779] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 01/08/2023]
Abstract
Osteosarcoma (OSA) is malignant bone tumor, occurring in children and adults, characterized by poor prognosis. Despite advances in chemotherapy and surgical techniques, the survival of osteosarcoma patients is not improving significantly. Currently, great efforts are taken to identify novel selective strategies, distinguishing between cancer and normal cells. This includes development of biomimetic scaffolds with anticancer properties that can simultaneously support and modulate proper regeneration of bone tissue. In this study cytotoxicity of scaffolds composed from poly (L-lactic acid) functionalized with nanohydroxyapatite (nHAp) and doped with europium (III) ions-10 wt % 3 mol % Eu3+: nHAp@PLLA was tested using human osteosarcoma cells: U-2 OS, Saos-2 and MG-63. Human adipose tissue-derived stromal cells (HuASCs) were used as non-transformed cells to determine the selective cytotoxicity of the carrier. Analysis included evaluation of cells morphology (confocal/scanning electron microscopy (SEM)), metabolic activity and apoptosis profile in cultures on the scaffolds. Results obtained indicated on high cytotoxicity of scaffolds toward all OSA cell lines, associated with a decrease of cells' viability, deterioration of metabolic activity and activation of apoptotic factors determined at mRNA and miRNA levels. Simultaneously, the biomaterials did not affect HuASCs' viability and proliferation rate. Obtained scaffolds showed a bioimaging function, due to functionalization with luminescent europium ions, and thus may find application in theranostics treatment of OSA.
Collapse
|
7
|
Guo G, Tian A, Lan X, Fu C, Yan Z, Wang C. Nano hydroxyapatite induces glioma cell apoptosis by suppressing NF-κB signaling pathway. Exp Ther Med 2019; 17:4080-4088. [PMID: 30988786 PMCID: PMC6447934 DOI: 10.3892/etm.2019.7418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/15/2019] [Indexed: 01/17/2023] Open
Abstract
Nano-sized hydroxyapatite (nHA) particles have been demonstrated to exert anti-cancer effects on multiple cancer cell lines and animal models of cancer biology. However, the molecular mechanism underlying the effects of nHA particles on glioma cells remains unclear. The present study aimed to examine the effects of nHA on the behavior of glioma cells and investigate its underlying molecular mechanism. Rat glioma C6 cells and human glioma U87MG ATCC cells were exposed to nHA (20–100 µg/ml), and its effects on cell morphology, viability, apoptosis, cell cycle, invasion and nuclear factor (NF)-κB signaling were analyzed. Exposure of C6 and U87MG ATCC cells to 20 µg/ml nHA for 24 h caused cell detachment. Viability of C6 and U87MG ATCC cells were significantly reduced by nHA in a dose-dependent manner (P<0.05). Nuclear staining with Hoechst 33258 exhibited clear chromatin condensation in C6 cells following 24 h exposure to ≥25 µg/ml nHA. Flow cytometry revealed that nHA (20–100 µg/ml) significantly induced apoptosis and cell cycle G2/M arrest in C6 and U87MG ATCC cells (P<0.05). Transwell invasion assay demonstrated that nHA (20–60 µg/ml) significantly inhibited invasion of U87MG ATCC cells (P<0.05). Furthermore, western blotting and confocal immunofluorescence microscopy revealed that nHA (20–100 µg/ml) decreased NF-κB p65 protein expression and blocked NF-κB p65 nuclear translocation in C6 cells. The protein expression of NF-κB target molecules, such as B cell lymphoma 2, cyclooxygenase-2 and survivin, were also significantly reduced by nHA in a dose-dependent manner in both C6 and U87MG ATCC cells (P<0.05). In conclusion, it was demonstrated that the inhibitory effect of nHA on glioma cells is likely associated with the downregulation of NF-κB signaling.
Collapse
Affiliation(s)
- Guocai Guo
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China.,Department of Neurosurgery, Wei Fang Traditional Chinese Hospital, Weifang, Shandong 261000, P.R. China
| | - Ang Tian
- Liaoning Provincial Key Laboratory of Metallurgical Resources Circulation Science, Northeastern University, Shenyang, Liaoning 110819, P.R. China
| | - Xiaolei Lan
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Changqing Fu
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China.,Department of Neurosurgery, The First People's Hospital of Jining City, Jining, Shandong 272011, P.R. China
| | - Zhiyong Yan
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Chao Wang
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
8
|
Sun H, Lv L, Bai Y, Yang H, Zhou H, Li C, Yang L. Nanotechnology-enabled materials for hemostatic and anti-infection treatments in orthopedic surgery. Int J Nanomedicine 2018; 13:8325-8338. [PMID: 30584303 PMCID: PMC6289228 DOI: 10.2147/ijn.s173063] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The hemostatic and anti-infection treatments in the field of orthopedics are always the pivotal yet challenging topics. In the first part of this review, synthesized or naturally derived nanoscale agents and materials for hemostatic treatment in orthopedic surgery are introduced. The hemostatic mechanisms and the safety concerns of these nanotechnology-enabled materials are discussed. Beside the materials to meet hemostatic needs in orthopedic surgery, the need for antimicrobial or anti-infection strategy in orthopedic surgery also becomes urgent. Nanosilver and its derivatives have the most consistent anti-infective effect and thus high translational potential for clinical applications. In the second part, the factors affecting the antimicrobial effect of nanosilver and its application status are summarized. Finally, the status and translational potential of various nanotechnology-enabled materials and agents for hemostatic and anti-infective treatments in orthopedic surgery are discussed.
Collapse
Affiliation(s)
- Haolin Sun
- Department of Orthopaedics, Peking University First Hospital, Beijing 100034, China,
- International Research Center for Translational Orthopaedics (IRCTO), Soochow University, Suzhou 215006, China,
| | - Lu Lv
- Orthopaedic Institute and Department of Orthopaedics, Soochow University, Suzhou 215006, China,
| | - Yanjie Bai
- School of Public Health, Medical College, Soochow University, Suzhou 215000, China
| | - Huilin Yang
- International Research Center for Translational Orthopaedics (IRCTO), Soochow University, Suzhou 215006, China,
- Orthopaedic Institute and Department of Orthopaedics, Soochow University, Suzhou 215006, China,
| | - Huan Zhou
- International Research Center for Translational Orthopaedics (IRCTO), Soochow University, Suzhou 215006, China,
- School of Mechanical Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Chunde Li
- Department of Orthopaedics, Peking University First Hospital, Beijing 100034, China,
| | - Lei Yang
- International Research Center for Translational Orthopaedics (IRCTO), Soochow University, Suzhou 215006, China,
- Orthopaedic Institute and Department of Orthopaedics, Soochow University, Suzhou 215006, China,
| |
Collapse
|
9
|
Yu W, Zhu J, Wang Y, Wang J, Fang W, Xia K, Shao J, Wu M, Liu B, Liang C, Ye C, Tao H. A review and outlook in the treatment of osteosarcoma and other deep tumors with photodynamic therapy: from basic to deep. Oncotarget 2018; 8:39833-39848. [PMID: 28418855 PMCID: PMC5503657 DOI: 10.18632/oncotarget.16243] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/07/2017] [Indexed: 12/20/2022] Open
Abstract
Photodynamic therapy, one of the most promising minimally invasive treatments, has received increasing focus in tumor therapy research, which has been widely applied in treating superficial tumors. Three basic factors - photosensitizer, the light source, and oxidative stress - are responsible for tumor cell cytotoxicity. However, due to insufficient luminous flux and peripheral tissue damage, the utilization of photodynamic therapy is facing a huge limitation in deep tumor therapy. Osteosarcoma is the typical deep tumor, which is the most commonly occurring malignancy in children and adolescents. Despite developments in surgery, high risks of the amputation still threatens the health of osteosarcoma patients. In this review, we summarize recent developments in the field of photodynamic therapy and specifically PDT research in OS treatment modalities. In addition, we also provide some novel suggestions, which could potentially be a breakthrough in PDT-induced OS therapies. PDT has the potential to become an effective therapy while the its limitations still present when applied on the treatment of OS or other types of deep tumors. Thus, more researches and studies in the field are required.
Collapse
Affiliation(s)
- Wei Yu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| | - Jian Zhu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| | - Yitian Wang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| | - Junjie Wang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| | - Weijing Fang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| | - Kaishun Xia
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| | - Jianlin Shao
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Minzu Wu
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Bing Liu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| | - Chengzhen Liang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| | - Chengyi Ye
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| | - Huimin Tao
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| |
Collapse
|
10
|
Wang Z, Jia Z, Jiang Y, Li P, Han L, Lu X, Ren F, Wang K, Yuan H. Mussel-inspired nano-building block assemblies for mimicking extracellular matrix microenvironments with multiple functions. Biofabrication 2017; 9:035005. [DOI: 10.1088/1758-5090/aa7fdc] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Jia Y, Yuan H, Shan S, Xu G, Yu J, Zhao C, Mou X. Corosolic acid inhibits the proliferation of osteosarcoma cells by inducing apoptosis. Oncol Lett 2016; 12:4187-4194. [PMID: 27895790 DOI: 10.3892/ol.2016.5185] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/25/2016] [Indexed: 11/05/2022] Open
Abstract
Corosolic acid (CRA), a pentacyclic triterpene isolated from medicinal herbs, has been reported to exhibit anticancer properties in several cancers. However, the anticancer activity of CRA in osteosarcoma cells is still unclear. In the present study, the inhibitory effect of CRA in osteosarcoma MG-63 cells was investigated, and the results revealed that CRA significantly inhibited the viability of MG-63 cells in a dose- and time-dependent manner. A typical apoptotic hallmark such as DNA ladder was detected by agarose gel electrophoresis following treatment with CRA. Further experiments demonstrated that CRA induced apoptosis of MG-63 cells by flow cytometry using propidium iodide and annexin V staining. In addition, it was observed that the apoptosis of MG-63 cells induced by CRA was closely associated with activation of caspase-3 and caspase-9, loss of mitochondrial membrane potential, and release of cytochrome c from mitochondria, suggesting that CRA may trigger the activation of the mitochondria-mediated apoptosis pathway. In addition, the inhibition of caspase activity attenuated the CRA-induced apoptosis of MG-63 cells, which further confirmed the role of the mitochondrial pathway in CRA-induced apoptosis. These results indicated that CRA could induce the apoptosis of osteosarcoma cells through activating the mitochondrial pathway, which provides an evidence that CRA may be a useful chemotherapeutic agent for osteosarcoma.
Collapse
Affiliation(s)
- Yong Jia
- Orthopedic Center of Chinese PLA, Urumqi General Hospital of Lanzhou Military Region, Urumqi, Xinjiang 830000, P.R. China
| | - Hua Yuan
- Department of Rehabilitation, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Shouqin Shan
- Department of Rehabilitation, Qingdao First Sanatorium of Jinan Military Region, Qingdao, Shandong 266071, P.R. China
| | - Gang Xu
- Orthopedic Center of Chinese PLA, Urumqi General Hospital of Lanzhou Military Region, Urumqi, Xinjiang 830000, P.R. China
| | - Jie Yu
- Department of Information, Urumqi General Hospital of Lanzhou Military Region, Urumqi, Xinjiang 830000, P.R. China
| | - Chenguang Zhao
- Department of Rehabilitation, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xiang Mou
- Department of Rehabilitation, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
12
|
Savvidou OD, Bolia IK, Chloros GD, Goumenos SD, Sakellariou VI, Galanis EC, Papagelopoulos PJ. Applied Nanotechnology and Nanoscience in Orthopedic Oncology. Orthopedics 2016; 39:280-6. [PMID: 27636683 DOI: 10.3928/01477447-20160823-03] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Nanomedicine is based on the fact that biological molecules behave similarly to nanomolecules, which have a size of less than 100 nm, and is now affecting most areas of orthopedics. In orthopedic oncology, most of the in vitro and in vivo studies have used osteosarcoma or Ewing sarcoma cell lineages. In this article, tumor imaging and treatment nanotechnology applications, including nanostructure delivery of chemotherapeutic agents, gene therapy, and the role of nano-selenium-coated implants, are outlined. Finally, the potential role of nanotechnology in addressing the challenges of drug and radiotherapy resistance is discussed. [Orthopedics. 2016; 39(5):280-286.].
Collapse
|
13
|
Ma DD, Yang WX. Engineered nanoparticles induce cell apoptosis: potential for cancer therapy. Oncotarget 2016; 7:40882-40903. [PMID: 27056889 PMCID: PMC5130051 DOI: 10.18632/oncotarget.8553] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/28/2016] [Indexed: 01/09/2023] Open
Abstract
Engineered nanoparticles (ENPs) have been widely applied in industry, commodities, biology and medicine recently. The potential for many related threats to human health has been highlighted. ENPs with their sizes no larger than 100 nm are able to enter the human body and accumulate in organs such as brain, liver, lung, testes, etc, and cause toxic effects. Many references have studied ENP effects on the cells of different organs with related cell apoptosis noted. Understanding such pathways towards ENP induced apoptosis may aid in the design of effective cancer targeting ENP drugs. Such ENPs can either have a direct effect towards cancer cell apoptosis or can be used as drug delivery agents. Characteristics of ENPs, such as sizes, shape, forms, charges and surface modifications are all seen to play a role in determining their toxicity in target cells. Specific modifications of such characteristics can be applied to reduce ENP bioactivity and thus alleviate unwanted cytotoxicity, without affecting the intended function. This provides an opportunity to design ENPs with minimum toxicity to non-targeted cells.
Collapse
Affiliation(s)
- Dan-Dan Ma
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
14
|
Cipreste MF, Gonzalez I, Maria da Mata Martins T, Goes AM, Augusto de Almeida Macedo W, Barros de Sousa EM. Attaching folic acid on hydroxyapatite nanorod surfaces: an investigation of the HA–FA interaction. RSC Adv 2016. [DOI: 10.1039/c6ra14068h] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The functionalization strategy of HA with folate was tested. A systematic study of the structure and the chemical interaction were performed. The biocompatibility was also tested. HA–FA is a candidate to act as drug delivery or radioisotope carriers.
Collapse
Affiliation(s)
| | - Ismael Gonzalez
- Centro de Desenvolvimento da Tecnologia Nuclear – CDTN
- Belo Horizonte
- Brazil
| | - Thaís Maria da Mata Martins
- Universidade Federal de Minas Gerais
- Instituto de Ciências Biológicas
- Departamento de Morfologia
- UFMG
- Belo Horizonte
| | - Alfredo Miranda Goes
- Universidade Federal de Minas Gerais
- Instituto de Ciências Biológicas
- Departamento de Bioquímica e Imunologia
- UFMG
- Belo Horizonte
| | | | | |
Collapse
|
15
|
Bell IR, Schwartz GE. Enhancement of adaptive biological effects by nanotechnology preparation methods in homeopathic medicines. HOMEOPATHY 2015; 104:123-38. [DOI: 10.1016/j.homp.2014.11.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 11/16/2014] [Indexed: 01/19/2023]
|
16
|
Filová E, Suchý T, Sucharda Z, Supová M, Zaloudková M, Balík K, Lisá V, Slouf M, Bačáková L. Support for the initial attachment, growth and differentiation of MG-63 cells: a comparison between nano-size hydroxyapatite and micro-size hydroxyapatite in composites. Int J Nanomedicine 2014; 9:3687-706. [PMID: 25125978 PMCID: PMC4130718 DOI: 10.2147/ijn.s56661] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Hydroxyapatite (HA) is considered to be a bioactive material that favorably influences the adhesion, growth, and osteogenic differentiation of osteoblasts. To optimize the cell response on the hydroxyapatite composite, it is desirable to assess the optimum concentration and also the optimum particle size. The aim of our study was to prepare composite materials made of polydimethylsiloxane, polyamide, and nano-sized (N) or micro-sized (M) HA, with an HA content of 0%, 2%, 5%, 10%, 15%, 20%, 25% (v/v) (referred to as N0–N25 or M0–M25), and to evaluate them in vitro in cultures with human osteoblast-like MG-63 cells. For clinical applications, fast osseointegration of the implant into the bone is essential. We observed the greatest initial cell adhesion on composites M10 and N5. Nano-sized HA supported cell growth, especially during the first 3 days of culture. On composites with micro-size HA (2%–15%), MG-63 cells reached the highest densities on day 7. Samples M20 and M25, however, were toxic for MG-63 cells, although these composites supported the production of osteocalcin in these cells. On N2, a higher concentration of osteopontin was found in MG-63 cells. For biomedical applications, the concentration range of 5%–15% (v/v) nano-size or micro-size HA seems to be optimum.
Collapse
Affiliation(s)
- Elena Filová
- Department of Biomaterials and Tissue Engineering, Institute of Physiology, Prague, Czech Republic
| | - Tomáš Suchý
- Department of Composite and Carbon Materials, Institute of Rock Structure and Mechanics, Academy of Sciences of the Czech Republic, Prague, Czech Republic ; Laboratory of Biomechanics, Department of Mechanics, Biomechanics and Mechatronics, Faculty of Mechanical Engineering, CTU in Prague, Prague, Czech Republic
| | - Zbyněk Sucharda
- Department of Composite and Carbon Materials, Institute of Rock Structure and Mechanics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Monika Supová
- Department of Composite and Carbon Materials, Institute of Rock Structure and Mechanics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Margit Zaloudková
- Department of Composite and Carbon Materials, Institute of Rock Structure and Mechanics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Karel Balík
- Department of Composite and Carbon Materials, Institute of Rock Structure and Mechanics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Věra Lisá
- Department of Biomaterials and Tissue Engineering, Institute of Physiology, Prague, Czech Republic
| | - Miroslav Slouf
- Department of Morphology and Rheology of Polymer Materials, Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Lucie Bačáková
- Department of Biomaterials and Tissue Engineering, Institute of Physiology, Prague, Czech Republic
| |
Collapse
|
17
|
Bell IR, Sarter B, Koithan M, Banerji P, Banerji P, Jain S, Ives J. Integrative nanomedicine: treating cancer with nanoscale natural products. Glob Adv Health Med 2014; 3:36-53. [PMID: 24753994 PMCID: PMC3921611 DOI: 10.7453/gahmj.2013.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Finding safer and more effective treatments for specific cancers remains a significant challenge for integrative clinicians and researchers worldwide. One emerging strategy is the use of nanostructured forms of drugs, vaccines, traditional animal venoms, herbs, and nutraceutical agents in cancer treatment. The recent discovery of nanoparticles in traditional homeopathic medicines adds another point of convergence between modern nanomedicine and alternative interventional strategies. A way in which homeopathic remedies could initiate anticancer effects includes cell-to-cell signaling actions of both exogenous and endogenous (exosome) nanoparticles. The result can be a cascade of modulatory biological events with antiproliferative and pro-apoptotic effects. The Banerji Protocols reflect a multigenerational clinical system developed by homeopathic physicians in India who have treated thousands of patients with cancer. A number of homeopathic remedy sources from the Banerji Protocols (eg, Calcarea phosphorica; Carcinosin-tumor-derived breast cancer tissue prepared homeopathically) overlap those already under study in nonhomeopathic nanoparticle and nanovesicle tumor exosome cancer vaccine research. Past research on antineoplastic effects of nano forms of botanical extracts such as Phytolacca, Gelsemium, Hydrastis, Thuja, and Ruta as well as on homeopathic remedy potencies made from the same types of source materials suggests other important overlaps. The replicated finding of silica, silicon, and nano-silica release from agitation of liquids in glassware adds a proven nonspecific activator and amplifier of immunological effects. Taken together, the nanoparticulate research data and the Banerji Protocols for homeopathic remedies in cancer suggest a way forward for generating advances in cancer treatment with natural product-derived nanomedicines.
Collapse
Affiliation(s)
- Iris R Bell
- Department of Family and Community Medicine, The University of Arizona College of Medicine, Tucson (Dr Bell), United States
| | - Barbara Sarter
- Hahn School of Nursing and Health Sciences, University of San Diego, California, and Bastyr University - California (Dr Sarter), United States
| | - Mary Koithan
- College of Nursing, The University of Arizona (Drs Koithan), United States
| | | | - Pratip Banerji
- PBH Research Foundation, Kolkata, India (Drs Banerji), India
| | - Shamini Jain
- Samueli Institute, Alexandria, Virginia (Dr Jain), United States
| | - John Ives
- Samueli Institute, Alexandria, Virginia (Dr Ives), United States
| |
Collapse
|
18
|
Sullivan MP, McHale KJ, Parvizi J, Mehta S. Nanotechnology: current concepts in orthopaedic surgery and future directions. Bone Joint J 2014; 96-B:569-73. [PMID: 24788488 DOI: 10.1302/0301-620x.96b5.33606] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Nanotechnology is the study, production and controlled manipulation of materials with a grain size < 100 nm. At this level, the laws of classical mechanics fall away and those of quantum mechanics take over, resulting in unique behaviour of matter in terms of melting point, conductivity and reactivity. Additionally, and likely more significant, as grain size decreases, the ratio of surface area to volume drastically increases, allowing for greater interaction between implants and the surrounding cellular environment. This favourable increase in surface area plays an important role in mesenchymal cell differentiation and ultimately bone-implant interactions. Basic science and translational research have revealed important potential applications for nanotechnology in orthopaedic surgery, particularly with regard to improving the interaction between implants and host bone. Nanophase materials more closely match the architecture of native trabecular bone, thereby greatly improving the osseo-integration of orthopaedic implants. Nanophase-coated prostheses can also reduce bacterial adhesion more than conventionally surfaced prostheses. Nanophase selenium has shown great promise when used for tumour reconstructions, as has nanophase silver in the management of traumatic wounds. Nanophase silver may significantly improve healing of peripheral nerve injuries, and nanophase gold has powerful anti-inflammatory effects on tendon inflammation. Considerable advances must be made in our understanding of the potential health risks of production, implantation and wear patterns of nanophase devices before they are approved for clinical use. Their potential, however, is considerable, and is likely to benefit us all in the future.
Collapse
Affiliation(s)
- M P Sullivan
- Hospital of the University of Pennsylvania, Department of Orthopaedic Surgery, 2 Silverstein, 3400 Spruce St, Philadelphia, USA
| | | | | | | |
Collapse
|
19
|
Bell IR. Nonlinear effects of nanoparticles: biological variability from hormetic doses, small particle sizes, and dynamic adaptive interactions. Dose Response 2014; 12:202-32. [PMID: 24910581 PMCID: PMC4036395 DOI: 10.2203/dose-response.13-025.bell] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Researchers are increasingly focused on the nanoscale level of organization where biological processes take place in living systems. Nanoparticles (NPs, e.g., 1-100 nm diameter) are small forms of natural or manufactured source material whose properties differ markedly from those of the respective bulk forms of the "same" material. Certain NPs have diagnostic and therapeutic uses; some NPs exhibit low-dose toxicity; other NPs show ability to stimulate low-dose adaptive responses (hormesis). Beyond dose, size, shape, and surface charge variations of NPs evoke nonlinear responses in complex adaptive systems. NPs acquire unique size-dependent biological, chemical, thermal, optical, electromagnetic, and atom-like quantum properties. Nanoparticles exhibit high surface adsorptive capacity for other substances, enhanced bioavailability, and ability to cross otherwise impermeable cell membranes including the blood-brain barrier. With super-potent effects, nano-forms can evoke cellular stress responses or therapeutic effects not only at lower doses than their bulk forms, but also for longer periods of time. Interactions of initial effects and compensatory systemic responses can alter the impact of NPs over time. Taken together, the data suggest the need to downshift the dose-response curve of NPs from that for bulk forms in order to identify the necessarily decreased no-observed-adverse-effect-level and hormetic dose range for nanoparticles.
Collapse
|
20
|
Tang W, Yuan Y, Liu C, Wu Y, Lu X, Qian J. Differential cytotoxicity and particle action of hydroxyapatite nanoparticles in human cancer cells. Nanomedicine (Lond) 2014; 9:397-412. [DOI: 10.2217/nnm.12.217] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aim: While hydroxyapatite nanoparticles (HAPNs) have been reported to exhibit anticancer effects on several types of human cancer cells, no investigation has been performed to compare their cytotoxicity with different types of cancer cells. The objective of the present study is to investigate the cytotoxic action of HAPNs in different types of human cancer cell and to explore the possible mechanisms involved. Materials & methods: Rod-shaped HAPNs were prepared by the aqueous precipitation method and then labeled with ?uorescein isothiocyanate to visualize the cellular uptake and distribution. Their cytotoxicity to three human carcinoma cell lines (gastric cancer cells [MGC80-3], cervical adenocarcinoma epithelial cells [HeLa] and hepatoma cells [HepG2], as well as to normal human hepatocyte cells [L-02]) was assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Cell apoptosis was characterized by the changes in nuclear morphology with 4’,6-diamidino-2-phenylindole staining and by ?ow cytometric analysis with Annexin V-?uorescein isothiocyanate/propidium iodide double staining. Furthermore, the activity of apoptotic proteins (caspase-3, -8 and -9), intracellular reactive oxygen species and glutathione levels were analyzed in HAPN-treated cells. The cellular uptake of HAPNs was studied using flow cytometry analysis, and changes in intracellular calcium levels were investigated using the Ca2+-sensitive fluorescent dye, fluo-3 AM. Results: HAPNs significantly inhibited cell proliferation and induced apoptosis of cancer cells with an order of MGC80-3 > HepG2 > HeLa, but had no impact on normal hepatic cells (L-02). The increase in apoptosis was accompanied by the activation of caspase-3 and -9, but not activation of caspase-8. Moreover, HAPN treatment led to reactive oxygen species generation and decreased intracellular glutathione in cancer cells, with the most remarkable reactive oxygen species burst in HeLa cells. The degree of cytotoxicity did not correlate with the cellular uptake efficiency of HAPNs. However, more HAPNs were found inside the nucleus of MGC80-3 cells, and an increase in the intracellular calcium level was observed in all cancer cells, with the highest level also detected in MGC80-3. Conclusion: Varying cytotoxicity of HAPNs was observed in different cancer cell types. Our results suggest that possible mechanisms of cytotoxicity in various types of cancer cells could be different. The elevated calcium concentration and nuclear localization of the particles might be the main mechanism of growth inhibition by HAPNs in cancer cells. Original submitted 18 April 2012; Revised submitted 14 September 2012; Published online 24 April 2013
Collapse
Affiliation(s)
- Wei Tang
- State Key Laboratory of Bioreactor Engineering, East China University of Science & Technology, Shanghai 200237, PR China
| | - Yuan Yuan
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science & Technology, Shanghai 200237, PR China
| | - Changsheng Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science & Technology, Shanghai 200237, PR China
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science & Technology, Shanghai 200237, PR China
| | - Yuequn Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science & Technology, Shanghai 200237, PR China
| | - Xun Lu
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science & Technology, Shanghai 200237, PR China
| | - Jiangchao Qian
- State Key Laboratory of Bioreactor Engineering, East China University of Science & Technology, Shanghai 200237, PR China
| |
Collapse
|
21
|
Cipreste MF, Sousa EMB. Poly(Vinyl Alcohol)/Collagen/Hydroxyapatite Nanoparticles Hybrid System Containing Yttrium-90 as a Potential Agent to Treat Osteosarcoma. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/jbnb.2014.51004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Bell IR, Boyer NN. Homeopathic medications as clinical alternatives for symptomatic care of acute otitis media and upper respiratory infections in children. Glob Adv Health Med 2014; 2:32-43. [PMID: 24381823 PMCID: PMC3833578 DOI: 10.7453/gahmj.2013.2.1.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The public health and individual risks of inappropriate antibiotic prescribing and conventional over-the-counter symptomatic drugs in pediatric treatment of acute otitis media (AOM) and upper respiratory infections (URIs) are significant. Clinical research suggests that over-the-counter homeopathic medicines offer pragmatic treatment alternatives to conventional drugs for symptom relief in children with uncomplicated AOM or URIs. Homeopathy is a controversial but demonstrably safe and effective 200-year-old whole system of complementary and alternative medicine used worldwide. Numerous clinical studies demonstrate that homeopathy accelerates early symptom relief in acute illnesses at much lower risk than conventional drug approaches. Evidence-based advantages for homeopathy include lower antibiotic fill rates during watchful waiting in otitis media, fewer and less serious side effects, absence of drug-drug interactions, and reduced parental sick leave from work. Emerging evidence from basic and preclinical science research counter the skeptics' claims that homeopathic remedies are biologically inert placebos. Consumers already accept and use homeopathic medicines for self care, as evidenced by annual US consumer expenditures of $2.9 billion on homeopathic remedies. Homeopathy appears equivalent to and safer than conventional standard care in comparative effectiveness trials, but additional well-designed efficacy trials are indicated. Nonetheless, the existing research evidence on safety supports pragmatic use of homeopathy in order to “first do no harm” in the early symptom management of otherwise uncomplicated AOM and URIs in children.
Collapse
Affiliation(s)
- Iris R Bell
- Department of Family and Community Medicine, The University of Arizona College of Medicine and College of Nursing, The University of Arizona, Tucson, United States
| | - Nancy N Boyer
- Private Practice, Rochester, New York, United States
| |
Collapse
|
23
|
Zakaria SM, Sharif Zein SH, Othman MR, Yang F, Jansen JA. Nanophase Hydroxyapatite as a Biomaterial in Advanced Hard Tissue Engineering: A Review. TISSUE ENGINEERING PART B-REVIEWS 2013; 19:431-41. [DOI: 10.1089/ten.teb.2012.0624] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Siti Maisurah Zakaria
- School of Chemical Engineering, Engineering Campus, University Sains Malaysia, Nibong Tebal, Malaysia
| | | | - Mohd. Roslee Othman
- School of Chemical Engineering, Engineering Campus, University Sains Malaysia, Nibong Tebal, Malaysia
| | - Fang Yang
- Department of Biomaterials, College of Dental Science, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - John A. Jansen
- Department of Biomaterials, College of Dental Science, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
24
|
Testing the nanoparticle-allostatic cross-adaptation-sensitization model for homeopathic remedy effects. HOMEOPATHY 2013; 102:66-81. [PMID: 23290882 DOI: 10.1016/j.homp.2012.10.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Revised: 10/25/2012] [Accepted: 10/25/2012] [Indexed: 02/08/2023]
Abstract
Key concepts of the Nanoparticle-Allostatic Cross-Adaptation-Sensitization (NPCAS) Model for the action of homeopathic remedies in living systems include source nanoparticles as low level environmental stressors, heterotypic hormesis, cross-adaptation, allostasis (stress response network), time-dependent sensitization with endogenous amplification and bidirectional change, and self-organizing complex adaptive systems. The model accommodates the requirement for measurable physical agents in the remedy (source nanoparticles and/or source adsorbed to silica nanoparticles). Hormetic adaptive responses in the organism, triggered by nanoparticles; bipolar, metaplastic change, dependent on the history of the organism. Clinical matching of the patient's symptom picture, including modalities, to the symptom pattern that the source material can cause (cross-adaptation and cross-sensitization). Evidence for nanoparticle-related quantum macro-entanglement in homeopathic pathogenetic trials. This paper examines research implications of the model, discussing the following hypotheses: Variability in nanoparticle size, morphology, and aggregation affects remedy properties and reproducibility of findings. Homeopathic remedies modulate adaptive allostatic responses, with multiple dynamic short- and long-term effects. Simillimum remedy nanoparticles, as novel mild stressors corresponding to the organism's dysfunction initiate time-dependent cross-sensitization, reversing the direction of dysfunctional reactivity to environmental stressors. The NPCAS model suggests a way forward for systematic research on homeopathy. The central proposition is that homeopathic treatment is a form of nanomedicine acting by modulation of endogenous adaptation and metaplastic amplification processes in the organism to enhance long-term systemic resilience and health.
Collapse
|
25
|
Bell IR, Schwartz GE, Boyer NN, Koithan M, Brooks AJ. Advances in Integrative Nanomedicine for Improving Infectious Disease Treatment in Public Health. Eur J Integr Med 2013; 5:126-140. [PMID: 23795222 PMCID: PMC3685499 DOI: 10.1016/j.eujim.2012.11.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Infectious diseases present public health challenges worldwide. An emerging integrative approach to treating infectious diseases is using nanoparticle (NP) forms of traditional and alternative medicines. Advantages of nanomedicine delivery methods include better disease targeting, especially for intracellular pathogens, ability to cross membranes and enter cells, longer duration drug action, reduced side effects, and cost savings from lower doses. METHODS We searched Pubmed articles in English with keywords related to nanoparticles and nanomedicine. Nanotechnology terms were also combined with keywords for drug delivery, infectious diseases, herbs, antioxidants, homeopathy, and adaptation. RESULTS NPs are very small forms of material substances, measuring 1-100 nanometers along at least one dimension. Compared with bulk forms, NPs' large ratio of surface-area-to-volume confers increased reactivity and adsorptive capacity, with unique electromagnetic, chemical, biological, and quantum properties. Nanotechnology uses natural botanical agents for green manufacturing of less toxic NPs. DISCUSSION Nanoparticle herbs and nutriceuticals can treat infections via improved bioavailability and antiinflammatory, antioxidant, and immunomodulatory effects. Recent studies demonstrate that homeopathic medicines may contain source and/or silica nanoparticles because of their traditional manufacturing processes. Homeopathy, as a form of nanomedicine, has a promising history of treating epidemic infectious diseases, including malaria, leptospirosis and HIV/AIDS, in addition to acute upper respiratory infections. Adaptive changes in the host's complex networks underlie effects. CONCLUSIONS Nanomedicine is integrative, blending modern technology with natural products to reduce toxicity and support immune function. Nanomedicine using traditional agents from alternative systems of medicine can facilitate progress in integrative public health approaches to infectious diseases.
Collapse
Affiliation(s)
- Iris R. Bell
- Department of Family and Community Medicine, the University of Arizona College of Medicine, Tucson, AZ, USA
- Department of Psychiatry, the University of Arizona College of Medicine, Tucson, AZ, USA
- Department of Psychology, the University of Arizona, Tucson, AZ, USA
- College of Nursing, the University of Arizona, Tucson, AZ, USA
- Department of Medicine (Integrative Medicine), the University of Arizona College of Medicine, Tucson, AZ, USA
- Mel and Enid Zuckerman College of Public Health, the University of Arizona, Tucson, AZ USA
| | - Gary E. Schwartz
- Department of Psychiatry, the University of Arizona College of Medicine, Tucson, AZ, USA
- Department of Psychology, the University of Arizona, Tucson, AZ, USA
- Department of Medicine (Integrative Medicine), the University of Arizona College of Medicine, Tucson, AZ, USA
| | | | - Mary Koithan
- Department of Family and Community Medicine, the University of Arizona College of Medicine, Tucson, AZ, USA
- College of Nursing, the University of Arizona, Tucson, AZ, USA
- Department of Medicine (Integrative Medicine), the University of Arizona College of Medicine, Tucson, AZ, USA
| | - Audrey J. Brooks
- Department of Psychology, the University of Arizona, Tucson, AZ, USA
- Department of Medicine (Integrative Medicine), the University of Arizona College of Medicine, Tucson, AZ, USA
| |
Collapse
|
26
|
Wang Y, Zhang L, Sun L, Webster TJ. Increased healthy osteoblast to osteosarcoma density ratios on specific PLGA nanopatterns. Int J Nanomedicine 2013; 8:159-66. [PMID: 23326191 PMCID: PMC3544334 DOI: 10.2147/ijn.s36408] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Poly(lactic-co-glycolic acid) ([PLGA] 50:50 wt% PLA:PGA) films with a flat surface and with 27 nm, 190 nm, 300 nm, 400 nm, and 520 nm nanopatterns were fabricated using a cast-mold process. The nanopatterns were transferred from self-assembled polystyrene (PS) beads to PLGA films through polydimethylsiloxane (PDMS) molds. The surface features, root-mean- square (RMS) roughness, and wettability of these PLGA surface features were studied by atomic force microscope (AFM) height scans, AFM z-sensor scans, and water contact angles, respectively. In order to evaluate the influence of the material topography alone (without changes in chemistry) for bone-cancer applications, both human healthy osteoblasts and human cancerous osteosarcoma cells were cultured on these PLGA surface features, and their densities were determined. Most importantly, compared to all other substrates, it was found that the 27 nm PLGA nanopatterns significantly increased the healthy osteoblast-to-osteosarcoma cell-density ratio. For these reasons, and since previous studies have highlighted that similar nanometer PLGA surface features decreased functions of other types of cancerous cells (specifically lung and breast), this study suggests that 27 nm PLGA nanopatterns should be further studied for a wide range of bone-cancer applications, particularly where healthy bone-cell functions need to be promoted over cancerous bone-cell functions.
Collapse
Affiliation(s)
- Yongchen Wang
- Department of Chemistry, Brown University, Providence, RI, USA
| | | | | | | |
Collapse
|
27
|
Blackburn G, Scott TG, Bayer IS, Ghosh A, Biris AS, Biswas A. Bionanomaterials for bone tumor engineering and tumor destruction. J Mater Chem B 2013; 1:1519-1534. [DOI: 10.1039/c3tb00536d] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
28
|
Bell IR, Koithan M. A model for homeopathic remedy effects: low dose nanoparticles, allostatic cross-adaptation, and time-dependent sensitization in a complex adaptive system. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 12:191. [PMID: 23088629 PMCID: PMC3570304 DOI: 10.1186/1472-6882-12-191] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Accepted: 10/19/2012] [Indexed: 01/09/2023]
Abstract
Background This paper proposes a novel model for homeopathic remedy action on living systems. Research indicates that homeopathic remedies (a) contain measurable source and silica nanoparticles heterogeneously dispersed in colloidal solution; (b) act by modulating biological function of the allostatic stress response network (c) evoke biphasic actions on living systems via organism-dependent adaptive and endogenously amplified effects; (d) improve systemic resilience. Discussion The proposed active components of homeopathic remedies are nanoparticles of source substance in water-based colloidal solution, not bulk-form drugs. Nanoparticles have unique biological and physico-chemical properties, including increased catalytic reactivity, protein and DNA adsorption, bioavailability, dose-sparing, electromagnetic, and quantum effects different from bulk-form materials. Trituration and/or liquid succussions during classical remedy preparation create “top-down” nanostructures. Plants can biosynthesize remedy-templated silica nanostructures. Nanoparticles stimulate hormesis, a beneficial low-dose adaptive response. Homeopathic remedies prescribed in low doses spaced intermittently over time act as biological signals that stimulate the organism’s allostatic biological stress response network, evoking nonlinear modulatory, self-organizing change. Potential mechanisms include time-dependent sensitization (TDS), a type of adaptive plasticity/metaplasticity involving progressive amplification of host responses, which reverse direction and oscillate at physiological limits. To mobilize hormesis and TDS, the remedy must be appraised as a salient, but low level, novel threat, stressor, or homeostatic disruption for the whole organism. Silica nanoparticles adsorb remedy source and amplify effects. Properly-timed remedy dosing elicits disease-primed compensatory reversal in direction of maladaptive dynamics of the allostatic network, thus promoting resilience and recovery from disease. Summary Homeopathic remedies are proposed as source nanoparticles that mobilize hormesis and time-dependent sensitization via non-pharmacological effects on specific biological adaptive and amplification mechanisms. The nanoparticle nature of remedies would distinguish them from conventional bulk drugs in structure, morphology, and functional properties. Outcomes would depend upon the ability of the organism to respond to the remedy as a novel stressor or heterotypic biological threat, initiating reversals of cumulative, cross-adapted biological maladaptations underlying disease in the allostatic stress response network. Systemic resilience would improve. This model provides a foundation for theory-driven research on the role of nanomaterials in living systems, mechanisms of homeopathic remedy actions and translational uses in nanomedicine.
Collapse
|
29
|
Qing F, Wang Z, Hong Y, Liu M, Guo B, Luo H, Zhang X. Selective effects of hydroxyapatite nanoparticles on osteosarcoma cells and osteoblasts. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2012; 23:2245-51. [PMID: 22903597 DOI: 10.1007/s10856-012-4703-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 06/09/2012] [Indexed: 05/11/2023]
Abstract
The effects of hydroxyapatite nanoparticles (HA-NPs) on two kinds of cells, human MG63 cells and the normal osteoblasts were investigated. According to the MTT assay and fluorescent staining assay, it was proved that HA-NPs could inhibit the growth of MG63 cells but slightly support proliferation of the osteoblasts. Meanwhile, transmission electron microscopy (TEM) was employed to observe the ultrastructural alterations of both cells. The TEM results showed that HA-NPs had entered the two kinds of cells. Typical apoptosis was observed in the MG63 cells, especially in the group of 250 μg/mL with 5 days culture. While no apoptosis could be found in the normal osteoblasts at any concentration group of HA-NPs. Our results suggested that the HA-NPs had selective effects to different kinds of cells: supporting proliferation to the normal bone cells while causing apoptosis to the osteosarcoma cells.
Collapse
Affiliation(s)
- Fangzhu Qing
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, Peoples Republic of China
| | | | | | | | | | | | | |
Collapse
|
30
|
Fox K, Tran PA, Tran N. Recent advances in research applications of nanophase hydroxyapatite. Chemphyschem 2012; 13:2495-506. [PMID: 22467406 DOI: 10.1002/cphc.201200080] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Indexed: 02/02/2023]
Abstract
Hydroxyapatite, the main inorganic material in natural bone, has been used widely for orthopaedic applications. Due to size effects and surface phenomena at the nanoscale, nanophase hydroxyapatite possesses unique properties compared to its bulk-phase counterpart. The high surface-to-volume ratio, reactivities, and biomimetic morphologies make nano-hydroxyapatite more favourable in applications such as orthopaedic implant coating or bone substitute filler. Recently, more efforts have been focused on the possibility of combining hydroxyapatite with other drugs and materials for multipurpose applications, such as antimicrobial treatments, osteoporosis treatments and magnetic manipulation. To build more effective nano-hydroxyapatite and composite systems, the particle synthesis processes, chemistry, and toxicity have to be thoroughly investigated. In this Minireview, we report the recent advances in research regarding nano-hydroxyapatite. Synthesis routes and a wide range of applications of hydroxyapatite nanoparticles will be discussed. The Minireview also addresses several challenges concerning the biosafety of the nanoparticles.
Collapse
Affiliation(s)
- Kate Fox
- School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia.
| | | | | |
Collapse
|
31
|
Wang Y, Ma J, Zhou L, Chen J, Liu Y, Qiu Z, Zhang S. Dual functional selenium-substituted hydroxyapatite. Interface Focus 2012; 2:378-86. [PMID: 23741613 DOI: 10.1098/rsfs.2012.0002] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Accepted: 03/04/2012] [Indexed: 12/12/2022] Open
Abstract
Hydroxyapatite (HA) doped with trace elements has attracted much attention recently owing to its excellent biological functions. Herein, we use a facile co-precipitation method to incorporate selenium into HA by adding sodium selenite during synthesis. The obtained selenium-substituted HA products are needle-like nanoparticles which have size and crystallinity that are similar to those of the pure HA nanoparticles (HANs) when the selenium content is low. HANs are found to have the ability to induce the apoptosis of osteosarcoma cells, and the anti-tumour effects are enhanced after incorporation of selenium. Meanwhile, the nanoparticles can also support the growth of bone marrow stem cells. Furthermore, the flow cytometric results indicate that the apoptosis induction of osteosarcoma cells is caused by the increased reactive oxygen species and decreased mitochondrial membrane potential. These results show that the selenium-substituted HANs are potentially promising bone graft materials in osteosarcoma treatment due to their dual functions of supporting normal cell growth and inducing tumour cell apoptosis.
Collapse
Affiliation(s)
- Yanhua Wang
- Advanced Biomaterials and Tissue Engineering Center , Huazhong University of Science and Technology , Wuhan 430074 , People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
32
|
Xu J, Xu P, Li Z, Huang J, Yang Z. Oxidative stress and apoptosis induced by hydroxyapatite nanoparticles in C6 cells. J Biomed Mater Res A 2011; 100:738-45. [DOI: 10.1002/jbm.a.33270] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 08/22/2011] [Accepted: 09/12/2011] [Indexed: 02/05/2023]
|
33
|
Zhou H, Lee J. Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomater 2011; 7:2769-81. [PMID: 21440094 DOI: 10.1016/j.actbio.2011.03.019] [Citation(s) in RCA: 742] [Impact Index Per Article: 57.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 03/11/2011] [Accepted: 03/16/2011] [Indexed: 11/30/2022]
Abstract
Hydroxyapatite (HAp) exhibits excellent biocompatibility with soft tissues such as skin, muscle and gums, making it an ideal candidate for orthopedic and dental implants or components of implants. Synthetic HAp has been widely used in repair of hard tissues, and common uses include bone repair, bone augmentation, as well as coating of implants or acting as fillers in bone or teeth. However, the low mechanical strength of normal HAp ceramics generally restricts its use to low load-bearing applications. Recent advancements in nanoscience and nanotechnology have reignited investigation of nanoscale HAp formation in order to clearly define the small-scale properties of HAp. It has been suggested that nano-HAp may be an ideal biomaterial due to its good biocompatibility and bone integration ability. HAp biomedical material development has benefited significantly from advancements in nanotechnology. This feature article looks afresh at nano-HAp particles, highlighting the importance of size, crystal morphology control, and composites with other inorganic particles for biomedical material development.
Collapse
Affiliation(s)
- Hongjian Zhou
- Department of Nanomedical Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Miryang 627-706, Republic of Korea
| | | |
Collapse
|
34
|
Xing Ma, Wu XM, Duan HX, Tao Fu, Ma XD. Rapid anti-tumor effects of gelatin sponge/nano-β-TCP construct on SKOV-3 human ovarian cancer cells in vitro. J BIOACT COMPAT POL 2011. [DOI: 10.1177/0883911511398796] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Nanosized β-tricalcium phosphate (nano-β-TCP) particles were synthesized and characterized by transmission electron microscopy and X-ray diffraction. A surface coating was used to fabricate a medical absorbable gelatin sponge (GS) with nano-β-TCP biocomposite (GSN). The nano-β-TCP particles were ~150 nm in diameter and GSN was highly porous with pore diameter of ~200 μm. Modification via nano-β-TCP coating endowed the biocomposite with actual inhibitory effects on human ovarian cancer SKOV-3 cells. The systematic in vitro evaluations including ultrastructural observation, MTT assay, cell cycle analysis, apoptosis detection, and assessment of proliferating cell nuclear antigen (PCNA) expression data confirm that rapid internalization of nano-β-TCP, cell growth inhibition, G1/S phase cell cycle arrest, apoptosis, and suppression of PCNA expression play important roles in the rapid anti-tumor effects of GNS on SKOV-3 cells. Currently, in vitro and in vivo research work are in progress, including special anti-neoplastic drug delivery and synergistic effects of GSN and chemotherapeutic agents.
Collapse
Affiliation(s)
- Xing Ma
- Department of Orthopaedics, The First Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Xiao-Ming Wu
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi'an 710032, P.R. China
| | - Hai-Xia Duan
- Department of Gynaecology and Obstetrics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, P.R. China
| | - Tao Fu
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Xiang-Dong Ma
- Department of Gynaecology and Obstetrics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, P.R. China,
| |
Collapse
|