1
|
Beilharz S, Debnath MK, Vinella D, Shoffstall AJ, Karayilan M. Advances in Injectable Polymeric Biomaterials and Their Contemporary Medical Practices. ACS APPLIED BIO MATERIALS 2024. [PMID: 39471414 DOI: 10.1021/acsabm.4c01001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Injectable biomaterials have been engineered to operate within the human body, offering versatile solutions for minimally invasive therapies and meeting several stringent requirements such as biocompatibility, biodegradability, low viscosity for ease of injection, mechanical strength, rapid gelation postinjection, controlled release of therapeutic agents, hydrophobicity/hydrophilicity balance, stability under physiological conditions, and the ability to be sterilized. Their adaptability and performance in diverse clinical settings make them invaluable for modern medical treatments. This article reviews recent advancements in the design, synthesis, and characterization of injectable polymeric biomaterials, providing insights into their emerging applications. We discuss a broad spectrum of these materials, including natural, synthetic, hybrid, and composite types, that are being applied in targeted drug delivery, cell and protein transport, regenerative medicine, tissue adhesives, injectable implants, bioimaging, diagnostics, and 3D bioprinting. Ultimately, the review highlights the critical role of injectable polymeric biomaterials in shaping the future of medical treatments and improving patient outcomes across a wide range of therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Sophia Beilharz
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Mithun Kumar Debnath
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Daniele Vinella
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Andrew J Shoffstall
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Metin Karayilan
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
2
|
Cui H, Li P, Su Z, Guan S, Dong H, Dong X. Preparation and Stability Study of an Injectable Hydrogel for Artificial Intraocular Lenses. Polymers (Basel) 2024; 16:2562. [PMID: 39339025 PMCID: PMC11434676 DOI: 10.3390/polym16182562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/31/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Currently available intraocular lenses (IOLs) on the market often differ significantly in elastic modulus compared to the natural human lens, which impairs their ability to respond effectively to the tension of the ciliary muscles for focal adjustment after implantation. In this study, we synthesized a polyacrylamide-sodium acrylate hydrogel (PAH) through the cross-linking polymerization of acrylamide and sodium acrylate. This hydrogel possesses excellent biocompatibility and exhibits several favorable properties. Notably, the hydrogel demonstrates high transparency (94%) and a refractive index (1.41 ± 0.07) that closely matches that of the human lens (1.42). Additionally, it shows strong compressive strength (14.00 kPa), good extensibility (1400%), and an appropriate swelling ratio (50 ± 2.5%). Crucially, the tensile modulus of the hydrogel is 2.07 kPa, which closely aligns with the elastic modulus of the human lens (1.70-2.10 kPa), enabling continuous focal adjustment under the tension exerted by the ciliary muscles.
Collapse
Affiliation(s)
- Haifeng Cui
- School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China; (H.C.); (P.L.); (Z.S.); (S.G.)
| | - Pengfei Li
- School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China; (H.C.); (P.L.); (Z.S.); (S.G.)
| | - Zekun Su
- School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China; (H.C.); (P.L.); (Z.S.); (S.G.)
| | - Shiqiang Guan
- School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China; (H.C.); (P.L.); (Z.S.); (S.G.)
| | - He Dong
- Department Ophthalmology, The Third People’s Hospital of Dalian, Dalian 116033, China
| | - Xufeng Dong
- School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China; (H.C.); (P.L.); (Z.S.); (S.G.)
| |
Collapse
|
3
|
Luo C, Wang H, Chen X, Xu J, Yin H, Yao K. Recent Advances of Intraocular Lens Materials and Surface Modification in Cataract Surgery. Front Bioeng Biotechnol 2022; 10:913383. [PMID: 35757812 PMCID: PMC9213654 DOI: 10.3389/fbioe.2022.913383] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Advances in cataract surgery have increased the demand for intraocular lens (IOL) materials. At present, the progress of IOL materials mainly contains further improving biocompatibility, providing better visual quality and adjustable ability, reducing surgical incision, as well as dealing with complications such as posterior capsular opacification (PCO) and ophthalmitis. The purpose of this review is to describe the research progress of relevant IOL materials classified according to different clinical purposes. The innovation of IOL materials is often based on the common IOL materials on the market, such as silicon and acrylate. Special properties and functions are obtained by adding extra polymers or surface modification. Most of these studies have not yet been commercialized, which requires a large number of clinical trials. But they provide valuable thoughts for the optimization of the IOL function.
Collapse
Affiliation(s)
| | | | | | | | | | - Ke Yao
- Eye Center of the Second Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Lan X, Lei Y, He Z, Yin A, Li L, Tang Z, Li M, Wang Y. A transparent hydrophilic anti-biofouling coating for intraocular lens materials prepared by "bridging" of the intermediate adhesive layer. J Mater Chem B 2021; 9:3696-3704. [PMID: 33870984 DOI: 10.1039/d1tb00065a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The attachment of bio-foulants, including unwanted cells, proteins, and bacteria, to a medical device such as an intraocular lens can lead to implantation failure. Hydrophilic polymers are often used as surface modifiers in the fabrication of anti-biofouling coatings, but a hydrophilic coating can easily become swollen and peel off the substrate. In this study, we chose polymethyl methacrylate (PMMA) as the representative material of intraocular lenses because PMMA has better biocompatibility, a higher refractive index, better optical clarity, lighter weight, more stable performance, and lower cost than other intraocular lens materials. We fabricated polyvinyl alcohol (PVA) coatings with or without a "bridge", that is, an intermediate adhesive layer (AL), to increase the adhesion bonding effect between the anti-biofouling coating and the substrate. The results indicated that the prepared coatings were transparent and noncytotoxic. Moreover, the anti-adhesion properties of the cells and the resistance properties to nonspecific protein adsorption of PMMA modified by both AL and PVA coatings were better and more durable compared with the sample only modified with a physically dipped PVA coating. The coating prepared by AL "bridging" provides a new strategy for the preparation of a transparent hydrophilic anti-biofouling coating suitable for PMMA intraocular lens materials.
Collapse
Affiliation(s)
- Xiaorong Lan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| | - Yang Lei
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| | - Zhoukun He
- Institute for Advanced Study, Research Center of Composites & Surface and Interface Engineering, Chengdu University, Chengdu, 610106, China.
| | - Anlin Yin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China. and College of Materials and Textile Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Linhua Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| | - Zhonglan Tang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| | - Meiling Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
5
|
Karayilan M, Clamen L, Becker ML. Polymeric Materials for Eye Surface and Intraocular Applications. Biomacromolecules 2021; 22:223-261. [PMID: 33405900 DOI: 10.1021/acs.biomac.0c01525] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ocular applications of polymeric materials have been widely investigated for medical diagnostics, treatment, and vision improvement. The human eye is a vital organ that connects us to the outside world so when the eye is injured, infected, or impaired, it needs immediate medical treatment to maintain clear vision and quality of life. Moreover, several essential parts of the eye lose their functions upon aging, causing diminished vision. Modern polymer science and polymeric materials offer various alternatives, such as corneal and scleral implants, artificial ocular lenses, and vitreous substitutes, to replace the damaged parts of the eye. In addition to the use of polymers for medical treatment, polymeric contact lenses can provide not only vision correction, but they can also be used as wearable electronics. In this Review, we highlight the evolution of polymeric materials for specific ocular applications such as intraocular lenses and current state-of-the-art polymeric systems with unique properties for contact lens, corneal, scleral, and vitreous body applications. We organize this Review paper by following the path of light as it travels through the eye. Starting from the outside of the eye (contact lenses), we move onto the eye's surface (cornea and sclera) and conclude with intraocular applications (intraocular lens and vitreous body) of mostly synthetic polymers and several biopolymers. Initially, we briefly describe the anatomy and physiology of the eye as a reminder of the eye parts and their functions. The rest of the Review provides an overview of recent advancements in next-generation contact lenses and contact lens sensors, corneal and scleral implants, solid and injectable intraocular lenses, and artificial vitreous body. Current limitations for future improvements are also briefly discussed.
Collapse
Affiliation(s)
- Metin Karayilan
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Liane Clamen
- Adaptilens, LLC, Boston, Massachusetts 02467, United States
| | - Matthew L Becker
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States.,Mechanical Engineering and Materials Science, Orthopaedic Surgery, and Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
6
|
Zhang WW, Xie ZG. Advances in the Study of Lens Refilling. J Ophthalmol 2020; 2020:8956275. [PMID: 32908687 PMCID: PMC7471792 DOI: 10.1155/2020/8956275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/22/2020] [Accepted: 07/29/2020] [Indexed: 12/03/2022] Open
Abstract
The ultimate goal of cataract surgery is to restore the accommodation while restoring distance visual acuity. Different kinds of accommodative intraocular lens (IOLs) and surgical techniques have been suggested to apply during the surgery, but they showed poor postoperative accommodation. It is possible to achieve this goal by refilling the lens with an injectable polymer. We present a summary of the existing materials, methods, results, and some obstacles in clinical application that remain of lens refilling for restoration of accommodation. Two main problems have restricted the clinical application of this technique. One was the formation of postoperative secondary capsule opacification and the other was the different accommodative power after surgery.
Collapse
Affiliation(s)
- Wen-Wen Zhang
- Department of Ophthalmology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Zheng-Gao Xie
- Department of Ophthalmology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| |
Collapse
|
7
|
Wang K, Pierscionek BK. Biomechanics of the human lens and accommodative system: Functional relevance to physiological states. Prog Retin Eye Res 2019; 71:114-131. [DOI: 10.1016/j.preteyeres.2018.11.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/24/2018] [Accepted: 11/07/2018] [Indexed: 12/28/2022]
|
8
|
Abstract
Objective: This paper aimed to review the current literature on the surface modification of intraocular lenses (IOLs). Data Sources: All articles about surface modification of IOLs published up to 2015 were identified through a literature search on both PubMed and ScienceDirect. Study Selection: The articles on the surface modification of IOLs were included, but those on design modification and surface coating were excluded. Results: Technology of surface modification included plasma, ion beam, layer-by-layer self-assembly, ultraviolet radiation, and ozone. The main molecules introduced into IOLs surface were poly (ethylene glycol), polyhedral oligomeric silsesquioxane, 2-methacryloyloxyethyl phosphorylcholine, TiO2, heparin, F-heparin, titanium, titanium nitride, vinyl pyrrolidone, and inhibitors of cytokines. The surface modification either resulted in a more hydrophobic lens, a more hydrophilic lens, or a lens with a hydrophilic anterior and hydrophobic posterior surface. Advances in research regarding surface modification of IOLs had led to a better biocompatibility in both in vitro and animal experiments. Conclusion: The surface modification is an efficient, convenient, economic and promising method to improve the biocompatibility of IOLs.
Collapse
Affiliation(s)
| | | | | | - Gui-Qin Wang
- Department of Ophthalmology, Navy General Hospital of PLA, Beijing 100048; Department of Ophthalmilogy, Third Clinical Medical College of Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
9
|
Kim BY, Lee Y, Son JY, Park KM, Park KD. Dual Enzyme-Triggered In Situ Crosslinkable Gelatin Hydrogels for Artificial Cellular Microenvironments. Macromol Biosci 2016; 16:1570-1576. [DOI: 10.1002/mabi.201600312] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 08/02/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Bae Young Kim
- Department of Molecular Science and Technology; Ajou University; 206 Worldcup-ro Yeontong-gu Suwon 16499 South Korea
| | - Yunki Lee
- Department of Molecular Science and Technology; Ajou University; 206 Worldcup-ro Yeontong-gu Suwon 16499 South Korea
| | - Joo Young Son
- Department of Molecular Science and Technology; Ajou University; 206 Worldcup-ro Yeontong-gu Suwon 16499 South Korea
| | - Kyung Min Park
- Division of Bioengineering; College of Life Sciences and Bioengineering; Incheon National University; 119 Academy-ro Yeonsu-gu Incheon 22012 South Korea
| | - Ki Dong Park
- Department of Molecular Science and Technology; Ajou University; 206 Worldcup-ro Yeontong-gu Suwon 16499 South Korea
| |
Collapse
|
10
|
Tavakol M, Vasheghani-Farahani E, Mohammadifar MA, Soleimani M, Hashemi-Najafabadi S. Synthesis and characterization of an in situ forming hydrogel using tyramine conjugated high methoxyl gum tragacanth. J Biomater Appl 2015; 30:1016-25. [PMID: 26553882 DOI: 10.1177/0885328215608983] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, an enzyme catalyzed in situ forming hydrogel based on tyramine conjugated high methoxyl content gum tragacanth (TA-HMGT) was prepared and characterized. TA-HMGT was synthesized via heterogeneous ammonolysis of methyl ester groups of HMGT. Then, the hydrogel was prepared via horseradish peroxidase catalyzed coupling reaction in the presence of hydrogen peroxide. Hydrogel properties, such as gelation time, swelling/degradation behavior and rheological properties could be adjusted by tuning the gelation parameters and extent of tyramine conjugation. This system was a soft elastic hydrogel with appropriate biocompatibility. The fast gelation of the hydrogel is desirable for clinical applications. Also, in vitro bovine serum albumin release from the synthesized hydrogel showed good release profile with limited burst release.
Collapse
Affiliation(s)
- Moslem Tavakol
- Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | | | - Mohammad Amin Mohammadifar
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran Department of Nanotechnology, Stem Cell Technology Research Center, Tehran, Iran
| | | |
Collapse
|