1
|
Saiding Q, Chen Y, Wang J, Pereira CL, Sarmento B, Cui W, Chen X. Abdominal wall hernia repair: from prosthetic meshes to smart materials. Mater Today Bio 2023; 21:100691. [PMID: 37455815 PMCID: PMC10339210 DOI: 10.1016/j.mtbio.2023.100691] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/15/2023] [Accepted: 06/03/2023] [Indexed: 07/18/2023] Open
Abstract
Hernia reconstruction is one of the most frequently practiced surgical procedures worldwide. Plastic surgery plays a pivotal role in reestablishing desired abdominal wall structure and function without the drawbacks traditionally associated with general surgery as excessive tension, postoperative pain, poor repair outcomes, and frequent recurrence. Surgical meshes have been the preferential choice for abdominal wall hernia repair to achieve the physical integrity and equivalent components of musculofascial layers. Despite the relevant progress in recent years, there are still unsolved challenges in surgical mesh design and complication settlement. This review provides a systemic summary of the hernia surgical mesh development deeply related to abdominal wall hernia pathology and classification. Commercial meshes, the first-generation prosthetic materials, and the most commonly used repair materials in the clinic are described in detail, addressing constrain side effects and rational strategies to establish characteristics of ideal hernia repair meshes. The engineered prosthetics are defined as a transit to the biomimetic smart hernia repair scaffolds with specific advantages and disadvantages, including hydrogel scaffolds, electrospinning membranes, and three-dimensional patches. Lastly, this review critically outlines the future research direction for successful hernia repair solutions by combing state-of-the-art techniques and materials.
Collapse
Affiliation(s)
- Qimanguli Saiding
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternal and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, 910 Hengshan Road, Shanghai, 200030, PR China
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Yiyao Chen
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternal and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, 910 Hengshan Road, Shanghai, 200030, PR China
| | - Juan Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Catarina Leite Pereira
- I3S – Instituto de Investigação e Inovação Em Saúde and INEB – Instituto de Engenharia Biomédica, Universidade Do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Bruno Sarmento
- I3S – Instituto de Investigação e Inovação Em Saúde and INEB – Instituto de Engenharia Biomédica, Universidade Do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- IUCS – Instituto Universitário de Ciências da Saúde, CESPU, Rua Central de Gandra 1317, 4585-116, Gandra, Portugal
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Xinliang Chen
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternal and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, 910 Hengshan Road, Shanghai, 200030, PR China
| |
Collapse
|
2
|
Zhang K, Zhu L. Transversalis fascia suture reinforcement may facilitate the performance of electrospun P(LLA-CL) nanoscale fibrinogen mesh in inguinal hernia repair: a prospective single-center cohort study. Sci Rep 2023; 13:12132. [PMID: 37495644 PMCID: PMC10372066 DOI: 10.1038/s41598-023-39391-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 07/25/2023] [Indexed: 07/28/2023] Open
Abstract
The aim of this study was to evaluate a new electrospun P(LLA-CL) nanoscale fibrinogen mesh performance in real-world clinical practice. A prospective, single-center evaluation of Lichtenstein inguinal hernia repair using electrospun P(LLA-CL) nanoscale fibrinogen mesh in elderly patients with comorbid diseases was conducted between 2020 and 2022. A suture reinforcement of transversalis fascia was applied before mesh implantation. Hernia recurrence, pain score and overall complication rate were measured. A total of 52 inguinal hernias in 48 patients were included. The age of patients ranged from 33 to 95 years, with a median of 78 years. Comorbid conditions included cardiopulmonary disease, organ dysfunction, anticoagulant use, diabetes and smoking. By optimizing the physical condition perioperatively, all patients finished treatment successfully. Four cases recurred secondary to direct hernias or combined hernias and were diagnosed in the first 24 case cohort during follow-up. With surgical procedural modification involving strengthening the posterior inguinal floor by reef-up suturing of the transversalis fascia and the inferior edge of mesh slit to accommodate the spermatic cord, no further recurrence was diagnosed. Postoperative pain was mild and the pain score decreased three months after surgery compared to 1 week after surgery (p = 0.0099). No severe complications occurred, while seroma occurred in six cases. Electrospun P(LLA-CL) nanoscale fibrinogen mesh is safe and effective in repairing inguinal hernias in elderly patients with comorbid disease. A strengthening of the transversalis fascia by suturing may enhance the performance of this mesh.
Collapse
Affiliation(s)
- Kewei Zhang
- Department of General Surgery, Shanghai Tongren Hospital, JiaoTong University School of Medicine, 1111 Xianxia Road, Shanghai, 200336, China
| | - Leiming Zhu
- Department of General Surgery, Shanghai Tongren Hospital, JiaoTong University School of Medicine, 1111 Xianxia Road, Shanghai, 200336, China.
| |
Collapse
|
3
|
Wang G, Ju S, Li X, Cai Y, Li Y, Li W, Zhou S, He H, Dong Z, Fu W. Preclinical animal study of electrospun poly (l-lactide-co-caprolactone) and formulated porcine fibrinogen for full-thickness diabetic wound regeneration. Biomed Pharmacother 2023; 162:114734. [PMID: 37084560 DOI: 10.1016/j.biopha.2023.114734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/08/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023] Open
Abstract
Diabetic foot ulcer is one of the most serious chronic complications of diabetes mellitus. It may lead to amputation of the lower extremities for diabetics. Our study was to evaluate the effect of electrospun poly (L-lactide-co-caprolactone) and formulated porcine fibrinogen (PLCL/Fg) wound dressing on animal wound model. A blend ratio of PLCL/Fg scaffold was 4 (PLCL):1 (Fg). The scanning electron microscopy findings showed that the fibers' diameter was 122.5 ± 80.3 nm, and the tensile strength was 9.2 ± 0.2 MPa. In-vivo study of the hog normal model demonstrated that PLCL/Fg dressing had better biocompatibility, degradability, and ability to restore the skin's normal structure. We evaluated the wound healing processes in the rat diabetic model by macroscopic observation and histological observation at 1, 2, and 3 post-operation weeks. In our study, the PLCL/Fg group performed better 3 weeks after surgery, in terms of macroscopic healing and scarring. After surgery, the PLCL/Fg group showed better fibroblast accumulation, tissue granulation, and collagen expression than the control group. Topical treatment with PLCL/Fg dressing effectively enhanced wound healing in both normal and hyperglycemic conditions, suggesting that it may possess wound-healing potential.
Collapse
Affiliation(s)
- Guili Wang
- Department of Vascular and Wound Center, Jinshan Hospital, Fudan University, Shanghai 200032, China
| | - Shuai Ju
- Department of Vascular and Wound Center, Jinshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiaoyan Li
- Department of Vascular and Wound Center, Jinshan Hospital, Fudan University, Shanghai 200032, China
| | - Yunmin Cai
- Department of Vascular and Wound Center, Jinshan Hospital, Fudan University, Shanghai 200032, China
| | - Yao Li
- Department of Vascular and Wound Center, Jinshan Hospital, Fudan University, Shanghai 200032, China
| | - Wenqiang Li
- Department of Vascular and Wound Center, Jinshan Hospital, Fudan University, Shanghai 200032, China
| | - Siyuan Zhou
- Department of Vascular and Wound Center, Jinshan Hospital, Fudan University, Shanghai 200032, China
| | - Hongbing He
- PINE&POWER Biotech Co., Ltd, Shanghai, China; Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Vascular Surgery Institute of Fudan University, Shanghai 200032, China
| | - Zhihui Dong
- Department of Vascular and Wound Center, Jinshan Hospital, Fudan University, Shanghai 200032, China; Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Vascular Surgery Institute of Fudan University, Shanghai 200032, China.
| | - Weiguo Fu
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Vascular Surgery Institute of Fudan University, Shanghai 200032, China
| |
Collapse
|
4
|
Wu C, Zhang Z, He H, Zhou Z, Li H, Tong X. Six-year follow-up outcomes of the P(LLA-CL)/Fg bio-patch for anterior vaginal wall prolapse treatment. Int Urogynecol J 2023; 34:115-124. [PMID: 35831453 DOI: 10.1007/s00192-022-05284-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/11/2022] [Indexed: 01/14/2023]
Abstract
INTRODUCTION AND HYPOTHESIS There were few data about the long-term outcomes of bio-compatible patches for pelvic organ prolapse (POP). The efficacy of poly (L-lactide-co-caprolactone) blended with fibrinogen [P(LLA-CL)/Fg] bio-patches were investigated for anterior vaginal wall prolapse treatment in a 6-year follow-up. METHODS The P(LLA-CL)/Fg bio-patch was fabricated through electrospinning. Nineteen patients with symptomatic anterior prolapse (Pelvic Organ Prolapse Quantification [POP-Q] stage ≥ 2) were treated with anterior pelvic reconstruction surgery using a P(LLA-CL)/Fg bio-patch and were followed up at 1, 2, 3, 6 months, and 6 years. The primary outcome was objective anatomical cure (anterior POP-Q stage ≤ 1). Secondary outcomes included complications, MRI evaluation, and scores of the Pelvic Floor Impact Questionnaire-7 (PFIQ-7) and the Pelvic Floor Distress Inventory-20 (PFDI-20). RESULTS The micro-morphology of the bio-patch resembled the extracellular matrix, which was suitable for the growth of fibroblasts. Sixteen (84.2%) patients were finally assessed, with a mean follow-up of 6.08 ± 0.18 years. The cure rate without anterior prolapse recurrence was 93.8% at 6 years. Compared with baseline, the POP-Q measurements of Aa, Ba, and C points and scores of PFIQ-7 and PFDI-20 manifested significant differences at all times (all p < 0.05). One (5.26%) case of bio-patch-related infection, 1 (5.26%) case of urinary retention, and no exposures and erosion occurred. MRI evaluation showed that the bio-patch gradually degraded to fragments at 1 month and was completely absorbed at 3 months. CONCLUSIONS Among long-term follow-ups, anterior pelvic reconstruction surgery with a P(LLA-CL)/Fg bio-patch demonstrated significant improvements in anatomical correction of anterior pelvic prolapse and pelvic function without severe morbidity.
Collapse
Affiliation(s)
- Chenghao Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No.389 Xincun Road, Shanghai, 200065, People's Republic of China
| | - Zhixia Zhang
- Department of Obstetrics and Gynecology, Jiading District Maternal and Child Health Hospital, Shanghai, 201800, People's Republic of China
| | - Hongbing He
- Shanghai Pine & Power Biotech Co. Ltd., Shanghai, 201108, People's Republic of China.
| | - Zixuan Zhou
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Burn Institute of PLA, Shanghai, 200433, People's Republic of China
| | - Huaifang Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No.389 Xincun Road, Shanghai, 200065, People's Republic of China.
| | - Xiaowen Tong
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No.389 Xincun Road, Shanghai, 200065, People's Republic of China.
| |
Collapse
|
5
|
Saiding Q, Cai Z, Deng L, Cui W. Inflammation Self-Limiting Electrospun Fibrous Tape via Regional Immunity for Deep Soft Tissue Repair. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203265. [PMID: 36031400 DOI: 10.1002/smll.202203265] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Overexpression of inflammatory cytokines and chemokines occurs at deep soft tissue injury sites impeding the inflammation self-limiting and impairing the tissue remodeling process. Inspired by the electrostatically extracellular matrix (ECM) binding property of the inflammatory signals, an inflammation self-limiting fibrous tape is designed by covalently modifying the thermosensitive methacrylated gelatin (GelMA) and negatively charged methacrylated heparin (HepMA) hydrogel mixture with proper ratio onto the electrospun fibrous membrane by mild alkali hydrolysis and carboxyl-amino condensation reaction to restore inflammation self-limiting and promote tissue repair via regional immunity regulation. While the GelMA guarantees cell compatibility, the negatively charged HepMA successfully adsorbs the inflammatory cytokines and chemokines by electrostatic interactions and inhibits immune cell migration in vitro. Furthermore, in vivo inflammation self-limiting and regional immunity regulation efficacy is evaluated in a rat abdominal hernia model. Reduced local inflammatory cytokines and chemokines in the early stage and increased angiogenesis and ECM remodeling in the later phase confirm that the tape is an approach to maintain an optimal regional immune activation level after soft tissue injury. Overall, the reported electrospun fibrous tape will find its way into clinical transformation and solve the challenges of deep soft tissue injury.
Collapse
Affiliation(s)
- Qimanguli Saiding
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Zhengwei Cai
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Lianfu Deng
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| |
Collapse
|
6
|
Dong W, Song Z, Liu S, Yu P, Shen Z, Yang J, Yang D, Hu Q, Zhang H, Gu Y. Adipose-Derived Stem Cells Based on Electrospun Biomimetic Scaffold Mediated Endothelial Differentiation Facilitating Regeneration and Repair of Abdominal Wall Defects via HIF-1α/VEGF Pathway. Front Bioeng Biotechnol 2021; 9:676409. [PMID: 34307320 PMCID: PMC8293919 DOI: 10.3389/fbioe.2021.676409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/18/2021] [Indexed: 11/26/2022] Open
Abstract
Application of synthetic or biological meshes is the main therapy for the repair and reconstruction of abdominal wall defects, a common disease in surgery. Currently, no ideal materials are available, and there is an urgent need to find appropriate ones to satisfy clinical needs. Electrospun scaffolds have drawn attention in soft tissue reconstruction. In this study, we developed a novel method to fabricate a composite electrospun scaffold using a thermoresponsive hydrogel, poly (N-isopropylacrylamide)-block-poly (ethylene glycol), and a biodegradable polymer, polylactic acid (PLA). This scaffold provided not only a high surface area/volume ratio and a three-dimensional fibrous matrix but also high biocompatibility and sufficient mechanical strength, and could simulate the native extracellular matrix and accelerate cell adhesion and proliferation. Furthermore, rat adipose-derived stem cells (ADSCs) were seeded in the composite electrospun scaffold to enhance the defect repair and regeneration by directionally inducing ADSCs into endothelial cells. In addition, we found early vascularization in the process was regulated by the hypoxia inducible factor-1α (HIF-1α)/vascular endothelial growth factor (VEGF) pathway. In our study, overexpression of HIF-1α/VEGF in ADSCs using a lentivirus system promoted early vascularization in the electrospun scaffolds. Overall, we expect our composite biomimetic scaffold method will be applicable and useful in abdominal wall defect regeneration and repair in the future.
Collapse
Affiliation(s)
- Wenpei Dong
- Department of General Surgery, Hernia and Abdominal Wall Surgery Center of Shanghai Jiao Tong University, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhicheng Song
- Department of General Surgery, Hernia and Abdominal Wall Surgery Center of Shanghai Jiao Tong University, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Suihong Liu
- Rapid Manufacturing Engineering Center, Shanghai University, Shanghai, China
| | - Ping Yu
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhipeng Shen
- Rapid Manufacturing Engineering Center, Shanghai University, Shanghai, China
| | - Jianjun Yang
- Department of General Surgery, Hernia and Abdominal Wall Surgery Center of Shanghai Jiao Tong University, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongchao Yang
- Department of General Surgery, Hernia and Abdominal Wall Surgery Center of Shanghai Jiao Tong University, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qinxi Hu
- Rapid Manufacturing Engineering Center, Shanghai University, Shanghai, China
| | - Haiguang Zhang
- Rapid Manufacturing Engineering Center, Shanghai University, Shanghai, China
| | - Yan Gu
- Department of General Surgery, Hernia and Abdominal Wall Surgery Center of Shanghai Jiao Tong University, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Yang D, Song Z, Shen J, Song H, Yang J, Zhang P, Gu Y. Regenerated silk fibroin (RSF) electrostatic spun fibre composite with polypropylene mesh for reconstruction of abdominal wall defects in a rat model. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 48:425-434. [PMID: 31916462 DOI: 10.1080/21691401.2019.1709858] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Abdominal wall defects are associated with abdominal wall surgery, infection and tumour resection. Polypropylene (PP) mesh, which has excellent mechanical strength, is currently the primary clinical repair material. In repairing the abdominal wall, the mesh can erode the bowel and cause other problems. Constructing a barrier that induces a weak inflammatory response and promotes rapid recovery of the peritoneum is important. We used electrospinning technology to construct a silk fibroin coating on the abdominal surface of a PP patch. A rat model was used to compare the inflammatory responses, regeneration of peritoneal tissue, and antiadhesion effects of electrospun regenerated silk fibroin (RSF) coatings, polycaprolactone (PCL) coatings, and noncoated PP meshes. The inflammatory responses, antiadhesion fractions, and areas of RSF and PCL were better than those of PP at 6 weeks. RSF was associated with complete peritoneal regeneration, in contrast to PCL. At 12 weeks, the structure of the PCL peritoneum was unstable, and the adhesion fraction and area were significantly higher than those of RSF. The intact peritoneum could not be effectively regenerated. The RSF group exhibited lower IL-6 levels than the PCL and PP groups but higher VEGF, IL-10 and TGF-β levels, making RSF more conducive to the regeneration of peritoneal and abdominal wall tissues.
Collapse
Affiliation(s)
- Dongchao Yang
- Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Zhicheng Song
- Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jiali Shen
- College of Textiles, Donghua University, Shanghai, China
| | - Heng Song
- Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jianjun Yang
- Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Peihua Zhang
- College of Textiles, Donghua University, Shanghai, China
| | - Yan Gu
- Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Li S, Su L, Li X, Yang L, Yang M, Zong H, Zong Q, Tang J, He H. Reconstruction of abdominal wall with scaffolds of electrospun poly (l-lactide-co caprolactone) and porcine fibrinogen: An experimental study in the canine. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110644. [DOI: 10.1016/j.msec.2020.110644] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 09/09/2019] [Accepted: 01/03/2020] [Indexed: 12/31/2022]
|
9
|
Yıldız A, Kara AA, Acartürk F. Peptide-protein based nanofibers in pharmaceutical and biomedical applications. Int J Biol Macromol 2020; 148:1084-1097. [PMID: 31917213 DOI: 10.1016/j.ijbiomac.2019.12.275] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/30/2019] [Accepted: 12/31/2019] [Indexed: 12/11/2022]
Abstract
In recent years, electrospun fibers have found wide use, especially in pharmaceutical area and biomedical applications, related to the various advantages such as high surface-volume ratio, high solubility and having wide usage areas they have provided. Biocompatible and biodegradable fibers can be obtained by using peptide-protein structures of plant and animal derived along with synthetic polymers. Plant-derived proteins used in nanofiber production can be listed as, zein, soy protein, and gluten and animal derived proteins can be listed as casein, silk fibroin, hemoglobine, bovine serum albumin, elastin, collagen, gelatin, and keratin. Plant and animal proteins and synthetic peptides used in electrospun fiber production were reviewed in detail. In addition, the important physical properties of these materials for the electrospinning process and their use in pharmaceutical and biomedical areas were discussed.
Collapse
Affiliation(s)
- Ayşegül Yıldız
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Adnan Altuğ Kara
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Füsun Acartürk
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, Ankara, Turkey.
| |
Collapse
|
10
|
Li S, Xiao H, Yang L, Hua L, Qiu Z, Hu X, Ping D, Zheng K, He H, Tang J. Electrospun P(LLA-CL) Nanoscale Fibrinogen Patch vs Porcine Small Intestine Submucosa Graft Repair of Inguinal Hernia in Adults: A Randomized, Single-Blind, Controlled, Multicenter, Noninferiority Trial. J Am Coll Surg 2019; 229:541-551.e1. [DOI: 10.1016/j.jamcollsurg.2019.08.1446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/21/2019] [Accepted: 08/21/2019] [Indexed: 11/25/2022]
|
11
|
Mirzaei-Parsa MJ, Ghanbari H, Bahrami N, Hadadi-Abianeh S, Faridi-Majidi R. The effects of cross-linked/uncross-linked electrospun fibrinogen/polycaprolactone nanofibers on the proliferation of normal human epidermal keratinocytes. JOURNAL OF POLYMER ENGINEERING 2018. [DOI: 10.1515/polyeng-2017-0350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The aim of this study was an investigation on the proliferation rate of normal human epidermal keratinocytes (NHEK) on the cross-linked and uncross-linked fibrinogen/polycaprolactone (Fbg/PCL) nanofibers to determine a suitable scaffold for skin tissue engineering. Nanofibrous scaffolds were prepared by electrospinning of different weight ratios of Fbg to PCL and were analyzed as morphology, surface chemical properties and cytocompatibility by scanning electron microscopy (SEM), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy and the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, respectively. The diameters of the blended uncross-linked scaffolds were in the range of 124±43 nm–209±155 nm. Cross-linking of scaffolds with glutaraldehyde did not make a significant change in the diameter of blended scaffolds in 16 h. Cross-linking also improved the tensile strength and weight loss rate of scaffolds. However, cross-linking demonstrated an unfavorable effect on the attachment and proliferation of NHEK cells. The proliferation study revealed that uncross-linked scaffolds containing 50% and 70% Fbg provide a better environment for the growth of NHEK cells, and can be considered promising scaffolds in tissue engineering applications.
Collapse
Affiliation(s)
- Mohamad Javad Mirzaei-Parsa
- Department of Medical Nanotechnology , School of Advanced Medical Technologies, Tehran University of Medical Sciences , Tehran 1417755469 , Iran
| | - Hossein Ghanbari
- Department of Medical Nanotechnology , School of Advanced Medical Technologies, Tehran University of Medical Sciences , Tehran 1417755469 , Iran
| | - Naghmeh Bahrami
- Craniomaxillofacial Research Center , Tehran University of Medical Sciences , Tehran , Iran
- Oral and Maxillofacial Surgery Department , School of Dentistry, Tehran University of Medical Sciences , Tehran , Iran
| | - Shahryar Hadadi-Abianeh
- Department of Plastic Surgery , Razi Hospital, Tehran University of Medical Sciences , Tehran , Iran
| | - Reza Faridi-Majidi
- Department of Medical Nanotechnology , School of Advanced Medical Technologies, Tehran University of Medical Sciences , Tehran 1417755469 , Iran
| |
Collapse
|
12
|
Mirzaei-Parsa MJ, Ghanizadeh A, Ebadi MT, Faridi-Majidi R. An alternative solvent for electrospinning of fibrinogen nanofibers. Biomed Mater Eng 2018; 29:279-287. [DOI: 10.3233/bme-181736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Mohamad Javad Mirzaei-Parsa
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amin Ghanizadeh
- Department of Blood Bank, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Malihe T.K. Ebadi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Faridi-Majidi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|