1
|
Wickramasinghe ML, Dias GJ, Premadasa KMGP. A novel classification of bone graft materials. J Biomed Mater Res B Appl Biomater 2022; 110:1724-1749. [DOI: 10.1002/jbm.b.35029] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/19/2022]
Affiliation(s)
- Maduni L. Wickramasinghe
- Department of Biomedical Engineering General Sir John Kotelawala Defense University Ratmalana Sri Lanka
| | - George J. Dias
- Department of Anatomy, School of Medical Sciences University of Otago Dunedin New Zealand
| | | |
Collapse
|
2
|
Tosiriwatanapong T, Singhatanadgit W. Zirconia-Based Biomaterials for Hard Tissue Reconstruction. ACTA ACUST UNITED AC 2018. [DOI: 10.1177/1179061x18767886] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Implantable biomaterials are increasingly important in the practice of modern medicine, including fixative, replacement, and regeneration therapies, for reconstruction of hard tissues in patients with pathologic osseous and dental conditions. A number of newly developed advanced biomaterials have been introduced as promising candidates for tissue reconstruction. Among these, zirconia-based biomaterials have gained attention as a biomaterial for hard tissue reconstruction due to superior mechanical properties and good chemical and biological compatibilities. This review summarizes the types of zirconia, advantages of zirconia-based biomaterials for hard tissue reconstruction including bone and dental tissues, responses of tissue and cells to zirconia, and surface modifications for enhanced bioactivity of zirconia. Current and future applications of zirconia-based biomaterials for bone and dental reconstruction, ie, medical implanted devices, dental prostheses, and biocompatible osteogenic scaffolds, are also discussed.
Collapse
|
3
|
Shao RX, Quan RF, Wang T, Du WB, Jia GY, Wang D, Lv LB, Xu CY, Wei XC, Wang JF, Yang DS. Effects of a bone graft substitute consisting of porous gradient HA/ZrO 2 and gelatin/chitosan slow-release hydrogel containing BMP-2 and BMSCs on lumbar vertebral defect repair in rhesus monkey. J Tissue Eng Regen Med 2017; 12:e1813-e1825. [PMID: 29055138 DOI: 10.1002/term.2601] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 08/05/2017] [Accepted: 10/11/2017] [Indexed: 01/16/2023]
Abstract
Dense biomaterial plays an important role in bone replacement. However, it fails to induce bone cell migration into graft material. In the present study, a novel bone graft substitute (BGS) consisting of porous gradient hydroxyapatite/zirconia composite (PGHC) and gelatin/chitosan slow-release hydrogel containing bone morphogenetic protein 2 and bone mesenchymal stem cells was designed and prepared to repair lumbar vertebral defects. The morphological characteristics of the BGS evaluated by a scanning electron microscope showed that it had a three-dimensional network structure with uniformly distributed chitosan microspheres on the surfaces of the graft material and the interior of the pores. Then, BGS (Group A), PGHC (Group B), or autologous bone (Group C) was implanted into lumbar vertebral body defects in a total of 24 healthy rhesus monkeys. After 8 and 16 weeks, anteroposterior and lateral radiographs of the lumbar spine, microcomputed tomography, histomorphometry, biomechanical testing, and biochemical testing for bone matrix markers, including Type I collagen, osteocalcin, osteopontin, basic fibroblast growth factor, alkaline phosphatase, and vascular endothelial growth factor, were performed to examine the reparative efficacy of the BGS and PGHC. The BGS displayed excellent ability to repair the lumbar vertebral defect in rhesus monkeys. Radiography, microcomputed tomography scanning, and histomorphological characterization showed that the newly formed bone volume in the interior of the pores in the BGS was significantly higher than in the PGHC. The results of biomechanical testing indicated that the vertebral body compression strength of the PGHC implant was lower than the other implants. Reverse-transcription polymerase chain reaction and western blot analyses showed that the expression of bone-related proteins in the BGS implant was significantly higher than in the PGHC implant. The BGS displayed reparative effects similar to autologous bone. Therefore, BGS use in vertebral bone defect repair appears promising.
Collapse
Affiliation(s)
- Rong-Xue Shao
- Department of Orthopedics, Affiliated Jiangnan Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China.,Department of Orthopedics, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang Province, China
| | - Ren-Fu Quan
- Department of Orthopedics, Affiliated Jiangnan Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Tuo Wang
- Department of Orthopedics, Affiliated Jiangnan Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Wei-Bin Du
- Department of Orthopedics, Affiliated Jiangnan Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Gao-Yong Jia
- Department of Orthopedics, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang Province, China
| | - Dong Wang
- Department of Orthopedics, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang Province, China
| | - Long-Bao Lv
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan Province, China
| | - Cai-Yin Xu
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan Province, China
| | - Xi-Cheng Wei
- School of Materials Science and Engineering, Shanghai University, Shanghai, China
| | - Jin-Fu Wang
- Institute of Cell and Development, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Di-Sheng Yang
- Department of Orthopedics, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| |
Collapse
|
4
|
Li Y, Li H, Zhang J, Zhao W, Shen J, Jiang D. In vitro evaluation of an yttria-stabilized zirconia reinforced nano-hydroxyapatite/polyamide 66 ternary biomaterial: biomechanics, biocompatibility and bioactivity. RSC Adv 2016. [DOI: 10.1039/c6ra24509a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The characterization of a novel ternary biomaterial composed of nano-hydroxyapatite/polyamide 66/yttria-stabilized tetragonal zirconia.
Collapse
Affiliation(s)
- Yuling Li
- Department of Orthopedics
- The First Affiliated Hospital of Chongqing Medical University
- Chongqing
- People's Republic of China
| | - Hong Li
- Research Center for Nano-Biomaterials
- Analytical and Testing Center
- Sichuan University
- Chengdu
- People's Republic of China
| | - Jing Zhang
- Department of Gastroenterology
- The Affiliated Hospital of North Sichuan Medical College
- Nanchong
- People's Republic of China
| | - Weikang Zhao
- Department of Orthopedics
- The First Affiliated Hospital of Chongqing Medical University
- Chongqing
- People's Republic of China
| | - Jieliang Shen
- Department of Orthopedics
- The First Affiliated Hospital of Chongqing Medical University
- Chongqing
- People's Republic of China
| | - Dianming Jiang
- Department of Orthopedics
- The First Affiliated Hospital of Chongqing Medical University
- Chongqing
- People's Republic of China
| |
Collapse
|