1
|
Kang C, Yang H. The journey of decellularized vessel: from laboratory to operating room. Front Bioeng Biotechnol 2024; 12:1413518. [PMID: 38983603 PMCID: PMC11231200 DOI: 10.3389/fbioe.2024.1413518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/05/2024] [Indexed: 07/11/2024] Open
Abstract
Over the past few decades, there has been a remarkable advancement in the field of transplantation. But the shortage of donors is still an urgent problem that requires immediate attention. As with xenotransplantation, bioengineered organs are promising solutions to the current shortage situation. And decellularization is a unique technology in organ-bioengineering. However, at present, there is no unified decellularization method for different tissues, and there is no gold-standard for evaluating decellularization efficiency. Meanwhile, recellularization, re-endothelialization and modification are needed to form transplantable organs. With this mind, we can start with decellularization and re-endothelialization or modification of small blood vessels, which would serve to address the shortage of small-diameter vessels while simultaneously gathering the requisite data and inspiration for further recellularization of the whole organ-scale vascular network. In this review, we collect the related experiments of decellularization and post-decellularization approaches of small vessels in recent years. Subsequently, we summarize the experience in relation to the decellularization and post-decellularization combinations, and put forward obstacle we face and possible solutions.
Collapse
Affiliation(s)
- Chenbin Kang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hongji Yang
- Organ Transplant Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province and Organ Transplantation Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
2
|
Wang H, Xiao Y, Fang Z, Zhang Y, Yang L, Zhao C, Meng Z, Liu Y, Li C, Han Q, Feng Z. Fabrication and performance evaluation of PLCL-hCOLIII small-diameter vascular grafts crosslinked with procyanidins. Int J Biol Macromol 2023; 251:126293. [PMID: 37591423 DOI: 10.1016/j.ijbiomac.2023.126293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/01/2023] [Accepted: 08/10/2023] [Indexed: 08/19/2023]
Abstract
Cardiovascular disease has become one of the main causes of death. It is the common goal of researchers worldwide to develop small-diameter vascular grafts to meet clinical needs. Collagen is a valuable biomaterial that has been used in the preparation of vascular grafts and has shown good results. Recombinant humanized collagen (RHC) has the advantages of clear chemical structure, batch stability, no virus hazard and low immunogenicity compared with animal-derived collagen, which can be developed as vascular materials. In this study, Poly (l-lactide- ε-caprolactone) with l-lactide/ε-caprolactone (PLCL) and type III recombinant humanized collagen (hCOLIII) were selected as raw materials to prepare vascular grafts, which were prepared by the same-nozzle electrospinning apparatus. Meanwhile, procyanidin (PC), a plant polyphenol, was used to cross-link the vascular grafts. The physicochemical properties and biocompatibility of the fabricated vascular grafts were investigated by comparing with glutaraldehyde (GA) crosslinked vascular grafts and pure PLCL grafts. Finally, the performance of PC cross-linked PLCL-hCOLIII vascular grafts were evaluated by rabbit carotid artery transplantation model. The results indicate that the artificial vascular grafts have good cell compatibility, blood compatibility, and anti-calcification performance, and can remain unobstructed after 30 days carotid artery transplantation in rabbits. The grafts also showed inhibitory effects on the proliferation of SMCs and intimal hyperplasia, demonstrating its excellent performance as small diameter vascular grafts.
Collapse
Affiliation(s)
- Han Wang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China; National Institute for Food and Drug Control, Beijing 102629, China
| | - Yonghao Xiao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhiping Fang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yuanguo Zhang
- Department of Thyroid-Breast-Vascular Surgery, Shanxian Central Hospital, Heze, Shandong 274300, China
| | - Liu Yang
- National Institute for Food and Drug Control, Beijing 102629, China
| | - Chenyu Zhao
- National Institute for Food and Drug Control, Beijing 102629, China
| | - Zhu Meng
- National Institute for Food and Drug Control, Beijing 102629, China
| | - Yu Liu
- National Institute for Food and Drug Control, Beijing 102629, China; Yantai University, Yantai, Shandong 264005, China
| | - Chongchong Li
- National Institute for Food and Drug Control, Beijing 102629, China
| | - Qianqian Han
- National Institute for Food and Drug Control, Beijing 102629, China.
| | - Zengguo Feng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
3
|
Li J, Chen X, Hu M, Wei J, Nie M, Chen J, Liu X. The application of composite scaffold materials based on decellularized vascular matrix in tissue engineering: a review. Biomed Eng Online 2023; 22:62. [PMID: 37337190 DOI: 10.1186/s12938-023-01120-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/28/2023] [Indexed: 06/21/2023] Open
Abstract
Decellularized vascular matrix is a natural polymeric biomaterial that comes from arteries or veins which are removed the cellular contents by physical, chemical and enzymatic means, leaving only the cytoskeletal structure and extracellular matrix to achieve cell adhesion, proliferation and differentiation and creating a suitable microenvironment for their growth. In recent years, the decellularized vascular matrix has attracted much attention in the field of tissue repair and regenerative medicine due to its remarkable cytocompatibility, biodegradability and ability to induce tissue regeneration. Firstly, this review introduces its basic properties and preparation methods; then, it focuses on the application and research of composite scaffold materials based on decellularized vascular matrix in vascular tissue engineering in terms of current in vitro and in vivo studies, and briefly outlines its applications in other tissue engineering fields; finally, it looks into the advantages and drawbacks to be overcome in the application of decellularized vascular matrix materials. In conclusion, as a new bioactive material for building engineered tissue and repairing tissue defects, decellularized vascular matrix will be widely applied in prospect.
Collapse
Affiliation(s)
- Jingying Li
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhuo, 646000, China
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, 646000, China
| | - Xiao Chen
- Department of Stomatology Technology, School of Medical Technology, Sichuan College of Traditional Medicine, Mianyang, 621000, China
- Department of Orthodontics, Mianyang Stomatological Hospital, Mianyang, 621000, China
| | - Miaoling Hu
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhuo, 646000, China
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, 646000, China
| | - Jian Wei
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhuo, 646000, China
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, 646000, China
| | - Minhai Nie
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhuo, 646000, China
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, 646000, China
| | - Jiana Chen
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhuo, 646000, China
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, 646000, China
| | - Xuqian Liu
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhuo, 646000, China.
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, 646000, China.
| |
Collapse
|
4
|
Du P, Li X, Sun L, Pan Y, Zhu H, Li Y, Yang Y, Wei X, Jing C, Chen H, Shi Q, Li W, Zhao L. Improved hemocompatibility by modifying acellular blood vessels with bivalirudin and its biocompatibility evaluation. J Biomed Mater Res A 2021; 110:635-651. [PMID: 34599549 DOI: 10.1002/jbm.a.37316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/14/2021] [Accepted: 09/22/2021] [Indexed: 11/08/2022]
Abstract
The incidence rate of cardiovascular diseases is increasing year by year. The demand for coronary artery bypass grafting has been very large. Acellular blood vessels have potential clinical application because of their natural vascular basis, but their biocompatibility and anticoagulant energy need to be improved. We decellularized the abdominal aorta of SD rats, and then modified with bivalirudin via polydopamine. The mechanical properties, blood compatibility, cytocompatibility, immune response, and anticoagulant properties were evaluated, and then the bivalirudin-modified acellular blood vessels were implanted into rats for remodeling evaluation in vivo. The results we got show that the bivalirudin-modified acellular blood vessels showed good cytocompatibility and blood compatibility, and its anti-inflammatory trend was dominant in the immune response. After 3 months of transplantation, the bivalirudin-modified acellular blood vessels did not easily form thrombus. It was not easy to form calcification and could make the host cells grow better. Through vascular stimulation and immunofluorescence test, we found that vascular smooth muscle cells and endothelial cells proliferated well in the bivalirudin group. Bivalirudin-modified acellular blood vessels provided new idea for small diameter tissue engineering blood vessels, and may become a potential clinical substitute for small-diameter vascular grafts.
Collapse
Affiliation(s)
- Pengchong Du
- Key Laboratory of Cardiac Structure Research, Zhengzhou Seventh People's Hospital, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China.,Department of Cardiothoracic Surgery, Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Xiafei Li
- College of Medical Engineering, Xinxiang Medical University, Xinxiang, China
| | - Lulu Sun
- Key Laboratory of Cardiac Structure Research, Zhengzhou Seventh People's Hospital, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Yuxue Pan
- Key Laboratory of Cardiac Structure Research, Zhengzhou Seventh People's Hospital, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Hengchao Zhu
- Key Laboratory of Cardiac Structure Research, Zhengzhou Seventh People's Hospital, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Yangyang Li
- Department of Cardiothoracic Surgery, Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yingjie Yang
- Department of Cardiothoracic Surgery, Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Xieze Wei
- Department of Anesthesiology, Xinxiang Central Hospital of Xinxiang Medical University, Xinxiang, China
| | - Changqin Jing
- Key Laboratory of Cardiac Structure Research, Zhengzhou Seventh People's Hospital, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Hongli Chen
- Key Laboratory of Cardiac Structure Research, Zhengzhou Seventh People's Hospital, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Qizhong Shi
- Department of Cardiothoracic Surgery, Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Wenbin Li
- Department of Cardiothoracic Surgery, Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Liang Zhao
- Key Laboratory of Cardiac Structure Research, Zhengzhou Seventh People's Hospital, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
5
|
Zhou M, Chen X, Qiu Y, Chen H, Liu Y, Hou Y, Nie M, Liu X. Study of tissue engineered vascularised oral mucosa-like structures based on ACVM-0.25% HLC-I scaffold in vitro and in vivo. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2021; 48:1167-1177. [PMID: 32924619 DOI: 10.1080/21691401.2020.1817055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE To explore the feasibility of constructing tissue-engineered vascularised oral mucosa-like structures with rabbit ACVM-0.25% HLC-I scaffold and human gingival fibroblasts (HGFs), human gingival epithelial cells (HGECs) and vascular endothelial-like cells (VEC-like cells). METHOD Haematoxylin and Eosin (H&E) staining, immunohistochemical, immunofluorescence, 5-ethynyl-2'-deoxyuridine (EdU) staining and scanning electron microscope (SEM) were performed to detect the growth status of cells on the scaffold complex. After the scaffold complex implanted into nude mice for 28 days, tissues were harvested to observe the cell viability and morphology by the same method as above. Additionally, biomechanical experiments were used to assess the stability of composite scaffold. RESULTS Immunofluorescence and Immunohistochemistry showed positive expression of Vimentin, S100A4 and CK, and the induced VEC-like cells had the ability to form tubule-like structures. In vitro observation results showed that HGFs, HGECs and VEC-like had good compatibility with ACVM-0.25% HLC-I and could be layered and grow in the scaffold. After implanted, the mice had no immune rejection and no obvious scar repair on the body surface. The biomfechanical test results showed that the composite scaffold has strong stability. CONCLUSION The tissue-engineered vascularised complexes constructed by HGFs, HGECs, VEC-like cells and ACVM-0.25% HLC-I has good biocompatibility and considerable strength.
Collapse
Affiliation(s)
- Minyue Zhou
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, Sichuan, China.,Oral & Maxillofacial Reconstruction and Regeneration Laboratory, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiao Chen
- Department of Stomatology Technology, School of Medical Technology, Sichuan College of Traditional Medcine,Mianyang, China.,Department of Orthodontics, Mianyang Stomatological Hospital, Mianyang, China
| | - Yanling Qiu
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, Sichuan, China.,Oral & Maxillofacial Reconstruction and Regeneration Laboratory, Southwest Medical University, Luzhou, Sichuan, China
| | - He Chen
- Department of Oral and Maxillofacial Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yaoqiang Liu
- Department of Oral and Maxillofacial Surgery, The Second hospital of Hebei Medical University, Shijiazhuang, China
| | - Yali Hou
- Department of Oral Pathology, School and Hospital of Stomatology, Hebei Medical University & Hebei Key Laboratory of Stomatology, Shijiazhuang, China
| | - Minhai Nie
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, Sichuan, China.,Oral & Maxillofacial Reconstruction and Regeneration Laboratory, Southwest Medical University, Luzhou, Sichuan, China
| | - Xuqian Liu
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, Sichuan, China.,Oral & Maxillofacial Reconstruction and Regeneration Laboratory, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
6
|
Jiang Y, Li G, Liu J, Li M, Li Q, Tang K. Gelatin/Oxidized Konjac Glucomannan Composite Hydrogels with High Resistance to Large Deformation for Tissue Engineering Applications. ACS APPLIED BIO MATERIALS 2021; 4:1536-1543. [DOI: 10.1021/acsabm.0c01400] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Yongchao Jiang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
- National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Gaiying Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Jie Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Mengya Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Qian Li
- National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Keyong Tang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
7
|
Liao J, Xu B, Zhang R, Fan Y, Xie H, Li X. Applications of decellularized materials in tissue engineering: advantages, drawbacks and current improvements, and future perspectives. J Mater Chem B 2020; 8:10023-10049. [PMID: 33053004 DOI: 10.1039/d0tb01534b] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Decellularized materials (DMs) are attracting more and more attention in tissue engineering because of their many unique advantages, and they could be further improved in some aspects through various means.
Collapse
Affiliation(s)
- Jie Liao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education
- School of Biological Science and Medical Engineering
- Beijing Advanced Innovation Center for Biomedical Engineering
- Beihang University
- Beijing 100083
| | - Bo Xu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education
- School of Biological Science and Medical Engineering
- Beijing Advanced Innovation Center for Biomedical Engineering
- Beihang University
- Beijing 100083
| | - Ruihong Zhang
- Department of Research and Teaching
- the Fourth Central Hospital of Baoding City
- Baoding 072350
- China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education
- School of Biological Science and Medical Engineering
- Beijing Advanced Innovation Center for Biomedical Engineering
- Beihang University
- Beijing 100083
| | - Huiqi Xie
- Laboratory of Stem Cell and Tissue Engineering
- State Key Laboratory of Biotherapy and Cancer Center
- West China Hospital
- Sichuan University and Collaborative Innovation Center of Biotherapy
- Chengdu 610041
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education
- School of Biological Science and Medical Engineering
- Beijing Advanced Innovation Center for Biomedical Engineering
- Beihang University
- Beijing 100083
| |
Collapse
|
8
|
Qiu YL, Chen X, Hou YL, Hou YJ, Tian SB, Chen YH, Yu L, Nie MH, Liu XQ. Characterization of different biodegradable scaffolds in tissue engineering. Mol Med Rep 2019; 19:4043-4056. [PMID: 30896809 PMCID: PMC6471812 DOI: 10.3892/mmr.2019.10066] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 12/19/2018] [Indexed: 12/15/2022] Open
Abstract
The aim of the present study was to compare the characteristics of acellular dermal matrix (ADM), small intestinal submucosa (SIS) and Bio‑Gide scaffolds with acellular vascular matrix (ACVM)‑0.25% human‑like collagen I (HLC‑I) scaffold in tissue engineering blood vessels. The ACVM‑0.25% HLC‑I scaffold was prepared and compared with ADM, SIS and Bio‑Gide scaffolds via hematoxylin and eosin (H&E) staining, Masson staining and scanning electron microscope (SEM) observations. Primary human gingival fibroblasts (HGFs) were cultured and identified. Then, the experiment was established via the seeding of HGFs on different scaffolds for 1, 4 and 7 days. The compatibility of four different scaffolds with HGFs was evaluated by H&E staining, SEM observation and Cell Counting Kit‑8 assay. Then, a series of experiments were conducted to evaluate water absorption capacities, mechanical abilities, the ultra‑microstructure and the cytotoxicity of the four scaffolds. The ACVM‑0.25% HLC‑I scaffold was revealed to exhibit the best cell proliferation and good cell architecture. ADM and Bio‑Gide scaffolds exhibited good mechanical stability but cell proliferation was reduced when compared with the ACVM‑0.25% HLC‑I scaffold. In addition, SIS scaffolds exhibited the worst cell proliferation. The ACVM‑0.25% HLC‑I scaffold exhibited the best water absorption, followed by the SIS and Bio‑Gide scaffolds, and then the ADM scaffold. In conclusion, the ACVM‑0.25% HLC‑I scaffold has good mechanical properties as a tissue engineering scaffold and the present results suggest that it has better biological characterization when compared with other scaffold types.
Collapse
Affiliation(s)
- Yan-Ling Qiu
- Department of Periodontics and Oral Mucosa, Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xiao Chen
- Department of Orthodontics, Mianyang Stomatological Hospital, Mianyang, Sichuan 621000, P.R. China
| | - Ya-Li Hou
- Department of Oral Pathology, College and Hospital of Stomatology, Hebei Medical University and The Key Laboratory of Stomatology, Shijiazhuang, Hebei 050000, P.R. China
| | - Yan-Juan Hou
- Department of Nephrology, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Song-Bo Tian
- Department of Oral Medicine, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Yu-He Chen
- Department of Periodontics and Oral Mucosa, Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Li Yu
- Department of Periodontics and Oral Mucosa, Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Min-Hai Nie
- Department of Periodontics and Oral Mucosa, Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xu-Qian Liu
- Department of Periodontics and Oral Mucosa, Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
9
|
Li X, Yang S, Wang L, Liu P, Zhao S, Li H, Jiang Y, Guo Y, Wang X. Resveratrol inhibits paclitaxel-induced neuropathic pain by the activation of PI3K/Akt and SIRT1/PGC1α pathway. J Pain Res 2019; 12:879-890. [PMID: 30881098 PMCID: PMC6404678 DOI: 10.2147/jpr.s185873] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) is one of the essential signaling pathways for the development and maintenance of neuropathic pain. Objective To investigate the effect of resveratrol (RES) on paclitaxel-induced neuropathic pain in rats and elucidate the underlying molecular mechanisms. Method Male Sprague Dawley rats were randomly divided into seven groups (n=10/group): Group C, Group P, Group R, Group R+P, Group LY + R+P, Group LY (the specific inhibitor of PI3K), Group E (the specific inhibitor of sirtuin 1 [SIRT1]). Paw withdrawal mechanical threshold (PWT) and thermal withdrawal latency (TWL) were recorded. Mitochondrial histomorphology was performed by transmission electron microscope. PI3K, p-Akt, and t-Akt expressions were tested using immunohistochemistry. Western blot was used to detect p-Akt, t-Akt, SIRT1, and PGC1α expressions. The apoptosis in the striatum, spinal dorsal horns (SDH), and dorsal root ganglions (DRG) tissues was assayed by TUNEL. ELISA was used to detect the contents of IL-β, IL-10, malondialdehyde (MDA), and superoxide dismutase (SOD) in striatum, SDH, and DRG tissues. Results Compared to the control group, PWT and TWL in the P and LY +R+P groups were significantly decreased on 8th and 14th day after paclitaxel administration (P<0.05). The expressions of p-Akt, SIRT1, and PGC1α were decreased in paclitaxel-induced neuropathic rats; however, the expressions of p-Akt, SIRT1, and PGC1α were significantly increased after RES treatment (P<0.05). Furthermore, the expression of p-Akt was decreased by LY294002 (P<0.05), and amount of SIRT1 and PGC1α expression was inhibited by EX-527 (P<0.05). The t-Akt level was not significantly changed in all groups. RES prevented paclitaxel-induced mitochondrial damage by PI3K/Akt. RES improves the pain symptoms of paclitaxel neuralgia rats by increasing the IL-10 and decreasing the expression of IL-1β. RES increases the SOD and reduces the MDA. RES reduces apoptosis by SIRT1/PGC1α signal pathway. Conclusion Our results suggest that RES may inhibit paclitaxel-induced neuropathic pain via PI3K/Akt and SIRT1/PGC1α pathways.
Collapse
Affiliation(s)
- Xiaoning Li
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Qiaoxi District, Shijiazhuang 050051, China,
| | - Shuhong Yang
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Qiaoxi District, Shijiazhuang 050051, China,
| | - Liang Wang
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Qiaoxi District, Shijiazhuang 050051, China,
| | - Peng Liu
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Qiaoxi District, Shijiazhuang 050051, China,
| | - Shuang Zhao
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Qiaoxi District, Shijiazhuang 050051, China,
| | - Huizhou Li
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Qiaoxi District, Shijiazhuang 050051, China,
| | - Yuqing Jiang
- Department of Urology, The Third Hospital of Hebei Medical University, Qiaoxi District, Shijiazhuang 050051, China
| | - Yuexian Guo
- Department of Urology, The Third Hospital of Hebei Medical University, Qiaoxi District, Shijiazhuang 050051, China
| | - Xiuli Wang
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Qiaoxi District, Shijiazhuang 050051, China,
| |
Collapse
|