1
|
Bonnici L, Suleiman S, Schembri-Wismayer P, Cassar A. Targeting Signalling Pathways in Chronic Wound Healing. Int J Mol Sci 2023; 25:50. [PMID: 38203220 PMCID: PMC10779022 DOI: 10.3390/ijms25010050] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Chronic wounds fail to achieve complete closure and are an economic burden to healthcare systems due to the limited treatment options and constant medical attention. Chronic wounds are characterised by dysregulated signalling pathways. Research has focused on naturally derived compounds, stem-cell-based therapy, small molecule drugs, oligonucleotide delivery nanoparticles, exosomes and peptide-based platforms. The phosphoinositide-3-kinase (PI3K)/protein kinase B (AKT), Wingless-related integration (Wnt)/β-catenin, transforming growth factor-β (TGF-β), nuclear factor erythroid 2-related factor 2 (Nrf2), Notch and hypoxia-inducible factor 1 (HIF-1) signalling pathways have critical roles in wound healing by modulating the inflammatory, proliferative and remodelling phases. Moreover, several regulators of the signalling pathways were demonstrated to be potential treatment targets. In this review, the current research on targeting signalling pathways under chronic wound conditions will be discussed together with implications for future studies.
Collapse
Affiliation(s)
| | | | | | - Analisse Cassar
- Department of Anatomy, University of Malta, MSD 2080 Msida, Malta; (L.B.); (S.S.); (P.S.-W.)
| |
Collapse
|
2
|
Aker S, Tamburaci S, Tihminlioglu F. Development of Cissus quadrangularis-Loaded POSS-Reinforced Chitosan-Based Bilayer Sponges for Wound Healing Applications: Drug Release and In Vitro Bioactivity. ACS OMEGA 2023; 8:19674-19691. [PMID: 37305322 PMCID: PMC10249034 DOI: 10.1021/acsomega.3c00999] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/11/2023] [Indexed: 06/13/2023]
Abstract
Nowadays, antibiotic-loaded biomaterials have been widely used in wound healing applications. However, the use of natural extracts has come into prominence as an alternative to these antimicrobial agents in the recent period. Among natural sources, Cissus quadrangularis (CQ) herbal extract is used for treatment of bone and skin diseases in ayurvedic medicine due to its antibacterial and anti-inflammatory effects. In this study, chitosan-based bilayer wound dressings were fabricated with electrospinning and freeze-drying techniques. CQ extract-loaded chitosan nanofibers were coated on chitosan/POSS nanocomposite sponges using an electrospinning method. The bilayer sponge is designed to treat exudate wounds while mimicking the layered structure of skin tissue. Bilayer wound dressings were investigated with regard to the morphology and physical and mechanical properties. In addition, CQ release from bilayer wound dressings and in vitro bioactivity studies were performed to determine the effect of POSS nanoparticles and CQ extract loading on NIH/3T3 and HS2 cells. The morphology of nanofibers was investigated with SEM analysis. Physical characteristics of bilayer wound dressings were determined with FT-IR analysis, swelling study, open porosity determination, and mechanical test. The antimicrobial activity of CQ extract released from bilayer sponges was investigated with a disc diffusion method. Bilayer wound dressings' in vitro bioactivity was examined using cytotoxicity determination, wound healing assay, proliferation, and the secretion of biomarkers for skin tissue regeneration. The nanofiber layer diameter was obtained in the range of 77.9-97.4 nm. The water vapor permeability of the bilayer dressing was obtained as 4021 to 4609 g/m2day, as it is in the ideal range for wound repair. The release of the CQ extract over 4 days reached 78-80% cumulative release. The release media were found to be antibacterial against Gram-negative and Gram-positive bacteria. In vitro studies showed that both CQ extract and POSS incorporation induced cell proliferation as well as wound healing activity and collagen deposition. As a result, CQ-loaded bilayer CHI-POSS nanocomposites were found as a potential candidate for wound healing applications.
Collapse
Affiliation(s)
- Sibel
Deger Aker
- Department of Chemical Engineering, Izmir Institute of Technology, Gulbahçe Campus, Urla, İzmir 35430, Turkey
| | - Sedef Tamburaci
- Department of Chemical Engineering, Izmir Institute of Technology, Gulbahçe Campus, Urla, İzmir 35430, Turkey
| | - Funda Tihminlioglu
- Department of Chemical Engineering, Izmir Institute of Technology, Gulbahçe Campus, Urla, İzmir 35430, Turkey
| |
Collapse
|
3
|
Menclová K, Svoboda P, Hadač J, Juhás Š, Juhásová J, Pejchal J, Mandys V, Eminger K, Ryska M. Nanofiber Wound Dressing Materials-A Comparative Study of Wound Healing on a Porcine Model. Mil Med 2023; 188:e133-e139. [PMID: 33959775 DOI: 10.1093/milmed/usab155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/09/2021] [Accepted: 04/13/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Nanofiber wound dressings remain the domain of in vitro studies. The purpose of our study was to verify the benefits of chitosan (CTS) and polylactide (PLA)-based nanofiber wound dressings on a porcine model of a naturally contaminated standardized wound and compare them with the conventional dressings, i.e., gauze and Inadine. MATERIAL AND METHODS The study group included 32 pigs randomized into four homogeneous groups according to the wound dressing type. Standardized wounds were created on their backs, and wound dressings were regularly changed. We evaluated difficulty of handling individual dressing materials and macroscopic appearance of the wounds. Wound swabs were taken for bacteriological examination. Blood samples were obtained to determine blood count values and serum levels of acute phase proteins (serum amyloid A, C-reactive protein, and haptoglobin). The crucial point of the study was histological analysis. Microscopic evaluation was focused on the defect depth and tissue reactions, including formation of the fibrin exudate with neutrophil granulocytes, the layer of granulation and cellular connective tissue, and the reepithelialization. Statistical analysis was performed by using SPSS software. The analysis was based on the Kruskal-Wallis H test and Mann-Whitney U test followed by Bonferroni correction. Significance was set at P < .05. RESULTS Macroscopic examination did not show any difference in wound healing among the groups. However, evaluation of histological findings demonstrated that PLA-based nanofiber dressing accelerated the proliferative (P = .025) and reepithelialization (P < .001) healing phases, while chitosan-based nanofiber dressing potentiated and accelerated the inflammatory phase (P = .006). No statistically significant changes were observed in the blood count or acute inflammatory phase proteins during the trial. Different dynamics were noted in serum amyloid A values in the group treated with PLA-based nanofiber dressing (P = .006). CONCLUSION Based on the microscopic examination, we have documented a positive effect of nanofiber wound dressings on acceleration of individual phases of the healing process. Nanofiber wound dressings have a potential to become in future part of the common wound care practice.
Collapse
Affiliation(s)
- Katerina Menclová
- Department of Surgery, 2nd Faculty of Medicine, Military University Hospital Prague and Charles University, Prague 169 02, Czechia
| | - Petr Svoboda
- Department of Surgery, 2nd Faculty of Medicine, Military University Hospital Prague and Charles University, Prague 169 02, Czechia
| | - Jan Hadač
- Department of Surgery, 2nd Faculty of Medicine, Military University Hospital Prague and Charles University, Prague 169 02, Czechia
| | - Štefan Juhás
- Institute of Animal Physiology and Genetics of the Academy of Sciences CR, Lib ěchov 277 21, Czechia
| | - Jana Juhásová
- Institute of Animal Physiology and Genetics of the Academy of Sciences CR, Lib ěchov 277 21, Czechia
| | - Jaroslav Pejchal
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Hradec Králové 500 02, Czechia
| | - Václav Mandys
- Department of Pathology, 3rd Faculty of Medicine, Charles University, University Hospital Královské Vinohrady, Prague 100 34, Czechia
| | - Karel Eminger
- Department of Scientific Information and Clinical Studies, Central Military University Hospital Prague, Prague 169 02, Czechia
| | - Miroslav Ryska
- Department of Surgery, 2nd Faculty of Medicine, Military University Hospital Prague and Charles University, Prague 169 02, Czechia
| |
Collapse
|
4
|
An agonistic monoclonal antibody targeting cMet attenuates inflammation and upregulates collagen synthesis and angiogenesis in Type 2 diabetic mouse wounds. Plast Reconstr Surg 2022; 150:572e-583e. [PMID: 35759635 DOI: 10.1097/prs.0000000000009469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Diabetic wounds account for 25%-50% of total diabetic healthcare costs annually, and present overall healing rates of less than 50%. Since delayed diabetic wound healing is associated with impaired fibroblast function, we hypothesize that tyrosine kinase Met (cMet) agonistic monoclonal antibody (mAb) will promote diabetic wound healing via stable activation of HGF/cMet signaling. METHODS Two 6 mm dorsal wounds were created in each mice (6-week-old, male BKS.Cg-Dock7m+/+Leprdb/J, n=5). After subcutaneous injections of agonist (20 mg/kg) at 0 and 72h, the wound sizes were measured at days 0, 1, 3, 6, and 10. Histological and immunohistochemical analyses were performed at day 10 (cMet, α-SMA, CD68, and TGF-β). In vitro cytotoxicity and migration tests with diabetic fibroblasts were performed with/without agonist treatment (1 or 10 nM). cMet pathway activation of fibroblasts was confirmed through p-p44/42MAPK, p-mTOR, p-cMet, and ROCK-1 expression. RESULTS cMet agonistic mAb-treated group showed 1.60-fold lower wound area (p=0.027), 1.54-fold higher collagen synthesis (p=0.001), and 1.79-fold lower inflammatory cell infiltration (p=0.032) than the saline-treated control. The agonist increased cMet (1.86-fold, p=0.029), α-SMA (1.20-fold, p=0.018), and VEGF (1.68-fold, p=0.029) expression but suppressed CD68 (1.25-fold, p=0.043), TFG-β (1.25-fold, p=0.022), and MMP-2 (2.59-fold, p=0.029) expression. In vitro agonist treatment (10 nM) of diabetic fibroblasts increased their migration by 8.98-fold (p=0.029) and activated HGF/cMet pathway. CONCLUSIONS cMet agonistic mAb treatment improved diabetic wound healing in mice and reduced wound-site inflammatory cell infiltration. These results need to be validated in large animals before piloting human trials.
Collapse
|
5
|
Antibacterial and Wound-Healing Activities of Statistically Optimized Nitrofurazone- and Lidocaine-Loaded Silica Microspheres by the Box-Behnken Design. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082532. [PMID: 35458733 PMCID: PMC9032706 DOI: 10.3390/molecules27082532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 11/23/2022]
Abstract
In the current study, nitrofurazone- (NFZ) and lidocaine-loaded (LD) silica microspheres were fabricated to address pathological indications of skin infections. The microspheres were prepared by the sol–gel method applying the Box–Behnken design and evaluated for size distribution, morphology, zeta potential, physico-chemical compatibility, XRD, thermogravimetric analysis, antibacterial and cytotoxicity activities. The comparative in vitro drug release study of microspheres revealed a 30% release of NFZ and 33% of LD after 8 h. The microspheres showed 81% percentage yield (PY) and 71.9% entrapment efficiency. XRD patterns confirmed the entrapment of NFZ–LD in silica microspheres with a significant reduction in crystallinity of the drugs. Thermal and FTIR studies proved the absence of any profound interactions of the formulation ingredients. The smooth spherical microspheres had a −28 mV zeta potential and a 10–100 µm size distribution. In vitro antibacterial activities of the NFZ–LD microspheres showed an increased zone of inhibition compared to pure drug suspensions. The in vivo efficacy tested on rabbits showed a comparatively rapid wound healing with complete lack of skin irritation impact. The cytotoxicity studies revealed more acceptability of silica microspheres with negligible harm to cells. The study suggests that the NFZ- and LD-loaded silica microspheres would be an ideal system for accelerating and promoting rapid healing of various acute and chronic wounds.
Collapse
|
6
|
Bhadauria SS, Malviya R. Advancement in Nanoformulations for the Management of Diabetic Wound Healing. Endocr Metab Immune Disord Drug Targets 2022; 22:911-926. [PMID: 35249512 DOI: 10.2174/1871530322666220304214106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/01/2021] [Accepted: 01/07/2022] [Indexed: 11/22/2022]
Abstract
People with diabetes have a very slow tendency for wound healing. Wound healing is a vast process where several factors inhibit the sequence of healing. Nano formulation plays a major role during acute and chronic wound healing. The present manuscript aims to discuss the role of nanoformulation in the treatment of diabetic wound healing. Diabetes is a common disease that has harmful consequences which lead to bad health. During the literature survey, it was observed that nanotechnology has significant advantages in the treatment of diabetic wound healing. The present manuscript summarized the role of nanomaterials in wound healing, challenges in diabetic wound healing, physiology of wound healing, a limitation that comes during wound repair, and treatments available for wound healing. After a comprehensive literature survey, it can be concluded that health worker needs more focus on the area of wound healing in diabetic patients. Medical practitioners, pharmaceutical and biomedical researchers need more attention towards the utilization of nanoformulations for the treatment of wound healing, specifically in the case of diabetes.
Collapse
Affiliation(s)
- Shailendra Singh Bhadauria
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
7
|
Tavakoli M, Mirhaj M, Labbaf S, Varshosaz J, Taymori S, Jafarpour F, Salehi S, Abadi SAM, Sepyani A. Fabrication and evaluation of Cs/PVP sponge containing platelet-rich fibrin as a wound healing accelerator: An in vitro and in vivo study. Int J Biol Macromol 2022; 204:245-257. [PMID: 35131230 DOI: 10.1016/j.ijbiomac.2022.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/05/2021] [Accepted: 02/01/2022] [Indexed: 12/12/2022]
Abstract
Despite significant advances in surgery and postoperative care, there are still challenges in the treatment of wounds. In the current study, a freeze-dried chitosan (Cs)/polyvinylpyrrolidone (PVP) sponges containing platelet-rich fibrin (PRF at 1, 1.5 and 2% w/v) for wound dressing application is fabricated and fully characterized. Addition of 1% w/v of PRF to Cs/PVP (CS/PVP/1PRF) sample significantly increased the tensile strength (from 0.147 ± 0.005 to 0.242 ± 0.001 MPa), elastic modulus (from 0.414 ± 0.014 to 0.611 ± 0.022 MPa) and strain at break (from 53.4 ± 0.9 to 61.83 ± 1.17%) compared to Cs sample, and was hence selected as the optimal sample. The antibacterial activity of Cs/PVP/1PRF sponge wound dressing against E. coli and S. aureus was confirmed to be effective. Enzyme-linked immunosorbent assays revealed that the release of both VEGF and PDGF-AB from PRF powder, as well as PDGF-AB from Cs/PVP/1PRF sample was time-independent, but the release of VEGF from Cs/PVP/1PRF sample increased significantly with time. According to MTT and CAM assays, the Cs/PVP/1PRF sample significantly increased proliferation and angiogenic potential, respectively. Furthermore, in vivo studies demonstrated a 97.16 ± 1.55% wound closure for Cs/PVP/1PRF group after 14 days.
Collapse
Affiliation(s)
- Mohamadreza Tavakoli
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Marjan Mirhaj
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Sheyda Labbaf
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Jaleh Varshosaz
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Iran.
| | - Somayeh Taymori
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Iran
| | - Franoosh Jafarpour
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Saeedeh Salehi
- Department of Materials Engineering, Islamic Azad University, Najafabad, Iran
| | | | - Azadeh Sepyani
- Department of Tissue Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| |
Collapse
|
8
|
Jayash SN, Cooper PR, Shelton RM, Kuehne SA, Poologasundarampillai G. Novel Chitosan-Silica Hybrid Hydrogels for Cell Encapsulation and Drug Delivery. Int J Mol Sci 2021; 22:ijms222212267. [PMID: 34830145 PMCID: PMC8624171 DOI: 10.3390/ijms222212267] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 11/16/2022] Open
Abstract
Hydrogels constructed from naturally derived polymers provide an aqueous environment that encourages cell growth, however, mechanical properties are poor and degradation can be difficult to predict. Whilst, synthetic hydrogels exhibit some improved mechanical properties, these materials lack biochemical cues for cells growing and have limited biodegradation. To produce hydrogels that support 3D cell cultures to form tissue mimics, materials must exhibit appropriate biological and mechanical properties. In this study, novel organic-inorganic hybrid hydrogels based on chitosan and silica were prepared using the sol-gel technique. The chemical, physical and biological properties of the hydrogels were assessed. Statistical analysis was performed using One-Way ANOVAs and independent-sample t-tests. Fourier transform infrared spectroscopy showed characteristic absorption bands including amide II, Si-O and Si-O-Si confirming formation of hybrid networks. Oscillatory rheometry was used to characterise the sol to gel transition and viscoelastic behaviour of hydrogels. Furthermore, in vitro degradation revealed both chitosan and silica were released over 21 days. The hydrogels exhibited high loading efficiency as total protein loading was released in a week. There were significant differences between TC2G and C2G at all-time points (p < 0.05). The viability of osteoblasts seeded on, and encapsulated within, the hydrogels was >70% over 168 h culture and antimicrobial activity was demonstrated against Pseudomonas aeruginosa and Enterococcus faecalis. The hydrogels developed here offer alternatives for biopolymer hydrogels for biomedical use, including for application in drug/cell delivery and for bone tissue engineering.
Collapse
Affiliation(s)
- Soher N. Jayash
- School of Dentistry, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham B5 7EG, UK; (R.M.S.); (S.A.K.)
- Correspondence: or (S.N.J.); (G.P.)
| | - Paul R. Cooper
- Department of Oral Sciences, Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand;
| | - Richard M. Shelton
- School of Dentistry, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham B5 7EG, UK; (R.M.S.); (S.A.K.)
| | - Sarah A. Kuehne
- School of Dentistry, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham B5 7EG, UK; (R.M.S.); (S.A.K.)
| | - Gowsihan Poologasundarampillai
- School of Dentistry, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham B5 7EG, UK; (R.M.S.); (S.A.K.)
- Correspondence: or (S.N.J.); (G.P.)
| |
Collapse
|
9
|
Mesa M, Becerra NY. Silica/Protein and Silica/Polysaccharide Interactions and Their Contributions to the Functional Properties of Derived Hybrid Wound Dressing Hydrogels. Int J Biomater 2021; 2021:6857204. [PMID: 34777502 PMCID: PMC8580642 DOI: 10.1155/2021/6857204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/15/2022] Open
Abstract
Multifunctional and biocompatible hydrogels are on the focus of wound healing treatments. Protein and polysaccharides silica hybrids are interesting wound dressing alternatives. The objective of this review is to answer questions such as why silica for wound dressings reinforcement? What are the roles and contributions of silane precursors and silica on the functional properties of hydrogel wound dressings? The effects of tailoring the porous, morphological, and chemical characteristics of synthetic silicas on the bioactivity of hybrid wound dressings hydrogels are explored in the first part of the review. This is followed by a commented review of the mechanisms of silica/protein and silica/polysaccharide interactions and their impact on the barrier, scaffold, and delivery matrix functions of the derived hydrogels. Such information has important consequences for wound healing and paves the way to multidisciplinary researches on the production, processing, and biomedical application of this kind of hybrid materials.
Collapse
Affiliation(s)
- Monica Mesa
- Materials Science Group, Institute of Chemistry, University of Antioquia, Medellín 050010, Colombia
| | - Natalia Y. Becerra
- Tissue Engineering and Cell Therapy Group, Faculty of Medicine, University of Antioquia, Medellín 050010, Colombia
| |
Collapse
|
10
|
Ghorbani F, Ghalandari B, Sahranavard M, Zamanian A, Collins MN. Tuning the biomimetic behavior of hybrid scaffolds for bone tissue engineering through surface modifications and drug immobilization. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 130:112434. [PMID: 34702519 DOI: 10.1016/j.msec.2021.112434] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/19/2021] [Accepted: 09/10/2021] [Indexed: 10/20/2022]
Abstract
Bone defects arising from injury and/or disease are a common and debilitating clinical lesion. While the development of tissue microenvironments utilizing biomimetic constructs is an emerging approach for bone tissue engineering. In this context, bioactive glass nanoparticles (BGNPs) were embedded within polycaprolactone (PCL) scaffolds. The scaffolds exhibit an engineered unidirectional pore structure which are surface activated via oxygen plasma to allow immobilization of simvastatin (SIM) on the pore surface. Microscopic observation indicated the surface modification did not disturb the lamellar orientation of the pores improving the biomimetic formation of hydroxyapatite. Mathematically modelled release profiles reveal that the oxygen plasma pre-treatment can be utilized to modulate the release profile of SIM from the scaffolds. With the release mechanism controlled by the balance between the diffusion and erosion mechanisms. Computational modelling shows that Human Serum Albumin and Human α2-macroglobulin can be utilized to increase SIM bioavailability for cells via a molecular docking mechanism. Cellular studies show positive MG-63 cell attachment and viability on optimized scaffolds with alkaline phosphatase activity enhanced along with enhanced expression of osteocalcoin biomarker.
Collapse
Affiliation(s)
- Farnaz Ghorbani
- Institute of Biomaterials, Department of Material Science and Engineering, University of Erlangen-Nuremberg, Cauerstraße 6, 91058 Erlangen, Germany
| | - Behafarid Ghalandari
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Melika Sahranavard
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Karaj, Iran
| | - Ali Zamanian
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Karaj, Iran
| | - Maurice N Collins
- Bernal Institute, School of Engineering, University of Limerick, Ireland; Health Research Institute, University of Limerick, Ireland.
| |
Collapse
|
11
|
Improving Fibrin Hydrogels' Mechanical Properties, through Addition of Silica or Chitosan-Silica Materials, for Potential Application as Wound Dressings. Int J Biomater 2021; 2021:9933331. [PMID: 34188685 PMCID: PMC8192204 DOI: 10.1155/2021/9933331] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/22/2021] [Accepted: 05/26/2021] [Indexed: 12/12/2022] Open
Abstract
Fibrin is a protein-based hydrogel formed during blood coagulation. It can also be produced in vitro from human blood plasma, and it is capable of resisting high deformations. However, after each deformation process, it loses high amounts of water, which subsequently makes it mechanically unstable and, finally, difficult to manipulate. The objective of this work was to overcome the in vitro fibrin mechanical instability. The strategy consists of adding silica or chitosan-silica materials and comparing how the different materials electrokinetic-surface properties affect the achieved improvement. The siliceous materials electrostatic and steric stabilization mechanisms, together with plasma protein adsorption on their surfaces, were corroborated by DLS and ζ-potential measurements before fibrin gelling. These properties avoid phase separation, favoring homogeneous incorporation of the solid into the forming fibrin network. Young's modulus of modified fibrin hydrogels was evaluated by AFM to quantitatively measure stiffness. It increased 2.5 times with the addition of 4 mg/mL silica. A similar improvement was achieved with only 0.7 mg/mL chitosan-silica, which highlighted the contribution of hydrophilic chitosan chains to fibrinogen crosslinking. Moreover, these chains avoided the fibroblast growth inhibition onto modified fibrin hydrogels 3D culture observed with silica. In conclusion, 0.7 mg/mL chitosan-silica improved the mechanical stability of fibrin hydrogels with low risks of cytotoxicity. This easy-to-manipulate modified fibrin hydrogel makes it suitable as a wound dressing biomaterial.
Collapse
|
12
|
Masood A, Maheen S, Khan HU, Shafqat SS, Irshad M, Aslam I, Rasul A, Bashir S, Zafar MN. Pharmaco-Technical Evaluation of Statistically Formulated and Optimized Dual Drug-Loaded Silica Nanoparticles for Improved Antifungal Efficacy and Wound Healing. ACS OMEGA 2021; 6:8210-8225. [PMID: 33817480 PMCID: PMC8015129 DOI: 10.1021/acsomega.0c06242] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/10/2021] [Indexed: 05/03/2023]
Abstract
The current research aimed at designing mesoporous silica nanoparticles (MSNs) for a controlled coadministration of salicylic acid (SA) and ketoconazole (KCZ) to effectively treat highly resistant fungal infections. The sol-gel method was used to formulate MSNs, which were further optimized using central composite rotatable design (CCRD) by investigating mathematical impact of independent formulation variables such as pH, stirring time, and stirring speed on dependent variables entrapment efficiency (EE) and drug release. The selected optimized MSNs and pure drugs were subjected to comparative in vitro/in vivo antifungal studies, skin irritation, cytotoxicity, and histopathological evaluations. The obtained negatively charged (-23.1), free flowing spherical, highly porous structured MSNs having a size distribution of 300-500 nm were suggestive of high storage stability and improved cell proliferation due to enhanced oxygen supply to cells. The physico-chemical evaluation of SA/KCZ-loaded MSNs performed through powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and thermal gravimetric analysis (TGA) indicates absolute lack of any interaction between formulation components and successful encapsulation of both drugs in MSNs. The EESA, EEKCZ, SA release, and KCZ release varied significantly from 34 to 89%, 36 to 85%, 39 to 88%, and 43 to 90%, respectively, indicating the quadratic impact of formulation variables on obtained MSNs. For MSNs, the skin tolerability and cell viability percentage rate were also having an extraordinary advantage over suspension of pure drugs. The optimized SA/KCZ-loaded MSNs demonstrated comparatively enhanced in vitro/in vivo antifungal activities and rapid wound healing efficacy in histopathological evaluation without any skin irritation impact, suggesting the MSNs potential for the simultaneous codelivery of antifungal and keratolyic agents in sustained release fashion.
Collapse
Affiliation(s)
- Amna Masood
- Department
of Pharmaceutics, College of Pharmacy, University
of Sargodha, Sargodha 40100, Pakistan
| | - Safirah Maheen
- Department
of Pharmaceutics, College of Pharmacy, University
of Sargodha, Sargodha 40100, Pakistan
- ,
| | - Hafeez Ullah Khan
- Department
of Pharmaceutics, College of Pharmacy, University
of Sargodha, Sargodha 40100, Pakistan
| | | | - Misbah Irshad
- Department
of Chemistry, University of Education, Lahore 54770, Pakistan
| | - Iqra Aslam
- Knowledge
Unit of Science, University of Management
and Technology, Sialkot
Campus, Sialkot 51310, Pakistan
| | - Akhtar Rasul
- Department
of Pharmaceutics, Government College University, Faisalabad 38040, Pakistan
| | - Shahid Bashir
- Department
of Physics, University of Malaya, Kuala Lumpur 50603, Malaysia
| | | |
Collapse
|
13
|
Barroso A, Mestre H, Ascenso A, Simões S, Reis C. Nanomaterials in wound healing: From material sciences to wound healing applications. NANO SELECT 2020. [DOI: 10.1002/nano.202000055] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Andreia Barroso
- Faculty of Pharmacy, Universidade de Lisboa Avenida Professor Gama Pinto Lisboa 1649‐003 Portugal
| | - Henrique Mestre
- Faculty of Pharmacy, Universidade de Lisboa Avenida Professor Gama Pinto Lisboa 1649‐003 Portugal
| | - Andreia Ascenso
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa Avenida Professor Gama Pinto Lisboa 1649‐003 Portugal
| | - Sandra Simões
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa Avenida Professor Gama Pinto Lisboa 1649‐003 Portugal
| | - Catarina Reis
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa Avenida Professor Gama Pinto Lisboa 1649‐003 Portugal
- IBEB, Biophysics and Biomedical Engineering, Faculty of Sciences Universidade de Lisboa Campo Grande Lisboa 1649‐016 Portugal
| |
Collapse
|
14
|
Ghorbani F, Sahranavard M, Zamanian A. Immobilization of gelatin on the oxygen plasma-modified surface of polycaprolactone scaffolds with tunable pore structure for skin tissue engineering. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02263-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Schuhladen K, Raghu SNV, Liverani L, Neščáková Z, Boccaccini AR. Production of a novel poly(ɛ-caprolactone)-methylcellulose electrospun wound dressing by incorporating bioactive glass and Manuka honey. J Biomed Mater Res B Appl Biomater 2020; 109:180-192. [PMID: 32691500 DOI: 10.1002/jbm.b.34690] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/25/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022]
Abstract
Wound dressings produced by electrospinning exhibit a fibrous structure close to the one of the extracellular matrix of the skin. In this article, electrospinning was used to fabricate fiber mats based on the well-known biopolymers poly(ɛ-caprolactone) (PCL) and methylcellulose (MC) using benign solvents. The blend fiber mats were cross-linked using Manuka honey and additionally used as a biodegradable platform to deliver bioactive glass particles. It was hypothesized that a dual therapeutic effect can be achieved by combining Manuka honey and bioactive glass. Morphological and chemical examinations confirmed the successful production of submicrometric PCL-MC fiber mats containing Manuka honey and bioactive glass particles. The multifunctional fiber mats exhibited improved wettability and suitable mechanical properties (ultimate tensile strength of 3-5 MPa). By performing dissolution tests using simulated body fluid, the improved bioactivity of the fiber mats by the addition of bioactive glass was confirmed. Additionally, cell biology tests using human dermal fibroblasts and human keratinocytes-like HaCaT cells showed the potential of the fabricated composite fiber mats to be used as wound dressing, specially due to the ability to support wound closure influenced by the presence of bioactive glass. Moreover, based on the results of the antibacterial tests, it is apparent that an optimization of the electrospun fiber mats is required to develop suitable wound dressing for the treatment of infected wounds.
Collapse
Affiliation(s)
- Katharina Schuhladen
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Swathi N V Raghu
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Liliana Liverani
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Zuzana Neščáková
- Department of Biomaterials, FunGlass, Alexander Dubček University of Trenčín, Trenčín, Slovakia
| | - Aldo R Boccaccini
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
16
|
Guo X, Xu D, Zhao Y, Gao H, Shi X, Cai J, Deng H, Chen Y, Du Y. Electroassembly of Chitin Nanoparticles to Construct Freestanding Hydrogels and High Porous Aerogels for Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2019; 11:34766-34776. [PMID: 31429547 DOI: 10.1021/acsami.9b13063] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The construction of polymeric nanocomponents into a hierarchical structure poses great importance for subsequent biomedical applications. Herein, we report for the first time the electroassembly of chitin nanoparticles (14 nm ± 3 nm from transmission electron microscopy) to construct thick and freestanding hydrogels, which can be further dried to obtain high porous and tough aerogels for wound healing. The electroassembly is a simple, straightforward, and controllable process, which crucially depends on the pH of the chitin nanoparticle suspension and the degree of deacetylation of chitin. Interestingly, the electroassembly of chitin nanoparticles is completely reversible, suggesting the physical assembly feature of the freestanding hydrogel. By using supercritical CO2 drying and freeze-drying, chitin aerogels and cryogels can be facilely obtained. Because of the intriguing features (i.e., large surface area, interconnected porous structure, and enhanced hydrophilicity), chitin aerogels demonstrate adorable performance to accelerate the healing of wounds.
Collapse
Affiliation(s)
- Xiaojia Guo
- School of Resource and Environmental Sciences, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-Based Medical Materials , Wuhan University , Wuhan 430079 , China
| | - Duoduo Xu
- College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | | | - Huimin Gao
- College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Xiaowen Shi
- School of Resource and Environmental Sciences, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-Based Medical Materials , Wuhan University , Wuhan 430079 , China
| | - Jie Cai
- College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
- Research Institute of Shenzhen , Wuhan University , Shenzhen 518057 , China
| | - Hongbing Deng
- School of Resource and Environmental Sciences, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-Based Medical Materials , Wuhan University , Wuhan 430079 , China
| | | | - Yumin Du
- School of Resource and Environmental Sciences, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-Based Medical Materials , Wuhan University , Wuhan 430079 , China
| |
Collapse
|
17
|
Jang TS, Cheon KH, Ahn JH, Song EH, Kim HE, Jung HD. In-vitro blood and vascular compatibility of sirolimus-eluting organic/inorganic hybrid stent coatings. Colloids Surf B Biointerfaces 2019; 179:405-413. [DOI: 10.1016/j.colsurfb.2019.04.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 04/08/2019] [Indexed: 12/19/2022]
|
18
|
Park JU, Song EH, Jeong SH, Song J, Kim HE, Kim S. Chitosan-Based Dressing Materials for Problematic Wound Management. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1077:527-537. [DOI: 10.1007/978-981-13-0947-2_28] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|