1
|
Al-Ajalein AA, Ibrahim N‘I, Fauzi MB, Mokhtar SA, Naina Mohamed I, Shuid AN, Mohamed N. Evaluating the Anti-Osteoporotic Potential of Mediterranean Medicinal Plants: A Review of Current Evidence. Pharmaceuticals (Basel) 2024; 17:1341. [PMID: 39458982 PMCID: PMC11510337 DOI: 10.3390/ph17101341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Bones are biological reservoirs for minerals and cells, offering protection to the other organs and contributing to the structural form of the body. Osteoporosis is a prevalent bone condition that significantly impacts people's quality of life. Treatments utilizing natural products and medicinal plants have gained important attention in the management of osteoporosis and its associated implications, such as osteoporotic fractures. Even though thousands of plants grow in the Mediterranean region, the use of medicinal plants as an alternative therapy for osteoporosis is still limited. Methods: This article provides a comprehensive overview of seven Mediterranean medicinal plants that are used in osteoporosis and osteoporotic fractures in in vitro, in vivo, and clinical trials. The mechanism of action of the medicinal plants and their bioactive compounds against diseases are also briefly discussed. Results: The findings clearly indicate the ability of the seven medicinal plants (Ammi majus, Brassica oleracea, Ceratonia siliqua L., Foeniculum vulgare, Glycyrrhiza glabra, Salvia officinalis, and Silybum marianum) as anti-osteoporosis agents. Xanthotoxin, polyphenols, liquiritin, formononetin, silymarin, and silibinin/silybin were the main bioactive compounds that contributed to the action against osteoporosis and osteoporotic fractures. Conclusions: In this review, the Mediterranean medicinal plants prove their ability as an alternative agent for osteoporosis and osteoporotic fractures instead of conventional synthetic therapies. Thus, this can encourage researchers to delve deeper into this field and develop medicinal-plant-based drugs.
Collapse
Affiliation(s)
- Alhareth Abdulraheem Al-Ajalein
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (A.A.A.-A.); (N.‘I.I.); (I.N.M.)
| | - Nurul ‘Izzah Ibrahim
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (A.A.A.-A.); (N.‘I.I.); (I.N.M.)
| | - Mh Busra Fauzi
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
- Advance Bioactive Materials-Cells (Adv-BioMaC) UKM Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Sabarul Afian Mokhtar
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| | - Isa Naina Mohamed
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (A.A.A.-A.); (N.‘I.I.); (I.N.M.)
| | - Ahmad Nazrun Shuid
- Department of Pharmacology, Faculty of Medicine, Universiti Teknologi Mara (UITM), Jalan Hospital, Sungai Buloh 47000, Malaysia;
| | - Norazlina Mohamed
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (A.A.A.-A.); (N.‘I.I.); (I.N.M.)
| |
Collapse
|
2
|
Tao ZS, Shen CL. Guanylate cyclase promotes osseointegration by inhibiting oxidative stress and inflammation in aged rats with iron overload. Bone Joint Res 2024; 13:427-440. [PMID: 39216851 PMCID: PMC11365736 DOI: 10.1302/2046-3758.139.bjr-2023-0396.r3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Aims This study intended to investigate the effect of vericiguat (VIT) on titanium rod osseointegration in aged rats with iron overload, and also explore the role of VIT in osteoblast and osteoclast differentiation. Methods In this study, 60 rats were included in a titanium rod implantation model and underwent subsequent guanylate cyclase treatment. Imaging, histology, and biomechanics were used to evaluate the osseointegration of rats in each group. First, the impact of VIT on bone integration in aged rats with iron overload was investigated. Subsequently, VIT was employed to modulate the differentiation of MC3T3-E1 cells and RAW264.7 cells under conditions of iron overload. Results Utilizing an OVX rat model, we observed significant alterations in bone mass and osseointegration due to VIT administration in aged rats with iron overload. The observed effects were concomitant with reductions in bone metabolism, oxidative stress, and inflammation. To elucidate whether these effects are associated with osteoclast and osteoblast activity, we conducted in vitro experiments using MC3T3-E1 cells and RAW264.7 cells. Our findings indicate that iron accumulation suppressed the activity of MC3T3-E1 while enhancing RAW264.7 function. Furthermore, iron overload significantly decreased oxidative stress levels; however, these detrimental effects can be mitigated by VIT treatment. Conclusion Collectively, our data provide compelling evidence that VIT has the potential to reverse the deleterious consequences of iron overload on osseointegration and bone mass during ageing.
Collapse
Affiliation(s)
- Zhou-Shan Tao
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu, China
| | - Cai-Liang Shen
- Department of Spinal Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
3
|
Słota D, Piętak K, Jampilek J, Sobczak-Kupiec A. Polymeric and Composite Carriers of Protein and Non-Protein Biomolecules for Application in Bone Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2235. [PMID: 36984115 PMCID: PMC10059071 DOI: 10.3390/ma16062235] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Conventional intake of drugs and active substances is most often based on oral intake of an appropriate dose to achieve the desired effect in the affected area or source of pain. In this case, controlling their distribution in the body is difficult, as the substance also reaches other tissues. This phenomenon results in the occurrence of side effects and the need to increase the concentration of the therapeutic substance to ensure it has the desired effect. The scientific field of tissue engineering proposes a solution to this problem, which creates the possibility of designing intelligent systems for delivering active substances precisely to the site of disease conversion. The following review discusses significant current research strategies as well as examples of polymeric and composite carriers for protein and non-protein biomolecules designed for bone tissue regeneration.
Collapse
Affiliation(s)
- Dagmara Słota
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| | - Karina Piętak
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| | - Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
- Department of Chemical Biology, Faculty of Science, Palacky University Olomouc, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Agnieszka Sobczak-Kupiec
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| |
Collapse
|
4
|
Zhou MS, Tao ZS. Systemic administration with melatonin in the daytime has a better effect on promoting osseointegration of titanium rods in ovariectomized rats. Bone Joint Res 2022; 11:751-762. [DOI: 10.1302/2046-3758.1111.bjr-2022-0017.r2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Aims This study examined whether systemic administration of melatonin would have different effects on osseointegration in ovariectomized (OVX) rats, depending on whether this was administered during the day or night. Methods In this study, a titanium rod was implanted in the medullary cavity of one femoral metaphysis in OVX rats, and then the rats were randomly divided into four groups: Sham group (Sham, n = 10), OVX rat group (OVX, n = 10), melatonin day treatment group (OVX + MD, n = 10), and melatonin night treatment group (OVX + MN, n = 10). The OVX + MD and OVX + MN rats were treated with 30 mg/kg/day melatonin at 9 am and 9 pm, respectively, for 12 weeks. At the end of the research, the rats were killed to obtain bilateral femora and blood samples for evaluation. Results Micro-CT and histological evaluation showed that the bone microscopic parameters of femoral metaphysis trabecular bone and bone tissue around the titanium rod in the OVX + MD group demonstrated higher bone mineral density, bone volume fraction, trabecular number, connective density, trabecular thickness, and lower trabecular speculation (p = 0.004) than the OVX + MN group. Moreover, the biomechanical parameters of the OVX + MD group showed higher pull-out test and three-point bending test values, including fixation strength, interface stiffness, energy to failure, energy at break, ultimate load, and elastic modulus (p = 0.012) than the OVX + MN group. In addition, the bone metabolism index and oxidative stress indicators of the OVX + MD group show lower values of Type I collagen cross-linked C-telopeptide, procollagen type 1 N propeptide, and malondialdehyde (p = 0.013), and higher values of TAC and SOD (p = 0.002) compared with the OVX + MN group. Conclusion The results of our study suggest that systemic administration with melatonin at 9 am may improve the initial osseointegration of titanium rods under osteoporotic conditions more effectively than administration at 9 pm. Cite this article: Bone Joint Res 2022;11(11):751–762.
Collapse
Affiliation(s)
- Mao-Sheng Zhou
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China
| | - Zhou-Shan Tao
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China
| |
Collapse
|
5
|
Tao ZS, Wang HS, Li TL, Wei S. Silibinin-modified Hydroxyapatite coating promotes the osseointegration of titanium rods by activation SIRT1/SOD2 signaling pathway in diabetic rats. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 33:62. [PMID: 36057883 PMCID: PMC9441422 DOI: 10.1007/s10856-022-06684-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/01/2022] [Indexed: 05/06/2023]
Abstract
The purpose of this study is to investigate the role of Silibinin (SIL)-modified Hydroxyapatite coating on osseointegration in diabetes in vivo and in vitro and explore the mechanism of osteogenic differentiation of MC3T3-E1. RT-qPCR, Immunofluorescence, and Western blot were used to measure the expression level of oxidative Stress Indicators and osteogenic markers proteins. Moreover, CCK-8 assay was conducted to detect cell viability in hyperglycemia. Alizarin red staining and alkaline phosphatase staining were used to examine osteogenic function and calcium deposits. The diabetic rat model receive titanium rod implantation was set up successfully and Von-Gieson staining was used to examine femoral bone tissue around titanium rod. Our results showed that intracellular oxidative stress in hyperglycemia was overexpressed, while FoxO1, SIRT1, GPX1, and SOD2 were downregulated. SIL suppressed oxidative stress to promote osteogenic differentiation. Additionally, it was confirmed that SIL promoted osteogenic differentiation of MC3T3-E1 and obviously restored the osseointegration ability of diabetic rats. Further study indicated that SIL exerted its beneficial function through activation SIRT1/SOD2 signaling pathway to restore osteoblast function, and improved the osseointegration and stability of titanium rods in vivo. Our research suggested that the SIL-modulated oxidative Stress inhibition is responsible for the activation of the process of osteogenic differentiation through activation SIRT1/SOD2 signaling pathway in hyperglycemia, providing a novel insight into improving prosthetic osseointegration in diabetic patients. Hyperglycemia impaired the activity and function of MC3T3-E1 and inhibits bone formation by up-regulating intracellular ROS levels through inhibition of SIRT1/SOD2 signaling pathway. Local administrator SIL can improve the activity and function of osteoblasts and enhance osseointegration by reducing intracellular ROS through activation of SIRT1/SOD2 signaling pathway in DM rat models.
Collapse
Affiliation(s)
- Zhou-Shan Tao
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu, 241001, Anhui, P.R. China.
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), No. 2, Zhe Shan Xi Road, Wuhu, China.
| | - Hai-Sheng Wang
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu, 241001, Anhui, P.R. China
| | - Tian-Lin Li
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu, 241001, Anhui, P.R. China
| | - Shan Wei
- School of Mechanical Engineering, Anhui Polytechnic University, Wuhu, 241000, P.R. China
- Additive Manufacturing Institute of Anhui Polytechnic University, Anhui Polytechnic University, Wuhu, 241000, P.R. China
| |
Collapse
|
6
|
Ding Z, Peng Q, Zuo J, Wang Y, Zhou H, Tang Z. Osteogenesis Performance of Boronized Ti6Al4V/HA Composites Prepared by Microwave Sintering: In Vitro and In Vivo Studies. MATERIALS 2022; 15:ma15144985. [PMID: 35888453 PMCID: PMC9321446 DOI: 10.3390/ma15144985] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 02/01/2023]
Abstract
The boronized Ti6Al4V/HA composite is deemed to be an important biomaterial because of its potential remarkable mechanical and biological properties. This paper reports the osteogenesis performance of the boronized Ti6Al4V/HA composite, which was prepared by microwave sintering of powders of Ti6Al4V, hydroxyapatite (HA), and TiB2 in high-purity Ar gas at 1050 °C for 30 min, as dental implant based on both cell experiments in vitro and animal experiments in vivo. The comparison between the boronized Ti6Al4V/HA composite and Ti, Ti6Al4V, and boronized Ti6Al4V in the terms of adhesion, proliferation, alkaline phosphate (ALP) activity, and mineralization of MG-63 cells on their surfaces confirmed that the composite exhibited the best inductive osteogenesis potential. It exerted a more significant effect on promoting the early osteogenic differentiation of osteoblasts and exhibited the maximum optical density (OD) value in the MTT assay and the highest levels of ALP activity and mineralization ability, primarily ascribed to its bioactive HA component, porous structure, and relatively rough micro-morphology. The in vivo study in rabbits based on the micro-computed tomography (micro-CT) analysis, histological and histomorphometric evaluation, and biomechanical testing further confirmed that the boronized Ti6Al4V/HA composite had the highest new bone formation potential and the best osseointegration property after implantation for up to 12 weeks, mainly revealed by the measured values of bone volume fraction, bone implant contact, and maximum push-out force which, for example, reached 48.64%, 61%, and 150.3 ± 6.07 N at the 12th week. Owing to these inspiring features, it can serve as a highly promising dental implant.
Collapse
Affiliation(s)
- Zhenyu Ding
- Xiangya Stomatological Hospital, Central South University, Changsha 410008, China; (Z.D.); (J.Z.); (Y.W.); (H.Z.); (Z.T.)
- Xiangya School of Stomatology, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Oral Health Research, Central South University, Changsha 410008, China
| | - Qian Peng
- Xiangya Stomatological Hospital, Central South University, Changsha 410008, China; (Z.D.); (J.Z.); (Y.W.); (H.Z.); (Z.T.)
- Xiangya School of Stomatology, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Oral Health Research, Central South University, Changsha 410008, China
- Correspondence: ; Tel.: +86-731-8481-2058
| | - Jun Zuo
- Xiangya Stomatological Hospital, Central South University, Changsha 410008, China; (Z.D.); (J.Z.); (Y.W.); (H.Z.); (Z.T.)
- Xiangya School of Stomatology, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Oral Health Research, Central South University, Changsha 410008, China
| | - Yuehong Wang
- Xiangya Stomatological Hospital, Central South University, Changsha 410008, China; (Z.D.); (J.Z.); (Y.W.); (H.Z.); (Z.T.)
- Xiangya School of Stomatology, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Oral Health Research, Central South University, Changsha 410008, China
| | - Hongbo Zhou
- Xiangya Stomatological Hospital, Central South University, Changsha 410008, China; (Z.D.); (J.Z.); (Y.W.); (H.Z.); (Z.T.)
- Xiangya School of Stomatology, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Oral Health Research, Central South University, Changsha 410008, China
| | - Zhangui Tang
- Xiangya Stomatological Hospital, Central South University, Changsha 410008, China; (Z.D.); (J.Z.); (Y.W.); (H.Z.); (Z.T.)
- Xiangya School of Stomatology, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Oral Health Research, Central South University, Changsha 410008, China
| |
Collapse
|
7
|
Wang Z, Wei S. Local treatment with Sema3a could promote the osseointegration of hydroxyapatite coated titanium rod in diabetic rats. J Biomater Appl 2022; 36:1775-1785. [PMID: 35225049 DOI: 10.1177/08853282221075707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recently, semaphorin 3A (Sema3A) has been identified as a critical gene for osteogenic differentiation of mesenchymal stem cells and increases osteoblastic bone formation. However, in current research studies, there is a lack of focus on whether Sema3a can affect the osseointegration of titanium rods in diabetes and through what biological mechanisms. Therefore, the present work was aimed to evaluate the effect of local administration with Sema3A on hydroxyapatite coated titanium rod osseointegration in diabetic rat model and preliminary exploration of possible mechanisms. The MC3T3-E1 cells were co-cultured with Sema3A and high glucose and induced to osteogenesis, and the cell viability, osteogenic activity was observed by Cell Counting Kit-8(CCK-8), Alkaline Phosphatase staining, Alizarin Red Staining, and Western Blot. In vitro experiments, CCK-8, ALP, and ARS staining results show that the mineralization and osteogenic activity of MC3T3-E1increased significantly after intervention by Sema3A, as well as a higher levels of protein expressions including Runt-Related Transcription Factor 2, silent mating type information regulation 2 homolog-1(SIRT1), catalase (CAT), superoxide dismutase 1 (SOD1), and superoxide dismutase 2 (SOD2). In vivo experiment, a better stability and osseointegration of the titanium rod were observed after treatment with Sema3A, as well as a higher SOD1, SOD2, CAT, and SIRT1 gene expression. The present study indicates that local treatment with Sema3A was associated with increased osseointegration of titanium rod by reducing the oxidative stress of osteoblasts and enhancing the function of osteoblasts in a diabetic rat.
Collapse
Affiliation(s)
- Zhengyu Wang
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu 241001, Anhui, People's Republic of China
| | - Shan Wei
- School of Mechanical Engineering, Anhui Polytechnic University, Wuhu, 241000, P.R. China
- Additive Manufacturing Institute of Anhui Polytechnic University, Anhui Polytechnic University, Wuhu, 241000, P.R. China
| |
Collapse
|
8
|
Văruţ RM, Melinte PR, Pîrvu AS, Gîngu O, Sima G, Oancea CN, Teişanu AC, Drăgoi G, Biţă A, Manolea HO, Mitruţ I, Rogoveanu OC, Romulus IS, Neamţu J. Calcium fructoborate coating of titanium-hydroxyapatite implants by chemisorption deposition improves implant osseointegration in the femur of New Zealand White rabbit experimental model. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY 2021; 61:1235-1247. [PMID: 34171072 PMCID: PMC8343473 DOI: 10.47162/rjme.61.4.25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND The identification of biocomposites that improve cell adhesion and reduce bone integration time is a great challenge for implantology and bone reconstruction. AIM Our aim was to evaluate a new method of chemisorption deposition (CD) for improving the biointegration of hydroxyapatite-coated titanium (HApTi) implants. CD method was used to prepare a calcium fructoborate (CaFb) coating on a HApTi (HApTiCaFb) implant followed by evaluation of histological features related to bone healing at the interface of a bioceramic material in an animal model. METHODS The coating composition was investigated by high-performance thin-layer chromatography/mass spectrometry. The surface morphology of the coating was studied by scanning electron microscopy (SEM), before and after the in vitro study. We implanted two types of bioceramic cylinders, HApTi and HApTiCaFb, in the femur of 10 New Zealand White (NZW) rabbits. RESULTS The release of CaFb from HApTiCaFb occurred rapidly within the first three days after phosphate-buffered saline immersion; there was then a linear release for up to 14 days. SEM analysis showed similar morphology and particle size diameter for both implants. Around the porous HApTiCaFb implant, fibrosis and inflammation were not highlighted. CONCLUSIONS Easily applied using CD method, CaFb coatings promote HApTi implant osseointegration in the femur of NZW rabbits.
Collapse
Affiliation(s)
- Renata Maria Văruţ
- Department of Biochemistry, BioBoron Research Institute, S.C. Natural Research S.R.L., Podari, Dolj County, Romania;
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Tao ZS, Li TL, Wu XJ, Yang M. Local administration with tauroursodeoxycholic acid could improve osseointegration of hydroxyapatite-coated titanium implants in ovariectomized rats. J Biomater Appl 2021; 36:552-561. [PMID: 34162236 DOI: 10.1177/08853282211027678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Despite advances in the pathogenesis of Tauroursodeoxycholic acid (TUDCA) on bone, the understanding of the effects and mechanisms of bone osseointegration in TUDCA-associated Hydroxyapatite (HA)-coated titanium implants remains poor. Therefore, the present work was aimed to evaluate the effect of local administration with TUDCA on HA-coated titanium implants osseointegration in ovariectomized(OVX) rats and further investigation of the possible mechanism. Twelve weeks after bilateral ovariectomy, all animals were randomly divided into three groups: sham operation(Sham) group, OVX group and TUDCA group, and all the rats from Sham group and OVX group received HA implants and animals belonging to group TUDCA received TUDCA-HA implants until death at 12 weeks. The bilateral femurs of rats were harvested for evaluation. TUDCA increased new bone formation around the surface of titanium rods and push-out force other than group OVX. Histology, Micro-CT and biochemical analysis results showed systemic TUDCA showed positive effects than OVX group on bone formation in osteopenic rats, with beneficial effect on via activation OPG/RANKL pathway and BMP-2/Smad1 pathway and microarchitecture as well as by reducing protein expression of TNF-α and IFN-γ. The present study suggests that local use of TUDCA may bring benefits to the osseointegration of HA-coated titanium implants in patients with osteoporosis, and this effect may be related to the inhibition of inflammatory reaction and promotion of osteogenesis.
Collapse
Affiliation(s)
- Zhou-Shan Tao
- Department of Trauma Orthopedics, The First Affiliated Hospital of 74649Wannan Medical College, Yijishan Hospital, Wuhu, People's Republic of China
| | - Tian-Lin Li
- Department of Trauma Orthopedics, The First Affiliated Hospital of 74649Wannan Medical College, Yijishan Hospital, Wuhu, People's Republic of China
| | - Xing-Jing Wu
- Department of Trauma Orthopedics, The First Affiliated Hospital of 74649Wannan Medical College, Yijishan Hospital, Wuhu, People's Republic of China
| | - Min Yang
- Department of Trauma Orthopedics, The First Affiliated Hospital of 74649Wannan Medical College, Yijishan Hospital, Wuhu, People's Republic of China
| |
Collapse
|
10
|
Parathyroid hormone (1-34) can reverse the negative effect of valproic acid on the osseointegration of titanium rods in ovariectomized rats. J Orthop Translat 2020; 27:67-76. [PMID: 33437639 PMCID: PMC7777001 DOI: 10.1016/j.jot.2020.10.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/06/2020] [Accepted: 10/19/2020] [Indexed: 01/21/2023] Open
Abstract
Objective The present work was aimed to evaluate the effect of valproic acid (VPA),Parathyroid hormone (1–34) (PTH)+VPA on Ti rods osseointegration in ovariectomized rats and further investigation of the possible mechanism. Methods The MC3T3-E1 cells were co-cultured with VPA,PTH + VPA and induced to osteogenesis, and the cell viability,mineralization ability were observed by MTT and ALP staining,Alizarin Red staining and Western blotting. Twelve weeks after bilateral ovariectomy, all animals were randomly divided into four groups: group OVX and VPA,PTH + VPA, and all the rats received Ti implants and animals belong to group VPA,PTH + VPA received valproic acid (300 mg/day), valproic acid (300 mg/day) plus Parathyroid hormone (1–34) every 3 days (60 μg/kg), respectively, treatment until death at 12 weeks. Micro-CT, histology, biomechanical testing, bone metabolism index and Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis were used to observe the therapeutic effect and explore the possible mechanism. Results Results shown that VPA decreased new bone formation around the surface of titanium rods and push-out force other than group OVX. Histology, Micro-CT and biochemical analysis results showed combined application of systemic VPA showed harmful effects than OVX group on bone formation in osteopenia rats, with the worse effects on CTX-1, P1NP and microarchitecture as well as biomechanical parameters by down-regulated gene expression of Runx2, OCN, Smad1, BMP-2 and OPG, while up-regulated RANKL. However, after PTH treatment, the above indicators were significantly improved. Conclusions The present study suggests that systemic use of VPA may bring harm to the stability of titanium implants in osteoporosis, PTH can reverse the negative effect of VPA on the osseointegration of titanium rods in ovariectomized rats. Translational potential of this article According to our research, when patients with epilepsy have osteoporotic fractures, after joint replacement or internal fixation, continue to use sodium valproate for anti-epileptic therapy, the possibility of postoperative loosening increases, again on the basis of It can be reversed with the anti-osteoporosis drug parathyroid hormone (1-34).
Collapse
|
11
|
Tao ZS, Zhou WS, Xu HG, Yang M. Aspirin modified strontium-doped β-tricalcium phosphate can accelerate the healing of femoral metaphyseal defects in ovariectomized rats. Biomed Pharmacother 2020; 132:110911. [PMID: 33125972 DOI: 10.1016/j.biopha.2020.110911] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/14/2020] [Accepted: 10/17/2020] [Indexed: 12/16/2022] Open
Abstract
The purpose was to observe whether local administration Strontium (Sr) and Aspirin (Asp) can enhance the efficacy of β-Tricalcium phosphate(β-TCP) in the treatment of osteoporotic bone defect. The MC3T3-E1 cells were co-cultured with β-TCP, Sr/β-TCP, Asp-Sr/β-TCP scaffold and induced to osteogenesis, and the cell viability, mineralization ability were observed by MTT, Alizarin Red staining(ARS) and Western blotting(WB). Then this scaffolds were implanted into the femoral epiphysis bone defect model of ovariectomized(OVX) rats for 8 weeks. X-ray, Micro-CT, histology and Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis were used to observe the therapeutic effect and explore the possible mechanism. MTT, ARS results show that the cell mineralization and viability of Asp-Sr/β-TCP group is significantly higher than Control group, β-TCP group and Sr/β-TCP group. Protein expression show that the osteogenic protein expression such as ALP、OP、RUNX-2、OC and COL-1 of Asp-Sr/β-TCP group is significantly higher than Control group, β-TCP group and Sr/β-TCP group. X-ray images, Micro-CT and Histological analysis evaluation show that, group Asp-Sr/β-TCP presented the strongest effect on bone regeneration and bone mineralization, when compared with β-TCP group and Sr/β-TCP group. RT-qPCR analysis show that Asp-Sr/β-TCP, β-TCP group and Sr/β-TCP group showed increased BMP2, Smad1, OPG than the OVX group(p < 0.05), while Asp-Sr/β-TCP exhibited decreased TNF-α、IFN-γ and RANKL than the OVX group(p < 0.05). Our current study demonstrated that Asp-Sr/ β-TCP is a scheme for rapid repair of femoral condylar defects, and these effects may be achieved by inhibiting local inflammation and through BMP-2/Smad1 and OPG/RANKL signaling pathway.
Collapse
Affiliation(s)
- Zhou-Shan Tao
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe shan Xi Road, Wuhu, 241001 Anhui, People's Republic of China
| | - Wan-Shu Zhou
- Department of Geriatrics, the Second Affiliated Hospital of Wannan Medical College, No.123, Kangfu Road, Wuhu, 241000 Anhui, People's Republic of China.
| | - Hong-Guang Xu
- Department of Spinal orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe shan Xi Road, Wuhu, 241001 Anhui, People's Republic of China
| | - Min Yang
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe shan Xi Road, Wuhu, 241001 Anhui, People's Republic of China
| |
Collapse
|
12
|
Tao ZS, Zhou WS, Xu HG, Yang M. Simvastatin can enhance the osseointegration of titanium rods in ovariectomized rats maintenance treatment with valproic acid. Biomed Pharmacother 2020; 132:110745. [PMID: 33068938 DOI: 10.1016/j.biopha.2020.110745] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 12/18/2022] Open
Abstract
The present work was aimed to evaluate the effect of valproic acid(VPA), simvastatin (SIM)+VPA on Ti(titanium) rods osseointegration in ovariectomized(OVX) rats and further investigation of the possible mechanism. The MC3T3-E1 cells were co-cultured with VPA, SIM + VPA and induced to osteogenesis, and the cell viability, mineralization ability were observed by MTT and ALP staining, Alizarin Red staining and Western blotting. Twelve weeks after bilateral ovariectomy, all animals were randomly divided into three groups: group OVX and VPA, SIM + VPA, and all the rats received Ti implants and animals belong to group VPA, SIM + VPA received valproic acid(300 mg/kg/day), valproic acid(300 mg/kg/day) plus SIM (25 mg/kg/day), respectively, treatment until death at 12 weeks. Micro-CT, histology, biomechanical testing, bone metabolism index and Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis were used to observe the therapeutic effect and explore the possible mechanism. Results shown that VPA decreased new bone formation around the surface of titanium rods and push-out force other than group OVX. Histology, Micro-CT and biochemical analysis results showed combined application of systemic VPA showed harmful effects than OVX group on bone formation in osteopenic rats, with the worse effects on CTX-1, P1NP and microarchitecture as well as biomechanical parameters by down-regulated gene expression of Runx2, OCN, Smad1, BMP-2 and OPG, while up-regulated RANKL. However, after SIM treatment, the above indicators were significantly improved. The present study suggests that systemic use of VPA may bring harm to the stability of titanium implants in osteoporosis, SIM can reverse the negative effect of VPA on the osseointegration of titanium rods in ovariectomized rats.
Collapse
Affiliation(s)
- Zhou-Shan Tao
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu 241001, Anhui, People's Republic of China
| | - Wan-Shu Zhou
- Department of Geriatrics, the Second Affiliated Hospital of Wannan Medical College, No.123, Kangfu Road, Wuhu 241000, Anhui, People's Republic of China
| | - Hong-Guang Xu
- Department of Spinal Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu 241001, Anhui, People's Republic of China
| | - Min Yang
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu 241001, Anhui, People's Republic of China.
| |
Collapse
|
13
|
Tao Z, Zhou W, Wu X, Lu H, Ma N, Li Y, Zhang R, Yang M, Xu HG. Local administration of aspirin improves osseointegration of hydroxyapatite-coated titanium implants in ovariectomized rats through activation of the Notch signaling pathway. J Biomater Appl 2019; 34:1009-1018. [PMID: 31757183 DOI: 10.1177/0885328219889630] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Zhoushan Tao
- Department of Trauma orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Anhui, People's Republic of China
| | - Wanshu Zhou
- Department of Geriatrics, The Second Affiliated Hospital of Wannan Medical College, Anhui, People's Republic of China
| | - Xingjing Wu
- Department of Trauma orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Anhui, People's Republic of China
| | - Hanli Lu
- Department of Trauma orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Anhui, People's Republic of China
| | - Nengfeng Ma
- Department of Trauma orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Anhui, People's Republic of China
| | - Yang Li
- Department of Trauma orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Anhui, People's Republic of China
| | - Ruotian Zhang
- Department of Trauma orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Anhui, People's Republic of China
| | - Min Yang
- Department of Trauma orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Anhui, People's Republic of China
| | - Hong-Guang Xu
- Department of Spine Surgery, Spine Research Center of Wannan Medical College, Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Yijishan hospital of Wannan Medical College, Anhui, People's Republic of China
| |
Collapse
|