1
|
Hu Y, Lan T, Li J, Li L, Song J. Glycyrrhetinic acid-modified redox-sensitive polymeric mixed micelles for tumor-specific intracellular delivery of cantharidin. RSC Adv 2024; 14:28753-28767. [PMID: 39257662 PMCID: PMC11386168 DOI: 10.1039/d4ra03171g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/31/2024] [Indexed: 09/12/2024] Open
Abstract
Cantharidin (CTD) has been widely used to treat hepatocellular carcinoma (HCC) in clinical practice. However, the current CTD preparations may induce hepatic and renal damage due to their non-specific distribution. Therefore, redox-sensitive polymer Pluronic F127-disulfide bond-poly(d,l-lactide) (F127-SS-PDLA) and active targeting polymer F127-glycyrrhetinic acid (F127-GA) were synthesized to prepare mixed micelles (GA/F127-SS-PDLA/CTD) for effective delivery of CTD. Fourier transform infrared (FTIR) spectroscopy and 1H nuclear magnetic resonance (1H-NMR) spectroscopy were used to verify the successful synthesis of F127-SS-PDLA and F127-GA. During the preparation, this study was the first to screen the density of GA by cellular uptake assay. The results indicated that mixed micelles with 10% and 15% F127-GA (weight fraction) exhibited superior cellular uptake in comparison to micelles with 5% and 20% F127-GA. GA/F127-SS-PDLA/CTD micelles prepared by thin film hydration method demonstrated excellent drug loading capacity for CTD (16.12 ± 0.11%). The particle size and zeta potential of GA/F127-SS-PDLA/CTD micelles were 85.17 ± 1.24 nm and -11.71 ± 0.86 mV, respectively. Hemolysis and stability assay showed that the mixed micelles had good blood compatibility and could remain stable for 30 days at 4 °C. The redox-sensitivity of GA/F127-SS-PDLA/CTD micelles in vitro was verified under reducing conditions through dynamic light scattering (DLS) and an in vitro drug release experiment, which showed obvious particle size variation and rapid drug release ability. In cellular experiments, GA/F127-SS-PDLA/CTD micelles could induce superior cytotoxicity, apoptosis and intracellular reactive oxygen species (ROS) levels compared with free CTD, non-sensitive F127-PDLA/CTD micelles and redox-sensitive F127-SS-PDLA/CTD micelles. The cellular uptake ability of nile red-labeled GA/F127-SS-PDLA micelles, which was evaluated via fluorescent microscope and flow cytometry, indicated that the modification of GA significantly increased micelle uptake in HepG-2 cells. Consequently, GA/F127-SS-PDLA/CTD micelles could be considered as a satisfactory drug administration strategy in the treatment of HCC.
Collapse
Affiliation(s)
- Yu Hu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine (TCM) 250355 Jinan Shandong China
| | - Tian Lan
- Innovative Institute of Chinese Medicine, Shandong University of TCM 250355 Jinan Shandong China
| | - Ji Li
- Affiliated Hospital of Shandong University of TCM 250011 Jinan Shandong China
| | - Lingjun Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine (TCM) 250355 Jinan Shandong China
| | - Jizheng Song
- School of Pharmacy, Shandong University of Traditional Chinese Medicine (TCM) 250355 Jinan Shandong China
| |
Collapse
|
2
|
Lee WH, Kim W. Self-assembled hyaluronic acid nanoparticles for the topical treatment of inflammatory skin diseases: Beyond drug carriers. J Control Release 2024; 366:114-127. [PMID: 38145664 DOI: 10.1016/j.jconrel.2023.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/10/2023] [Accepted: 12/17/2023] [Indexed: 12/27/2023]
Abstract
Inflammatory skin diseases represent a significant health concern, affecting approximately 20-25% of the global population. These conditions not only reduce an individual's quality of life but also impose a huge burden on both humanity and society. However, addressing these challenges is hindered by their chronic nature, insufficient therapeutic effectiveness, and the propensity for recurrence and adverse side effects. Hyaluronic acid (HA) has emerged as a potential solution to these barriers, owing to its excellent attributes such as biocompatibility, non-toxicity, and targeted drug delivery. However, its practical application has been limited because endogenous hyaluronidase (HYAL) rapidly degrades HA in inflamed skin thus reducing its ability to penetrate deep into the skin. Interestingly, recent research has expanded the role of self-assembled HA-nanoparticles (HA-NPs) beyond drug carriers; they are resistant to HYAL, thereby enabling deep skin penetration, and possess inherent anti-inflammatory properties. Moreover, these abilities can be fine-tuned depending on the conditions during particle synthesis. Additionally, their role as a drug delivery system holds potential for use as a multi-target drug or hybrid drug. In conclusion, this review aims to specifically introduce and highlight the emerging potential of HA-NPs as a topical treatment for inflammatory skin conditions.
Collapse
Affiliation(s)
- Wang Hee Lee
- Department of Molecular Science & Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Wook Kim
- Department of Molecular Science & Technology, Ajou University, Suwon 16499, Republic of Korea.
| |
Collapse
|
3
|
Curcio M, Vittorio O, Bell JL, Iemma F, Nicoletta FP, Cirillo G. Hyaluronic Acid within Self-Assembling Nanoparticles: Endless Possibilities for Targeted Cancer Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12162851. [PMID: 36014715 PMCID: PMC9413373 DOI: 10.3390/nano12162851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/03/2022] [Accepted: 08/16/2022] [Indexed: 05/27/2023]
Abstract
Self-assembling nanoparticles (SANPs) based on hyaluronic acid (HA) represent unique tools in cancer therapy because they combine the HA targeting activity towards cancer cells with the advantageous features of the self-assembling nanosystems, i.e., chemical versatility and ease of preparation and scalability. This review describes the key outcomes arising from the combination of HA and SANPs, focusing on nanomaterials where HA and/or HA-derivatives are inserted within the self-assembling nanostructure. We elucidate the different HA derivatization strategies proposed for this scope, as well as the preparation methods used for the fabrication of the delivery device. After showing the biological results in the employed in vivo and in vitro models, we discussed the pros and cons of each nanosystem, opening a discussion on which approach represents the most promising strategy for further investigation and effective therapeutic protocol development.
Collapse
Affiliation(s)
- Manuela Curcio
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende, Italy
| | - Orazio Vittorio
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sidney, NSW 2052, Australia
- School of Women’s and Children’s Health, University of New South Wales, Kensington, NSW 2052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for NanoMedicine, University of New South Wales, Kensington, NSW 2052, Australia
| | - Jessica Lilian Bell
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sidney, NSW 2052, Australia
- School of Women’s and Children’s Health, University of New South Wales, Kensington, NSW 2052, Australia
| | - Francesca Iemma
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende, Italy
| | - Fiore Pasquale Nicoletta
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende, Italy
| | - Giuseppe Cirillo
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
4
|
Ashrafizadeh M, Mirzaei S, Gholami MH, Hashemi F, Zabolian A, Raei M, Hushmandi K, Zarrabi A, Voelcker NH, Aref AR, Hamblin MR, Varma RS, Samarghandian S, Arostegi IJ, Alzola M, Kumar AP, Thakur VK, Nabavi N, Makvandi P, Tay FR, Orive G. Hyaluronic acid-based nanoplatforms for Doxorubicin: A review of stimuli-responsive carriers, co-delivery and resistance suppression. Carbohydr Polym 2021; 272:118491. [PMID: 34420747 DOI: 10.1016/j.carbpol.2021.118491] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 12/11/2022]
Abstract
An important motivation for the use of nanomaterials and nanoarchitectures in cancer therapy emanates from the widespread emergence of drug resistance. Although doxorubicin (DOX) induces cell cycle arrest and DNA damage by suppressing topoisomerase activity, resistance to DOX has severely restricted its anti-cancer potential. Hyaluronic acid (HA) has been extensively utilized for synthesizing nanoparticles as it interacts with CD44 expressed on the surface of cancer cells. Cancer cells can take up HA-modified nanoparticles through receptor-mediated endocytosis. Various types of nanostructures such as carbon nanomaterials, lipid nanoparticles and polymeric nanocarriers have been modified with HA to enhance the delivery of DOX to cancer cells. Hyaluronic acid-based advanced materials provide a platform for the co-delivery of genes and drugs along with DOX to enhance the efficacy of anti-cancer therapy and overcome chemoresistance. In the present review, the potential methods and application of HA-modified nanostructures for DOX delivery in anti-cancer therapy are discussed.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956, Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehdi Raei
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Nicolas H Voelcker
- Monash Institute of Pharmaceutical Sciences, Parkville, Victoria 3052, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria, 3168, Australia; Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, Victoria 3168, Australia
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Department of Translational Sciences, Xsphera Biosciences Inc., Boston, MA, USA
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa; Radiobiology Research Center, Iran University of Medical Science, Tehran, Iran
| | - Rajender S Varma
- Regional Center of Advanced Technologies and Materials, Palacky University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - I J Arostegi
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - M Alzola
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Alan Prem Kumar
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, Edinburgh EH9 3JG, UK; Department of Mechanical Engineering, School of Engineering, Shiv Nadar University, Uttar Pradesh 201314, India
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Center for Materials Interfaces, viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy.
| | - Franklin R Tay
- The Graduate School, Augusta University, Augusta, GA, USA.
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore.
| |
Collapse
|
5
|
Ma Y, Yu S, Ni S, Zhang B, Kung ACF, Gao J, Lu A, Zhang G. Targeting Strategies for Enhancing Paclitaxel Specificity in Chemotherapy. Front Cell Dev Biol 2021; 9:626910. [PMID: 33855017 PMCID: PMC8039396 DOI: 10.3389/fcell.2021.626910] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 02/25/2021] [Indexed: 11/15/2022] Open
Abstract
Paclitaxel (PTX) has been used for cancer treatment for decades and has become one of the most successful chemotherapeutics in the clinic and financially. However, serious problems with its use still exist, owing to its poor solubility and non-selective toxicity. With respect to these issues, recent advances have addressed the water solubility and tumor specificity related to PTX application. Many measures have been proposed to remedy these limitations by enhancing tumor recognition via ligand-receptor-mediated targeting as well as other associated strategies. In this review, we investigated various kinds of ligands that have emerged as PTX tumor-targeting tools. In particular, this article highlights small molecule-, protein-, and aptamer-functionalized conjugates and nanoparticles (NPs), providing a promising approach for PTX-based individualized treatment prospects.
Collapse
Affiliation(s)
- Yuan Ma
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China.,Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong
| | - Sifan Yu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong
| | - Shuaijian Ni
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China.,Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong
| | - Baoxian Zhang
- Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong.,Increasepharm (Hong Kong) Limited, Hong Kong Science Park, Shatin, Hong Kong
| | - Angela Chun Fai Kung
- Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong.,Increasepharm (Hong Kong) Limited, Hong Kong Science Park, Shatin, Hong Kong
| | - Jin Gao
- Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong.,Increasepharm (Hengqin) Institute Co. Limited, Zhuhai, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China.,Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China.,Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong
| |
Collapse
|
6
|
Shchegravina ES, Sachkova AA, Usova SD, Nyuchev AV, Gracheva YA, Fedorov AY. Carbohydrate Systems in Targeted Drug Delivery: Expectation and Reality. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021010222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
7
|
Atanase LI. Micellar Drug Delivery Systems Based on Natural Biopolymers. Polymers (Basel) 2021; 13:477. [PMID: 33540922 PMCID: PMC7867356 DOI: 10.3390/polym13030477] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/30/2022] Open
Abstract
The broad diversity of structures and the presence of numerous functional groups available for chemical modifications represent an enormous advantage for the development of safe, non-toxic, and cost-effective micellar drug delivery systems (DDS) based on natural biopolymers, such as polysaccharides, proteins, and peptides. Different drug-loading methods are used for the preparation of these micellar systems, but it appeared that dialysis is generally recommended, as it avoids the formation of large micellar aggregates. Moreover, the preparation method has an important influence on micellar size, morphology, and drug loading efficiency. The small size allows the passive accumulation of these micellar systems via the permeability and retention effect. Natural biopolymer-based micellar DDS are high-value biomaterials characterized by good compatibility, biodegradability, long blood circulation time, non-toxicity, non-immunogenicity, and high drug loading, and they are biodegraded to non-toxic products that are easily assimilated by the human body. Even if some recent studies reported better antitumoral effects for the micellar DDS based on polysaccharides than for commercial formulations, their clinical use is not yet generalized. This review is focused on the studies from the last decade concerning the preparation as well as the colloidal and biological characterization of micellar DDS based on natural biopolymers.
Collapse
Affiliation(s)
- Leonard Ionut Atanase
- Department of Biomaterials, Faculty of Medical Dentistry, "Apollonia" University of Iasi, Pacurari Street, No. 11, 700511 Iasi, Romania
| |
Collapse
|
8
|
Ma Y, Yu S, Ni S, Zhang B, Kung ACF, Gao J, Lu A, Zhang G. Targeting Strategies for Enhancing Paclitaxel Specificity in Chemotherapy. Front Cell Dev Biol 2021. [PMID: 33855017 DOI: 10.3389/fcell.2021.626910/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023] Open
Abstract
Paclitaxel (PTX) has been used for cancer treatment for decades and has become one of the most successful chemotherapeutics in the clinic and financially. However, serious problems with its use still exist, owing to its poor solubility and non-selective toxicity. With respect to these issues, recent advances have addressed the water solubility and tumor specificity related to PTX application. Many measures have been proposed to remedy these limitations by enhancing tumor recognition via ligand-receptor-mediated targeting as well as other associated strategies. In this review, we investigated various kinds of ligands that have emerged as PTX tumor-targeting tools. In particular, this article highlights small molecule-, protein-, and aptamer-functionalized conjugates and nanoparticles (NPs), providing a promising approach for PTX-based individualized treatment prospects.
Collapse
Affiliation(s)
- Yuan Ma
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China
- Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong
| | - Sifan Yu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
- Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong
| | - Shuaijian Ni
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China
- Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong
| | - Baoxian Zhang
- Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong
- Increasepharm (Hong Kong) Limited, Hong Kong Science Park, Shatin, Hong Kong
| | - Angela Chun Fai Kung
- Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong
- Increasepharm (Hong Kong) Limited, Hong Kong Science Park, Shatin, Hong Kong
| | - Jin Gao
- Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong
- Increasepharm (Hengqin) Institute Co. Limited, Zhuhai, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China
- Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China
- Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong
| |
Collapse
|
9
|
Rao N, Rho JG, Um W, EK PK, Nguyen VQ, Oh BH, Kim W, Park JH. Hyaluronic Acid Nanoparticles as Nanomedicine for Treatment of Inflammatory Diseases. Pharmaceutics 2020; 12:E931. [PMID: 33003609 PMCID: PMC7600604 DOI: 10.3390/pharmaceutics12100931] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023] Open
Abstract
Owing to their unique biological functions, hyaluronic acid (HA) and its derivatives have been explored extensively for biomedical applications such as tissue engineering, drug delivery, and molecular imaging. In particular, self-assembled HA nanoparticles (HA-NPs) have been used widely as target-specific and long-acting nanocarriers for the delivery of a wide range of therapeutic or diagnostic agents. Recently, it has been demonstrated that empty HA-NPs without bearing any therapeutic agent can be used therapeutically for the treatment of inflammatory diseases via modulating inflammatory responses. In this review, we aim to provide an overview of the significant achievements in this field and highlight the potential of HA-NPs for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- N.Vijayakameswara Rao
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Korea; (N.V.R.); (W.U.); (P.K.E.); (V.Q.N.); (B.H.O.)
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10617, Taiwan
| | - Jun Gi Rho
- Department of Molecular Science & Technology, Ajou University, Suwon 16499, Korea;
| | - Wooram Um
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Korea; (N.V.R.); (W.U.); (P.K.E.); (V.Q.N.); (B.H.O.)
| | - Pramod Kumar EK
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Korea; (N.V.R.); (W.U.); (P.K.E.); (V.Q.N.); (B.H.O.)
| | - Van Quy Nguyen
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Korea; (N.V.R.); (W.U.); (P.K.E.); (V.Q.N.); (B.H.O.)
| | - Byeong Hoon Oh
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Korea; (N.V.R.); (W.U.); (P.K.E.); (V.Q.N.); (B.H.O.)
| | - Wook Kim
- Department of Molecular Science & Technology, Ajou University, Suwon 16499, Korea;
| | - Jae Hyung Park
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Korea; (N.V.R.); (W.U.); (P.K.E.); (V.Q.N.); (B.H.O.)
- Department Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
10
|
Li S, Zhao W, Liang N, Xu Y, Kawashima Y, Sun S. Multifunctional micelles self-assembled from hyaluronic acid conjugate for enhancing anti-tumor effect of paclitaxel. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104608] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|