1
|
Cheng J, Bai J, Guo J, Yu X, Fan Z, Guo M, Cheng B. Yarn-Based Degradable Janus PPDO Fabric for Multifunctional Applications. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39360334 DOI: 10.1021/acsami.4c15493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
The growing high standard of people's wear has put forward requirements for fabrics, and multifunctional fabrics have been developed precisely in response to the requirements of the times. However, the incineration of waste fabrics produces a large amount of pollutants, resulting in a massive waste of resources and environmental pollution. Herein, the degradable nanofiber yarns (NYs) with self-cleaning properties were fabricated by in situ growth of SiO2 nanoparticles on the surface of the electrospun poly(p-dioxanone) (PPDO) NYs using the Stöber method. Then, the PPDO NYs were blended with carbon fibers and the PPDO/SiO2 NYs with themselves to form the Janus PPDO fabrics, respectively. The Janus PPDO fabric offered asymmetric wettability and dual personal thermal management properties. The PPDO/C side of the Janus PPDO fabric provided 65.8 °C at 1.5 V or 58.5 °C under one sunlight intensity for radiative heating. The PPDO/SiO2 side exhibited high solar reflectivity (81.8%) and mid-infrared (MIR) emissivity (99.1%), which reduced the skin temperature by 4.6 °C, resulting in radiative cooling. Moreover, the Janus PPDO fabrics display an excellent electromagnetic interference (EMI) shielding performance (53.3 dB). Therefore, yarn-based degradable Janus fabric has a promising future in multifunctional wearable products.
Collapse
Affiliation(s)
- Jinxue Cheng
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Jiulin Bai
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Junyu Guo
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Xiaoliang Yu
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Zhi Fan
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Minjie Guo
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Bowen Cheng
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| |
Collapse
|
2
|
He J, Wang Z, Zhou YX, Ni H, Sun X, Xue J, Chen S, Wang S, Niu M. The application of inferior vena cava filters in orthopaedics and current research advances. Front Bioeng Biotechnol 2022; 10:1045220. [PMID: 36479430 PMCID: PMC9719953 DOI: 10.3389/fbioe.2022.1045220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2023] Open
Abstract
Deep vein thrombosis is a common clinical peripheral vascular disease that occurs frequently in orthopaedic patients and may lead to pulmonary embolism (PE) if the thrombus is dislodged. pulmonary embolism can be prevented by placing an inferior vena cava filter (IVCF) to intercept the dislodged thrombus. Thus, IVCFs play an important role in orthopaedics. However, the occurrence of complications after inferior vena cava filter placement, particularly recurrent thromboembolism, makes it necessary to carefully assess the risk-benefit of filter placement. There is no accepted statement as to whether IVCF should be placed in orthopaedic patients. Based on the problems currently displayed in the use of IVCFs, an ideal IVCF is proposed that does not affect the vessel wall and haemodynamics and intercepts thrombi well. The biodegradable filters that currently exist come close to the description of an ideal filter that can reduce the occurrence of various complications. Currently available biodegradable IVCFs consist of various organic polymeric materials. Biodegradable metals have shown good performance in making biodegradable IVCFs. However, among the available experimental studies on degradable filters, there are no experimental studies on filters made of degradable metals. This article reviews the use of IVCFs in orthopaedics, the current status of filters and the progress of research into biodegradable vena cava filters and suggests possible future developments based on the published literature by an electronic search of PubMed and Medline databases for articles related to IVCFs searchable by October 2022 and a manual search for citations to relevant studies.
Collapse
Affiliation(s)
| | | | | | - Hongbo Ni
- The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - XiaoHanu Sun
- The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jian Xue
- The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shanshan Chen
- Institute of Metal Research, Chinese Academy of Sciences (CAS), Shenyang, Liaoning, China
| | - Shuai Wang
- The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Meng Niu
- The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|