1
|
Neves MA, Ni TT, Mackeigan DT, Shoara AA, Lei X, Slavkovic S, Yu SY, Stratton TW, Gallant RC, Zhang D, Xu XR, Fernandes C, Zhu G, Hu X, Chazot N, Donaldson LW, Johnson PE, Connelly K, Rand M, Wang Y, Ni H. Salvianolic acid B inhibits thrombosis and directly blocks the thrombin catalytic site. Res Pract Thromb Haemost 2024; 8:102443. [PMID: 38993621 PMCID: PMC11238050 DOI: 10.1016/j.rpth.2024.102443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/09/2024] [Indexed: 07/13/2024] Open
Abstract
Background Salvianolic acid B (SAB) is a major component of Salvia miltiorrhiza root (Danshen), widely used in East/Southeast Asia for centuries to treat cardiovascular diseases. Danshen depside salt, 85% of which is made up of SAB, is approved in China to treat chronic angina. Although clinical observations suggest that Danshen extracts inhibited arterial and venous thrombosis, the exact mechanism has not been adequately elucidated. Objective To delineate the antithrombotic mechanisms of SAB. Methods We applied platelet aggregation and coagulation assays, perfusion chambers, and intravital microscopy models. The inhibition kinetics and binding affinity of SAB to thrombin are measured by thrombin enzymatic assays, intrinsic fluorescence spectrophotometry, and isothermal titration calorimetry. We used molecular in silico docking models to predict the interactions of SAB with thrombin. Results SAB dose-dependently inhibited platelet activation and aggregation induced by thrombin. SAB also reduced platelet aggregation induced by adenosine diphosphate and collagen. SAB attenuated blood coagulation by modifying fibrin network structures and significantly decreased thrombus formation in mouse cremaster arterioles and perfusion chambers. The direct SAB-thrombin interaction was confirmed by enzymatic assays, intrinsic fluorescence spectrophotometry, and isothermal titration calorimetry. Interestingly, SAB shares key structural similarities with the trisubstituted benzimidazole class of thrombin inhibitors, such as dabigatran. Molecular docking models predicted the binding of SAB to the thrombin active site. Conclusion Our data established SAB as the first herb-derived direct thrombin catalytic site inhibitor, suppressing thrombosis through both thrombin-dependent and thrombin-independent pathways. Purified SAB may be a cost-effective agent for treating arterial and deep vein thrombosis.
Collapse
Affiliation(s)
- Miguel A.D. Neves
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Ontario, Canada
- Toronto Platelet Immunobiology Group, University of Toronto, Toronto, Ontario, Canada
- Canadian Blood Services Centre for Innovation, Toronto, Ontario, Canada
| | - Tiffany T. Ni
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Ontario, Canada
- Toronto Platelet Immunobiology Group, University of Toronto, Toronto, Ontario, Canada
| | - Daniel T. Mackeigan
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Ontario, Canada
- Toronto Platelet Immunobiology Group, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Aron A. Shoara
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Ontario, Canada
- Toronto Platelet Immunobiology Group, University of Toronto, Toronto, Ontario, Canada
- Canadian Blood Services Centre for Innovation, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario, Canada
| | - Xi Lei
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Ontario, Canada
- Toronto Platelet Immunobiology Group, University of Toronto, Toronto, Ontario, Canada
| | - Sladjana Slavkovic
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Ontario, Canada
- Toronto Platelet Immunobiology Group, University of Toronto, Toronto, Ontario, Canada
- Canadian Blood Services Centre for Innovation, Toronto, Ontario, Canada
| | - Si-Yang Yu
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Ontario, Canada
- Toronto Platelet Immunobiology Group, University of Toronto, Toronto, Ontario, Canada
| | - Tyler W. Stratton
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Ontario, Canada
- Toronto Platelet Immunobiology Group, University of Toronto, Toronto, Ontario, Canada
| | - Reid C. Gallant
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Ontario, Canada
- Toronto Platelet Immunobiology Group, University of Toronto, Toronto, Ontario, Canada
| | - Dan Zhang
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Ontario, Canada
- Toronto Platelet Immunobiology Group, University of Toronto, Toronto, Ontario, Canada
| | - Xiaohong Ruby Xu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Ontario, Canada
- Toronto Platelet Immunobiology Group, University of Toronto, Toronto, Ontario, Canada
- Canadian Blood Services Centre for Innovation, Toronto, Ontario, Canada
| | - Cheryl Fernandes
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Ontario, Canada
- Toronto Platelet Immunobiology Group, University of Toronto, Toronto, Ontario, Canada
| | - Guangheng Zhu
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Ontario, Canada
- Toronto Platelet Immunobiology Group, University of Toronto, Toronto, Ontario, Canada
- Canadian Blood Services Centre for Innovation, Toronto, Ontario, Canada
| | - Xudong Hu
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Ontario, Canada
- Toronto Platelet Immunobiology Group, University of Toronto, Toronto, Ontario, Canada
| | - Noa Chazot
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Ontario, Canada
- Toronto Platelet Immunobiology Group, University of Toronto, Toronto, Ontario, Canada
| | - Logan W. Donaldson
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario, Canada
| | - Philip E. Johnson
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario, Canada
| | - Kim Connelly
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Division of Cardiology, St. Michael’s Hospital, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Margaret Rand
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Toronto Platelet Immunobiology Group, University of Toronto, Toronto, Ontario, Canada
- Division of Hematology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Yiming Wang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Ontario, Canada
- Toronto Platelet Immunobiology Group, University of Toronto, Toronto, Ontario, Canada
- Canadian Blood Services Centre for Innovation, Toronto, Ontario, Canada
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Genetics and Genome Biology Program, Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Heyu Ni
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Ontario, Canada
- Toronto Platelet Immunobiology Group, University of Toronto, Toronto, Ontario, Canada
- Canadian Blood Services Centre for Innovation, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Cui Y, Hong S, Jiang W, Li X, Zhou X, He X, Liu J, Lin K, Mao L. Engineering mesoporous bioactive glasses for emerging stimuli-responsive drug delivery and theranostic applications. Bioact Mater 2024; 34:436-462. [PMID: 38282967 PMCID: PMC10821497 DOI: 10.1016/j.bioactmat.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/17/2023] [Accepted: 01/02/2024] [Indexed: 01/30/2024] Open
Abstract
Mesoporous bioactive glasses (MBGs), which belong to the category of modern porous nanomaterials, have garnered significant attention due to their impressive biological activities, appealing physicochemical properties, and desirable morphological features. They hold immense potential for utilization in diverse fields, including adsorption, separation, catalysis, bioengineering, and medicine. Despite possessing interior porous structures, excellent morphological characteristics, and superior biocompatibility, primitive MBGs face challenges related to weak encapsulation efficiency, drug loading, and mechanical strength when applied in biomedical fields. It is important to note that the advantageous attributes of MBGs can be effectively preserved by incorporating supramolecular assemblies, miscellaneous metal species, and their conjugates into the material surfaces or intrinsic mesoporous networks. The innovative advancements in these modified colloidal inorganic nanocarriers inspire researchers to explore novel applications, such as stimuli-responsive drug delivery, with exceptional in-vivo performances. In view of the above, we outline the fabrication process of calcium-silicon-phosphorus based MBGs, followed by discussions on their significant progress in various engineered strategies involving surface functionalization, nanostructures, and network modification. Furthermore, we emphasize the recent advancements in the textural and physicochemical properties of MBGs, along with their theranostic potentials in multiple cancerous and non-cancerous diseases. Lastly, we recapitulate compelling viewpoints, with specific considerations given from bench to bedside.
Collapse
Affiliation(s)
| | | | | | - Xiaojing Li
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Xingyu Zhou
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Xiaoya He
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Jiaqiang Liu
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Kaili Lin
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Lixia Mao
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| |
Collapse
|
3
|
Liu Y, Zhang Y, Yao W, Chen P, Cao Y, Shan M, Yu S, Zhang L, Bao B, Cheng FF. Recent Advances in Topical Hemostatic Materials. ACS APPLIED BIO MATERIALS 2024; 7:1362-1380. [PMID: 38373393 DOI: 10.1021/acsabm.3c01144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Untimely or improper treatment of traumatic bleeding may cause secondary injuries and even death. The traditional hemostatic modes can no longer meet requirements of coping with complicated bleeding emergencies. With scientific and technological advancements, a variety of topical hemostatic materials have been investigated involving inorganic, biological, polysaccharide, and carbon-based hemostatic materials. These materials have their respective merits and defects. In this work, the application and mechanism of the major hemostatic materials, especially some hemostatic nanomaterials with excellent adhesion, good biocompatibility, low toxicity, and high adsorption capacity, are summarized. In the future, it is the prospect to develop multifunctional hemostatic materials with hemostasis and antibacterial and anti-inflammatory properties for promoting wound healing.
Collapse
Affiliation(s)
- Yang Liu
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province China
| | - Yi Zhang
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province China
| | - Weifeng Yao
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province China
| | - Peidong Chen
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province China
| | - Yudan Cao
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province China
| | - Mingqiu Shan
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province China
| | - Sheng Yu
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province China
| | - Li Zhang
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province China
| | - Beihua Bao
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province China
| | - Fang-Fang Cheng
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province China
| |
Collapse
|
4
|
Ren Z, Wang Y, Wu H, Cong H, Yu B, Shen Y. Preparation and application of hemostatic microspheres containing biological macromolecules and others. Int J Biol Macromol 2024; 257:128299. [PMID: 38008144 DOI: 10.1016/j.ijbiomac.2023.128299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/18/2023] [Accepted: 11/18/2023] [Indexed: 11/28/2023]
Abstract
Bleeding from uncontrollable wounds can be fatal, and the body's clotting mechanisms are unable to control bleeding in a timely and effective manner in emergencies such as battlefields and traffic accidents. For irregular and inaccessible wounds, hemostatic materials are needed to intervene to stop bleeding. Hemostatic microspheres are promising for hemostasis, as their unique structural features can promote coagulation. There is a wide choice of materials for the preparation of microspheres, and the modification of natural macromolecular materials such as chitosan to enhance the hemostatic properties and make up for the deficiencies of synthetic macromolecular materials makes the hemostatic microspheres multifunctional and expands the application fields of hemostatic microspheres. Here, we focus on the hemostatic mechanism of different materials and the preparation methods of microspheres, and introduce the modification methods, related properties and applications (in cancer therapy) for the structural characteristics of hemostatic microspheres. Finally, we discuss the future trends of hemostatic microspheres and research opportunities for developing the next generation of hemostatic microsphere materials.
Collapse
Affiliation(s)
- Zekai Ren
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Yumei Wang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Han Wu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
5
|
Nagrath M, Rahimnejad Yazdi A, Marx D, Ni T, Gallant RC, Ni H, Towler MR. In vitro analysis of tantalum-containing mesoporous bioactive glass fibres for haemostasis. J Med Eng Technol 2024; 48:12-24. [PMID: 38857023 DOI: 10.1080/03091902.2024.2356618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/12/2024] [Indexed: 06/11/2024]
Abstract
Haemorrhage is the leading cause of battlefield deaths and second most common cause for civilian mortality worldwide. Biomaterials-based haemostatic agents are used to aid in bleeding stoppage; mesoporous bioactive glasses (MBGs) are candidates for haemostasis. Previously made Tantalum-containing MBG (Ta-MBG) powders' compositions were fabricated as electrospun fibres for haemostatic applications in the present study. The fibres were fabricated to address the challenges associated with the powder form: difficult to compress without gauze, getting washed away in profuse bleeding, generating dust in the surgical environment, and forming thick callus-difficult to remove for surgeons and painful for patients. Ta-MBGs were based on (80-x)SiO2-15CaO-5P2O5-xTa2O5 mol% compositions with x = 0 (0Ta), 0.5 (0.5Ta), 1 (1Ta), and 5 (5Ta) mol%. The present study details the fibres' in vitro analyses, elucidating their cytotoxic effects, and haemostatic capabilities and relating these observations to fibre chemistry and previously fabricated powders of the same glasses. As expected, when Ta addition is increased at the expense of silica, a new FTIR peak (non-bridging oxygen-silicon, Si-NBO) develops and Si-O-Si peaks become wider. Compared to 0Ta and 1Ta fibres, 0.5Ta show Si-O peaks with reduced intensity. The fibres had a weaker intensity of Si-NBO peaks and release fewer ions than powders. A reduced ion profile provides fibres with a stable matrix for clot formation. The ion release profile for 1Ta and 5Ta fibres was significantly lower than 0Ta and 0.5Ta fibres. Ta-MBGs were not found to be cytotoxic to primary rat fibroblasts using a methyl thiazolyl tetrazolium (MTT) assay. Furthermore, a modified activated partial thromboplastin time assay analysing the fibrin absorbance showed that the absorption increases from physiological clotting < 0Ta < 0.5Ta < 5Ta < commercial haemostat, Surgical SNoWTM, Ethicon, USA < 1Ta. Higher absorption signifies a stronger clot. It is concluded that Ta-MBG fibres can provide stable matrix for clot formation and 1Ta can potentially enhance clotting best among other Ta-MBGs.
Collapse
Affiliation(s)
- Malvika Nagrath
- Biomedical Engineering, Faculty of Engineering and Architectural Science (FEAS), Ryerson University, Toronto, Ontario, Canada
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | | | - Daniella Marx
- Biomedical Engineering, Faculty of Engineering and Architectural Science (FEAS), Ryerson University, Toronto, Ontario, Canada
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Tiffany Ni
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Reid C Gallant
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Heyu Ni
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Canadian Blood Services Centre for Innovation, Toronto, Ontario, Canada
| | - Mark R Towler
- Doshi Professor of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, MO, USA
| |
Collapse
|
6
|
Jiao Y, Zhang X, Yang H, Ma H, Zou J. Mesoporous tantalum oxide nanomaterials induced cardiovascular endothelial cell apoptosis via mitochondrial-endoplasmic reticulum stress apoptotic pathway. Drug Deliv 2023; 30:108-120. [PMID: 36533874 PMCID: PMC9788694 DOI: 10.1080/10717544.2022.2147251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Along with its wide range of potential applications, human exposure to mesoporous tantalum oxide nanomaterials (PEG@mTa2O5) has substantially risen. Accumulative toxic investigations have shown the PEG@mTa2O5 intake and cardiovascular diseases (CVD). Endothelial cell death is crucial in the onset and development of atherosclerosis. Still, the molecular mechanism connecting PEG@mTa2O5 and endothelium apoptosis remains unclear. Herein, we studied the absorption and toxic action of mesoporous tantalum oxide (mTa2O5) nanomaterials with polyethylene glycol (PEG) utilizing human cardio microvascular endothelial cells (HCMECs). We also showed that PEG@mTa2O5 promoted apoptosis in endothelial cells using flow cytometry and AO-EB staining. In conjunction with the ultrastructure modifications, PEG@mTa2O5 prompted mitochondrial ROS production, cytosolic Ca2+ overload, ΔΨm collapse, and ER stress verified by elevated ER-Tracker staining, upregulated XBP1 and GRP78/BiP splicing. Remarkably, the systemic toxicity and blood compatibility profile of PEG@mTa2O5 can greatly improve successive therapeutic outcomes of NMs while reducing their adverse side effects. Overall, our findings suggested that PEG@mTa2O5-induced endothelium apoptosis was partially mediated by the activation of the endoplasmic reticulum stress-mitochondrial cascade.
Collapse
Affiliation(s)
- Yuanyong Jiao
- Department of Vascular Surgery, The First Affiliated Hospital with Nanjing Medical University (Jiangsu Province Hospital), Nanjing, China
| | - Xiwei Zhang
- Department of Vascular Surgery, The First Affiliated Hospital with Nanjing Medical University (Jiangsu Province Hospital), Nanjing, China
| | - Hongyu Yang
- Department of Vascular Surgery, The First Affiliated Hospital with Nanjing Medical University (Jiangsu Province Hospital), Nanjing, China
| | - Hao Ma
- Department of Vascular Surgery, The First Affiliated Hospital with Nanjing Medical University (Jiangsu Province Hospital), Nanjing, China
| | - Junjie Zou
- Department of Vascular Surgery, The First Affiliated Hospital with Nanjing Medical University (Jiangsu Province Hospital), Nanjing, China,CONTACT Junjie Zou Department of Vascular Surgery, The First Affiliated Hospital with Nanjing Medical University (Jiangsu Province Hospital), Guangzhou Road 300, Gulou District, Nanjing210029, China
| |
Collapse
|
7
|
Zheng K, Bider F, Monavari M, Xu Z, Janko C, Alexiou C, Beltrán AM, Boccaccini AR. Sol-gel derived B 2O 3-CaO borate bioactive glasses with hemostatic, antibacterial and pro-angiogenic activities. Regen Biomater 2023; 11:rbad105. [PMID: 38173772 PMCID: PMC10761205 DOI: 10.1093/rb/rbad105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/31/2023] [Accepted: 11/11/2023] [Indexed: 01/05/2024] Open
Abstract
Sol-gel borate bioactive glasses (BGs) are promising ion-releasing biomaterials for wound healing applications. Here, we report the synthesis of a series of binary B2O3-CaO borate BGs (CaO ranging from 50 to 90 mol%) using a sol-gel-based method. The influence of CaO content in B2O3-CaO borate BG on morphology, structure and ion release behavior was investigated in detail. Reduced dissolution (ion release) and crystallization could be observed in borate BGs when CaO content increased, while the morphology was not significantly altered by increasing CaO content. Our results evidenced that the ion release behavior of borate BGs could be tailored by tuning the B2O3/CaO molar ratio. We also evaluated the in vitro cytotoxicity, hemostatic, antibacterial and angiogenic activities of borate BGs. Cytocompatibility was validated for all borate BGs. However, borate BGs exhibited composition-dependent hemostatic, antibacterial and angiogenic activities. Generally, higher contents of Ca in borate BGs facilitated hemostatic activity, while higher contents of B2O3 were beneficial for pro-angiogenic activity. The synthesized sol-gel-derived borate BGs are promising materials for developing advanced wound healing dressings, given their fast ion release behavior and favorable hemostatic, antibacterial and angiogenic activities.
Collapse
Affiliation(s)
- Kai Zheng
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, College of Stomatology, Nanjing Medical University, Nanjing 210029, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China
| | - Faina Bider
- Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Mahshid Monavari
- Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Zhiyan Xu
- Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Christina Janko
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kroener-Fresenius-Stiftung Professorship,Universitaetsklinikum Erlangen, 91058 Erlangen, Germany
| | - Christoph Alexiou
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kroener-Fresenius-Stiftung Professorship,Universitaetsklinikum Erlangen, 91058 Erlangen, Germany
| | - Ana M Beltrán
- Departamento de Ingeniería y Ciencia de los Materiales y del Transporte, Escuela Politécnica Superior, Universidad de Sevilla, 41011 Sevilla, Spain
| | - Aldo R Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| |
Collapse
|
8
|
Alasvand N, Behnamghader A, Milan P, Mozafari M. Synthesis and characterization of novel copper-doped modified bioactive glasses as advanced blood-contacting biomaterials. MATERIALS TODAY CHEMISTRY 2023; 29:101465. [DOI: 10.1016/j.mtchem.2023.101465] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2025]
|
9
|
Zhang Z, Hou M, Liu T, Li F, Yang K, Ding S, Lin S. Microwave assisted preparation of a hemostatic gauze with mesoporous silica through in-situ synthesis. J Biomater Appl 2023; 37:1102-1111. [PMID: 36113422 DOI: 10.1177/08853282221126574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The medical disinfection cotton gauze is the most frequently used medical consumables for wound care. Here this ordinary commercial gauze was upgraded to a hemostatic gauze, which was loaded with mesoporous silica through in-situ synthesis and further microwave treatment. The original cotton gauze was pretreated with NaOH solutions for surface activation, soaked in double-silica source precursor solution for moderate in-situ synthesis, treated with microwave for quick template removement and dehydration. The final obtained hemostatic gauze (MS-G1) showed superior physical, biocompatible and hemostatic advantages. The newborn mesoporous silica was firmly anchored onto the cotton fiber surface with <20% leaching after 10 min of sonication. The microwave treatment not only shortened the time for template removal but also promotes the formation of mesoporous structure. The clotting blood time (CBT) of MS-G1 were only (62.00 ± 5.56 s), which was 23.14% shorter than that of original medical gauze, and even 3.6% shorter than Combat Gauze (CG). MS-G1 also showed excellent biocompatibility in cytotoxicity tests of L-929 cells, with a 116% proliferation rate at the concentration of 5 mg/mL. Furthermore, the hemostatic performance was explored on a rabbit wound model of hemorrhagic liver injury, and MS-G1 showed both shorter hemostasis time (113.75 s) and less blood loss (1.69 g) than that of CG (180.00 s, 5.13 g). The hemostatic gauze anchored with mesoporous silica was expected to be an excellent prehospital hemostatic dressing for field first aid.
Collapse
Affiliation(s)
- Zhuoran Zhang
- Institute of Medical Support Technology, Academy of Military Science, Tianjin 300161, China.,951 Hospital, Korla 841000, China
| | - Min Hou
- 951 Hospital, Korla 841000, China
| | - Tao Liu
- Institute of Medical Support Technology, Academy of Military Science, Tianjin 300161, China.,66345Tianjin University of Science and Technology, Tianjin 300161, China
| | - Fan Li
- Institute of Medical Support Technology, Academy of Military Science, Tianjin 300161, China
| | - Kun Yang
- Institute of Medical Support Technology, Academy of Military Science, Tianjin 300161, China
| | - Sheng Ding
- Institute of Medical Support Technology, Academy of Military Science, Tianjin 300161, China
| | - Song Lin
- Institute of Medical Support Technology, Academy of Military Science, Tianjin 300161, China
| |
Collapse
|
10
|
Nagrath M, Bince D, Rowsell C, Polintan D, Rezende-Neto J, Towler M. Porcine liver injury model to assess tantalum-containing bioactive glass powders for hemostasis. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 33:53. [PMID: 35670885 PMCID: PMC9174136 DOI: 10.1007/s10856-022-06674-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
This study evaluates compositions of tantalum-containing mesoporous bioactive glass (Ta-MBG) powders using a porcine fatal liver injury model. The powders based on (80-x)SiO2-15CaO-5P2O5-xTa2O5 compositions with x = 0 (0Ta/Ta-free), 1 (1Ta), and 5 (5Ta) mol% were made using a sol-gel process. A class IV hemorrhage condition was simulated on the animals; hemodynamic data and biochemical analysis confirmed the life-threatening condition. Ta-MBGs were able to stop the bleeding within 10 min of their application while the bleeds in the absence of any intervention or in the presence of a commercial agent, AristaTM (Bard Davol Inc., Rhode Island, USA) continued for up to 45 min. Scanning electron microscopy (SEM) imaging of the blood clots showed that the presence of Ta-MBGs did not affect clot morphology. Rather, the connections seen between fibrin fibers of the blood clot and Ta-MBG powders point towards the powders' surfaces embracing fibrin. Histopathological analysis of the liver tissue showed 5Ta as the only composition reducing parenchymal hemorrhage and necrosis extent of the tissue after their application. Additionally, 5Ta was also able to form an adherent clot in worst-case scenario bleeding where no adherent clot was seen before the powder was applied. In vivo results from the present study agree with in vitro results of the previous study that 5Ta was the best Ta-MBG composition for hemostatic purposes. Graphical abstract.
Collapse
Affiliation(s)
- Malvika Nagrath
- Biomedical Engineering, Faculty of Engineering and Architectural Science (FEAS), Ryerson University, Toronto, M5B 2K3, ON, Canada.
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, M5B 1W8, ON, Canada.
| | - Danielle Bince
- Research Vivarium, St. Michael's Hospital, Toronto, M5B 1W8, ON, Canada
| | - Corwyn Rowsell
- Department of Laboratory Medicine, St. Michael's Hospital, Toronto, M5B 1W8, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A1, ON, Canada
| | - Deanna Polintan
- Biomedical Engineering, Faculty of Engineering and Architectural Science (FEAS), Ryerson University, Toronto, M5B 2K3, ON, Canada
| | - Joao Rezende-Neto
- Trauma and Acute Care, General Surgery, St. Michael's Hospital, Toronto, M5B 1W8, ON, Canada
- Department of Surgery, University of Toronto, Toronto, M5S 1A1, ON, Canada
| | - Mark Towler
- Biomedical Engineering, Faculty of Engineering and Architectural Science (FEAS), Ryerson University, Toronto, M5B 2K3, ON, Canada
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, M5B 1W8, ON, Canada
- Department of Mechanical and Industrial Engineering, FEAS, Ryerson University, Toronto, M5B 2K3, ON, Canada
| |
Collapse
|
11
|
Pantulap U, Arango-Ospina M, Boccaccini AR. Bioactive glasses incorporating less-common ions to improve biological and physical properties. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 33:3. [PMID: 34940923 PMCID: PMC8702415 DOI: 10.1007/s10856-021-06626-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/07/2021] [Indexed: 05/29/2023]
Abstract
Bioactive glasses (BGs) have been a focus of research for over five decades for several biomedical applications. Although their use in bone substitution and bone tissue regeneration has gained important attention, recent developments have also seen the expansion of BG applications to the field of soft tissue engineering. Hard and soft tissue repair therapies can benefit from the biological activity of metallic ions released from BGs. These metallic ions are incorporated in the BG network not only for their biological therapeutic effects but also in many cases for influencing the structure and processability of the glass and to impart extra functional properties. The "classical" elements in silicate BG compositions are silicon (Si), phosphorous (P), calcium (Ca), sodium (Na), and potassium (K). In addition, other well-recognized biologically active ions have been incorporated in BGs to provide osteogenic, angiogenic, anti-inflammatory, and antibacterial effects such as zinc (Zn), magnesium (Mg), silver (Ag), strontium (Sr), gallium (Ga), fluorine (F), iron (Fe), cobalt (Co), boron (B), lithium (Li), titanium (Ti), and copper (Cu). More recently, rare earth and other elements considered less common or, some of them, even "exotic" for biomedical applications, have found room as doping elements in BGs to enhance their biological and physical properties. For example, barium (Ba), bismuth (Bi), chlorine (Cl), chromium (Cr), dysprosium (Dy), europium (Eu), gadolinium (Gd), ytterbium (Yb), thulium (Tm), germanium (Ge), gold (Au), holmium (Ho), iodine (I), lanthanum (La), manganese (Mn), molybdenum (Mo), nickel (Ni), niobium (Nb), nitrogen (N), palladium (Pd), rubidium (Rb), samarium (Sm), selenium (Se), tantalum (Ta), tellurium (Te), terbium (Tb), erbium (Er), tin (Sn), tungsten (W), vanadium (V), yttrium (Y) as well as zirconium (Zr) have been included in BGs. These ions have been found to be particularly interesting for enhancing the biological performance of doped BGs in novel compositions for tissue repair (both hard and soft tissue) and for providing, in some cases, extra functionalities to the BG, for example fluorescence, luminescence, radiation shielding, anti-inflammatory, and antibacterial properties. This review summarizes the influence of incorporating such less-common elements in BGs with focus on tissue engineering applications, usually exploiting the bioactivity of the BG in combination with other functional properties imparted by the presence of the added elements.
Collapse
Affiliation(s)
- Usanee Pantulap
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - Marcela Arango-Ospina
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - Aldo R Boccaccini
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, 91058, Erlangen, Germany.
| |
Collapse
|