1
|
Quan S, Yang J, Huang S, Shao J, Liu Y, Yang H. Silk fibroin as a potential candidate for bone tissue engineering applications. Biomater Sci 2025; 13:364-378. [PMID: 39620282 DOI: 10.1039/d4bm00950a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Silk fibroin (SF), a pivotal biomaterial, holds immense promise for diverse applications within the realm of bone tissue engineering. SF is an ideal scaffold material with exceptional biocompatibility, mechanical robustness, biodegradability, and bioactivity. A plethora of investigations have corroborated SF's efficacy in supporting bone tissue repair and regeneration. This comprehensive review delves into the structural attributes, physicochemical characteristics, and extraction methodologies of SF. Moreover, it elucidates the strides taken in harnessing SF across a spectrum of forms, including films, hydrogels, scaffolds, electrospun fibers, and composites for bone tissue engineering applications. Moreover, the application bottleneck of SF as a bone repair material is highlighted, and its development prospects and potential biomedical applications are also presented in this review. We expect that this review can inspire the broad interest of a wide range of readers working in the fields of materials science, tissue engineering, biomaterials, bioengineering, and biomedicine.
Collapse
Affiliation(s)
- Shaohao Quan
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China.
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou 341000, China
- Jiangxi Provincial Key Laboratory of Tissue Engineering, Gannan Medical University, Ganzhou 341000, China
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 510182, China.
| | - Jie Yang
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China.
- Jiangxi Provincial Key Laboratory of Tissue Engineering, Gannan Medical University, Ganzhou 341000, China
| | - Sirui Huang
- Jiangxi Provincial Key Laboratory of Tissue Engineering, Gannan Medical University, Ganzhou 341000, China
| | - Jundong Shao
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 510182, China.
| | - Yang Liu
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou 213000, China.
| | - Hui Yang
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China.
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou 341000, China
- Jiangxi Provincial Key Laboratory of Tissue Engineering, Gannan Medical University, Ganzhou 341000, China
| |
Collapse
|
2
|
Spessot E, Passuello S, Shah LV, Maniglio D, Motta A. Nanocomposite Methacrylated Silk Fibroin-Based Scaffolds for Bone Tissue Engineering. Biomimetics (Basel) 2024; 9:218. [PMID: 38667229 PMCID: PMC11048339 DOI: 10.3390/biomimetics9040218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
The treatment of bone defects is a clinical challenge. Bone tissue engineering is gaining interest as an alternative to current treatments, with the development of 3D porous structures (scaffolds) helpful in promoting bone regeneration by ensuring temporary functional support. In this work, methacrylated silk fibroin (SilMA) sponges were investigated as scaffolds for bone tissue engineering by exploiting the combination of physical (induced by NaCl salt during particulate leaching) and chemical crosslinking (induced by UV-light exposure) techniques. A biomimetic approach was adopted to better simulate the extracellular matrix of the bone by introducing either natural (mussel shell-derived) or synthetic-origin hydroxyapatite nanoparticles into the SilMA sponges. The obtained materials were characterized in terms of pore size, water absorption capability and mechanical properties to understand both the effect of the inclusion of the two different types of nanoparticles and the effect of the photocrosslinking. Moreover, the SilMA sponges were tested for their bioactivity and suitability for bone tissue engineering purposes by using osteosarcoma cells, studying their metabolism by an AlamarBlue assay and their morphology by scanning electron microscopy. Results indicate that photocrosslinking helps in obtaining more regular structures with bimodal pore size distributions and in enhancing the stability of the constructs in water. Moreover, the addition of naturally derived hydroxyapatite was observed to be more effective at activating osteosarcoma cell metabolism than synthetic hydroxyapatite, showing a statistically significant difference in the AlamarBlue measurement on day 7 after seeding. The methacrylated silk fibroin/hydroxyapatite nanocomposite sponges developed in this work were found to be promising tools for targeting bone regeneration with a sustainable approach.
Collapse
Affiliation(s)
- Eugenia Spessot
- Department of Industrial Engineering and BIOtech Research Centre, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (E.S.); (L.V.S.); (A.M.)
- European Institute of Excellence on Tissue Engineering and Regenerative Medicine Unit, Via delle Regole 101, 38123 Trento, Italy
| | - Serena Passuello
- Department of Industrial Engineering and BIOtech Research Centre, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (E.S.); (L.V.S.); (A.M.)
| | - Lekha Vinod Shah
- Department of Industrial Engineering and BIOtech Research Centre, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (E.S.); (L.V.S.); (A.M.)
- European Institute of Excellence on Tissue Engineering and Regenerative Medicine Unit, Via delle Regole 101, 38123 Trento, Italy
| | - Devid Maniglio
- Department of Industrial Engineering and BIOtech Research Centre, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (E.S.); (L.V.S.); (A.M.)
- European Institute of Excellence on Tissue Engineering and Regenerative Medicine Unit, Via delle Regole 101, 38123 Trento, Italy
| | - Antonella Motta
- Department of Industrial Engineering and BIOtech Research Centre, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (E.S.); (L.V.S.); (A.M.)
- European Institute of Excellence on Tissue Engineering and Regenerative Medicine Unit, Via delle Regole 101, 38123 Trento, Italy
| |
Collapse
|
3
|
Bauso LV, La Fauci V, Longo C, Calabrese G. Bone Tissue Engineering and Nanotechnology: A Promising Combination for Bone Regeneration. BIOLOGY 2024; 13:237. [PMID: 38666849 PMCID: PMC11048357 DOI: 10.3390/biology13040237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024]
Abstract
Large bone defects are the leading contributor to disability worldwide, affecting approximately 1.71 billion people. Conventional bone graft treatments show several disadvantages that negatively impact their therapeutic outcomes and limit their clinical practice. Therefore, much effort has been made to devise new and more effective approaches. In this context, bone tissue engineering (BTE), involving the use of biomaterials which are able to mimic the natural architecture of bone, has emerged as a key strategy for the regeneration of large defects. However, although different types of biomaterials for bone regeneration have been developed and investigated, to date, none of them has been able to completely fulfill the requirements of an ideal implantable material. In this context, in recent years, the field of nanotechnology and the application of nanomaterials to regenerative medicine have gained significant attention from researchers. Nanotechnology has revolutionized the BTE field due to the possibility of generating nanoengineered particles that are able to overcome the current limitations in regenerative strategies, including reduced cell proliferation and differentiation, the inadequate mechanical strength of biomaterials, and poor production of extrinsic factors which are necessary for efficient osteogenesis. In this review, we report on the latest in vitro and in vivo studies on the impact of nanotechnology in the field of BTE, focusing on the effects of nanoparticles on the properties of cells and the use of biomaterials for bone regeneration.
Collapse
Affiliation(s)
- Luana Vittoria Bauso
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy; (V.L.F.); (C.L.)
| | | | | | - Giovanna Calabrese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy; (V.L.F.); (C.L.)
| |
Collapse
|
4
|
De Giorgio G, Matera B, Vurro D, Manfredi E, Galstyan V, Tarabella G, Ghezzi B, D'Angelo P. Silk Fibroin Materials: Biomedical Applications and Perspectives. Bioengineering (Basel) 2024; 11:167. [PMID: 38391652 PMCID: PMC10886036 DOI: 10.3390/bioengineering11020167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/13/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
The golden rule in tissue engineering is the creation of a synthetic device that simulates the native tissue, thus leading to the proper restoration of its anatomical and functional integrity, avoiding the limitations related to approaches based on autografts and allografts. The emergence of synthetic biocompatible materials has led to the production of innovative scaffolds that, if combined with cells and/or bioactive molecules, can improve tissue regeneration. In the last decade, silk fibroin (SF) has gained attention as a promising biomaterial in regenerative medicine due to its enhanced bio/cytocompatibility, chemical stability, and mechanical properties. Moreover, the possibility to produce advanced medical tools such as films, fibers, hydrogels, 3D porous scaffolds, non-woven scaffolds, particles or composite materials from a raw aqueous solution emphasizes the versatility of SF. Such devices are capable of meeting the most diverse tissue needs; hence, they represent an innovative clinical solution for the treatment of bone/cartilage, the cardiovascular system, neural, skin, and pancreatic tissue regeneration, as well as for many other biomedical applications. The present narrative review encompasses topics such as (i) the most interesting features of SF-based biomaterials, bare SF's biological nature and structural features, and comprehending the related chemo-physical properties and techniques used to produce the desired formulations of SF; (ii) the different applications of SF-based biomaterials and their related composite structures, discussing their biocompatibility and effectiveness in the medical field. Particularly, applications in regenerative medicine are also analyzed herein to highlight the different therapeutic strategies applied to various body sectors.
Collapse
Affiliation(s)
- Giuseppe De Giorgio
- IMEM-CNR, Institute of Materials for Electronics and Magnetism-National Research Council, Parco Area delle Scienze 37/A, 43124 Parma, Italy
| | - Biagio Matera
- Center of Dental Medicine, Department of Medicine and Surgery, University of Parma, Via Gramsci 14/A, 43126 Parma, Italy
| | - Davide Vurro
- IMEM-CNR, Institute of Materials for Electronics and Magnetism-National Research Council, Parco Area delle Scienze 37/A, 43124 Parma, Italy
| | - Edoardo Manfredi
- Center of Dental Medicine, Department of Medicine and Surgery, University of Parma, Via Gramsci 14/A, 43126 Parma, Italy
| | - Vardan Galstyan
- IMEM-CNR, Institute of Materials for Electronics and Magnetism-National Research Council, Parco Area delle Scienze 37/A, 43124 Parma, Italy
- Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, Via Vivarelli 10, 41125 Modena, Italy
| | - Giuseppe Tarabella
- IMEM-CNR, Institute of Materials for Electronics and Magnetism-National Research Council, Parco Area delle Scienze 37/A, 43124 Parma, Italy
| | - Benedetta Ghezzi
- IMEM-CNR, Institute of Materials for Electronics and Magnetism-National Research Council, Parco Area delle Scienze 37/A, 43124 Parma, Italy
- Center of Dental Medicine, Department of Medicine and Surgery, University of Parma, Via Gramsci 14/A, 43126 Parma, Italy
| | - Pasquale D'Angelo
- IMEM-CNR, Institute of Materials for Electronics and Magnetism-National Research Council, Parco Area delle Scienze 37/A, 43124 Parma, Italy
| |
Collapse
|
5
|
Alarçin E, Yaşayan G, Bal-Öztürk A, Cecen B. Hydrogel Biomaterial in Bone Tissue Engineering. BIOMATERIAL-BASED HYDROGELS 2024:387-427. [DOI: 10.1007/978-981-99-8826-6_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
6
|
Su X, Wei L, Xu Z, Qin L, Yang J, Zou Y, Zhao C, Chen L, Hu N. Evaluation and Application of Silk Fibroin Based Biomaterials to Promote Cartilage Regeneration in Osteoarthritis Therapy. Biomedicines 2023; 11:2244. [PMID: 37626740 PMCID: PMC10452428 DOI: 10.3390/biomedicines11082244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Osteoarthritis (OA) is a common joint disease characterized by cartilage damage and degeneration. Traditional treatments such as NSAIDs and joint replacement surgery only relieve pain and do not achieve complete cartilage regeneration. Silk fibroin (SF) biomaterials are novel materials that have been widely studied and applied to cartilage regeneration. By mimicking the fibrous structure and biological activity of collagen, SF biomaterials can promote the proliferation and differentiation of chondrocytes and contribute to the formation of new cartilage tissue. In addition, SF biomaterials have good biocompatibility and biodegradability and can be gradually absorbed and metabolized by the human body. Studies in recent years have shown that SF biomaterials have great potential in treating OA and show good clinical efficacy. Therefore, SF biomaterials are expected to be an effective treatment option for promoting cartilage regeneration and repair in patients with OA. This article provides an overview of the biological characteristics of SF, its role in bone and cartilage injuries, and its prospects in clinical applications to provide new perspectives and references for the field of bone and cartilage repair.
Collapse
Affiliation(s)
- Xudong Su
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Li Wei
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Zhenghao Xu
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Leilei Qin
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Jianye Yang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Yinshuang Zou
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Chen Zhao
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Li Chen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Ning Hu
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
7
|
Wang L, Lian J, Xia Y, Guo Y, Xu C, Zhang Y, Xu J, Zhang X, Li B, Zhao B. A study on in vitro and in vivo bioactivity of silk fibroin / nano-hydroxyapatite / graphene oxide composite scaffolds with directional channels. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|