1
|
Näf L, Miescher I, Pfuderer L, Schweizer TA, Brunner D, Dürig J, Gröninger O, Rieber J, Meier-Buergisser G, Spanaus K, Calcagni M, Bosshard PP, Achermann Y, Stark WJ, Buschmann J. Pro-angiogenic and antibacterial copper containing nanoparticles in PLGA/amorphous calcium phosphate bone nanocomposites. Heliyon 2024; 10:e27267. [PMID: 38486752 PMCID: PMC10937708 DOI: 10.1016/j.heliyon.2024.e27267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/17/2024] Open
Abstract
Large bone defects after trauma demand for adequate bone substitutes. Bone void fillers should be antibacterial and pro-angiogenic. One viable option is the use of composite materials like the combination of PLGA and amorphous calcium phosphate (aCaP). Copper stimulates angiogenesis and has antibacterial qualities. Either copper oxide (CuO) nanoparticles (NPs) were therefore added to PLGA/aCaP/CuO in different concentrations (1, 5 and 10 w/w %) or copper-doped tricalcium phosphate NPs (TCP with 2% of copper) were electrospun into PLGA/CuTCP nanocomposites. Bi-layered nanocomposites of PLGA/aCaP with different copper NPs (CuO or TCP) and a second layer of pristine PLGA were fabricated. Two clinical bacterial isolates (Staphylococcus aureus and Staphylococcus epidermidis) were used to assess antibacterial properties of the copper-containing materials. For angiogenesis, the chorioallantoic membrane (CAM) assay of the chicken embryo was performed. The higher the CuO content, the higher were the antibacterial properties, with 10 % CuO reducing bacterial adhesion most effectively. Vessel and cell densities were highest in the 5 % CuO containing scaffolds, while tissue integration was more pronounced at lower CuO content. The PLGA/aCaP/CuO (1 % CuO) behaved similar like PLGA/CuTCP in all angiogenic and antibacterial readouts, based on the same copper fraction. We conclude that CuO NPs or CuTCP NPs are useful components to increase angiogenic properties of nanocomposites and at the same time exhibiting antibacterial characteristics.
Collapse
Affiliation(s)
- Lukas Näf
- Department of Plastic Surgery and Hand Surgery, University Hospital of Zürich, Rämistrasse 100, 8091, Zürich, Switzerland
| | - Iris Miescher
- Department of Plastic Surgery and Hand Surgery, University Hospital of Zürich, Rämistrasse 100, 8091, Zürich, Switzerland
| | - Lara Pfuderer
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093, Zurich, Switzerland
| | - Tiziano A. Schweizer
- Department of Dermatology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - David Brunner
- Department of Plastic Surgery and Hand Surgery, University Hospital of Zürich, Rämistrasse 100, 8091, Zürich, Switzerland
| | - Johannes Dürig
- Department of Plastic Surgery and Hand Surgery, University Hospital of Zürich, Rämistrasse 100, 8091, Zürich, Switzerland
| | - Olivier Gröninger
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093, Zurich, Switzerland
| | - Julia Rieber
- Department of Plastic Surgery and Hand Surgery, University Hospital of Zürich, Rämistrasse 100, 8091, Zürich, Switzerland
| | - Gabriella Meier-Buergisser
- Department of Plastic Surgery and Hand Surgery, University Hospital of Zürich, Rämistrasse 100, 8091, Zürich, Switzerland
| | - Katharina Spanaus
- Clinical Chemistry, University Hospital Zurich, 8001, Zurich, Switzerland
| | - Maurizio Calcagni
- Department of Plastic Surgery and Hand Surgery, University Hospital of Zürich, Rämistrasse 100, 8091, Zürich, Switzerland
| | - Philipp P. Bosshard
- Department of Dermatology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Yvonne Achermann
- Department of Dermatology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Wendelin J. Stark
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093, Zurich, Switzerland
| | - Johanna Buschmann
- Department of Plastic Surgery and Hand Surgery, University Hospital of Zürich, Rämistrasse 100, 8091, Zürich, Switzerland
| |
Collapse
|
2
|
Dürig J, Calcagni M, Buschmann J. Transition metals in angiogenesis - A narrative review. Mater Today Bio 2023; 22:100757. [PMID: 37593220 PMCID: PMC10430620 DOI: 10.1016/j.mtbio.2023.100757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/14/2023] [Accepted: 07/31/2023] [Indexed: 08/19/2023] Open
Abstract
The aim of this paper is to offer a narrative review of the literature regarding the influence of transition metals on angiogenesis, excluding lanthanides and actinides. To our knowledge there are not any reviews up to date offering such a summary, which inclined us to write this paper. Angiogenesis describes the process of blood vessel formation, which is an essential requirement for human growth and development. When the complex interplay between pro- and antiangiogenic mediators falls out of balance, angiogenesis can quickly become harmful. As it is so fundamental, both its inhibition and enhancement take part in various diseases, making it a target for therapeutic treatments. Current methods come with limitations, therefore, novel agents are constantly being researched, with metal agents offering promising results. Various transition metals have already been investigated in-depth, with studies indicating both pro- and antiangiogenic properties, respectively. The transition metals are being applied in various formulations, such as nanoparticles, complexes, or scaffold materials. Albeit the increasing attention this field is receiving, there remain many unanswered questions, mostly regarding the molecular mechanisms behind the observed effects. Notably, approximately half of all the transition metals have not yet been investigated regarding potential angiogenic effects. Considering the promising results which have already been established, it should be of great interest to begin investigating the remaining elements whilst also further analyzing the established effects.
Collapse
Affiliation(s)
- Johannes Dürig
- University of Zürich, Faculty of Medicine, Pestalozzistrasse 3, 8032, Zurich, Switzerland
- University Hospital of Zürich, Department of Plastic Surgery and Hand Surgery, Rämistrasse 100, 8091, Zürich, Switzerland
| | - Maurizio Calcagni
- University Hospital of Zürich, Department of Plastic Surgery and Hand Surgery, Rämistrasse 100, 8091, Zürich, Switzerland
| | - Johanna Buschmann
- University Hospital of Zürich, Department of Plastic Surgery and Hand Surgery, Rämistrasse 100, 8091, Zürich, Switzerland
| |
Collapse
|