1
|
Wang Z, Pang S, Liu X, Dong Z, Tian Y, Ashrafizadeh M, Rabiee N, Ertas YN, Mao Y. Chitosan- and hyaluronic acid-based nanoarchitectures in phototherapy: Combination cancer chemotherapy, immunotherapy and gene therapy. Int J Biol Macromol 2024; 273:132579. [PMID: 38795895 DOI: 10.1016/j.ijbiomac.2024.132579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
Cancer phototherapy has been introduced as a new potential modality for tumor suppression. However, the efficacy of phototherapy has been limited due to a lack of targeted delivery of photosensitizers. Therefore, the application of biocompatible and multifunctional nanoparticles in phototherapy is appreciated. Chitosan (CS) as a cationic polymer and hyaluronic acid (HA) as a CD44-targeting agent are two widely utilized polymers in nanoparticle synthesis and functionalization. The current review focuses on the application of HA and CS nanostructures in cancer phototherapy. These nanocarriers can be used in phototherapy to induce hyperthermia and singlet oxygen generation for tumor ablation. CS and HA can be used for the synthesis of nanostructures, or they can functionalize other kinds of nanostructures used for phototherapy, such as gold nanorods. The HA and CS nanostructures can combine chemotherapy or immunotherapy with phototherapy to augment tumor suppression. Moreover, the CS nanostructures can be functionalized with HA for specific cancer phototherapy. The CS and HA nanostructures promote the cellular uptake of genes and photosensitizers to facilitate gene therapy and phototherapy. Such nanostructures specifically stimulate phototherapy at the tumor site, with particle toxic impacts on normal cells. Moreover, CS and HA nanostructures demonstrate high biocompatibility for further clinical applications.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Neurosurgery, Liaocheng Traditional Chinese Medicine Hospital, Liaocheng 252000, Shandong, PR China
| | - Shuo Pang
- Department of Urinary Surgery, Jinan Third People's Hospital, Jinan, Shandong 250101, PR China
| | - Xiaoli Liu
- Department of Dermatology, First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Zi Dong
- Department of Gastroenterology, Lincang People's Hospital, Lincang, China
| | - Yu Tian
- School of Public Health, Benedictine University, Lisle, United States
| | - Milad Ashrafizadeh
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518055, China; International Association for Diagnosis and Treatment of Cancer, Shenzhen, Guangdong 518055, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China.
| | - Navid Rabiee
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai, 600077 India
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri 38039, Türkiye; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Türkiye; UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800, Türkiye.
| | - Ying Mao
- Department of Oncology, Suining Central Hospital, Suining City, Sichuan, China.
| |
Collapse
|
2
|
Temel-Soylu TM, Keçeciler-Emir C, Rababah T, Özel C, Yücel S, Basaran-Elalmis Y, Altan D, Kirgiz Ö, Seçinti İE, Kaya U, Altuğ ME. Green Electrospun Poly(vinyl alcohol)/Gelatin-Based Nanofibrous Membrane by Incorporating 45S5 Bioglass Nanoparticles and Urea for Wound Dressing Applications: Characterization and In Vitro and In Vivo Evaluations. ACS OMEGA 2024; 9:21187-21203. [PMID: 38764625 PMCID: PMC11097359 DOI: 10.1021/acsomega.4c01102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 05/21/2024]
Abstract
This study reports the fabrication and characterization of poly(vinyl alcohol) (PVA) and gelatin (Gel)-based nanofiber membranes cross-linked with citric acid (CA) by a green electrospinning method in which nano 45S5 bioglass (BG) and urea were incorporated. Various combinations of PVA, gelatin, and BG were prepared, and nanofiber membranes with average fiber diameters between 238 and 595 nm were fabricated. Morphological, chemical, and mechanical properties, porosity, swelling, water retention, and water vapor transmission rate of the fabricated membranes were evaluated. PVA:Gel (90:10), 15% CA, and 3% BG were determined as the optimum blend for nanofiber membrane fabrication via electrospinning. The membrane obtained using this blend was further functionalized with 10% w/w polymer urea coating by the electrospray method following the cross-linking. In vitro biocompatibility tests revealed that the fabricated membranes were all biocompatible except for the one that functionalized with urea. In vivo macroscopic and histopathological analysis results of PVA/Gel/BG and PVA/Gel/BG/Urea treated wounds indicated increased collagenization and vascularization and had an anti-inflammatory effect. Furthermore, careful examination of the in vivo macroscopic results of the PVA/Gel/BG/Urea membrane indicated its potential to decrease uneven scar formation. In conclusion, developed PVA/Gel/BG and PVA/Gel/BG/Urea electrospun membranes with multifunctional and biomimetic features may have the potential to be used as beneficial wound dressings.
Collapse
Affiliation(s)
- Tülay Merve Temel-Soylu
- Faculty
of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, 34220 İstanbul, Türkiye
| | - Ceren Keçeciler-Emir
- Faculty
of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, 34220 İstanbul, Türkiye
- Faculty
of Rafet Kayis Engineering, Genetic and Bioengineering Department, Alanya Alaaddin Keykubat University, 07425 Antalya, Türkiye
| | - Taha Rababah
- Nutrition
and Food Technology Department, Jordan University
of Science and Technology, Irbid 3030, Jordan
| | - Cem Özel
- Faculty
of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, 34220 İstanbul, Türkiye
| | - Sevil Yücel
- Faculty
of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, 34220 İstanbul, Türkiye
| | - Yeliz Basaran-Elalmis
- Faculty
of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, 34220 İstanbul, Türkiye
| | - Dilan Altan
- Faculty
of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, 34220 İstanbul, Türkiye
| | - Ömer Kirgiz
- Faculty
of Veterinary, Department of Clinical Sciences, Hatay Mustafa Kemal University, 31060 Hatay, Türkiye
| | - İlke Evrim Seçinti
- Faculty
of Medicine, Department of Pathology, Hatay
Mustafa Kemal University, 31060 Hatay, Türkiye
| | - Ufuk Kaya
- Faculty
of
Veterinary, Department of Biostatistics, Hatay Mustafa Kemal University, 31060 Hatay, Türkiye
| | - Muhammed Enes Altuğ
- Faculty
of Veterinary, Department of Clinical Sciences, Hatay Mustafa Kemal University, 31060 Hatay, Türkiye
| |
Collapse
|
3
|
Croitoru AM, Ficai D, Ficai A. Novel Photothermal Graphene-Based Hydrogels in Biomedical Applications. Polymers (Basel) 2024; 16:1098. [PMID: 38675017 PMCID: PMC11053615 DOI: 10.3390/polym16081098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/27/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
In the last decade, photothermal therapy (PTT) has attracted tremendous attention because it is non-invasive, shows high efficiency and antibacterial activity, and minimizes drug side effects. Previous studies demonstrated that PTT can effectively inhibit the growth of bacteria and promotes cell proliferation, accelerating wound healing and tissue regeneration. Among different NIR-responsive biomaterials, graphene-based hydrogels with photothermal properties are considered as the best candidates for biomedical applications, due to their excellent properties. This review summarizes the current advances in the development of innovative graphene-based hydrogels for PTT-based biomedical applications. Also, the information about photothermal properties and the potential applications of graphene-based hydrogels in biomedical therapies are provided. These findings provide a great potential for supporting their applications in photothermal biomedicine.
Collapse
Affiliation(s)
- Alexa-Maria Croitoru
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, Spl. Independentei 91-95, 0500957 Bucharest, Romania;
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University for Science and Technology Politehnica Bucharest, Gh. Polizu St. 1-7, 011061 Bucharest, Romania;
- National Centre for Food Safety, National University for Science and Technology Politehnica Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
| | - Denisa Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University for Science and Technology Politehnica Bucharest, Gh. Polizu St. 1-7, 011061 Bucharest, Romania;
- National Centre for Food Safety, National University for Science and Technology Politehnica Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University for Science and Technology Politehnica Bucharest, Gh. Polizu St. 1-7, 011061 Bucharest, Romania;
- National Centre for Micro- and Nanomaterials, National University for Science and Technology Politehnica Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
| |
Collapse
|
4
|
Miretti M, Prucca CG, Baumgartner MT, Martinelli M. Combining ZnPc-liposomes and chitosan on a hybrid matrix for enhanced photodynamic therapy. Int J Biol Macromol 2023; 253:127544. [PMID: 37866570 DOI: 10.1016/j.ijbiomac.2023.127544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
Photodynamic therapy is an alternative treatment for several pathologies, including cancer. This therapy uses a photosensitizer capable of producing reactive oxygen species through irradiation, promoting cellular death. A limitation of photosensitizers is their low solubility in aqueous media. Hence, developing a suitable carrier for photosensitizers for specific applications is a challenge. Cervical cancer is one of the most common cancers in women, and photodynamic therapy could be an attractive alternative therapeutic approach. In this work, we synthesized films composed of chitosan, polyvinylpyrrolidone, and liposomes containing Zn-phthalocyanine. Photophysical characterization of ZnPc incorporated into films was determined by UV-vis and fluorescence. Film properties such as swelling, mechanical properties, and water vapor permeability were performed. Finally, in vitro, photodynamic evaluation of these films was performed on HeLa cells. The results indicate that incorporating Zn-Pc-liposomes into films decreases cell viability by >95 %.
Collapse
Affiliation(s)
- Mariana Miretti
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina; Instituto de investigación y desarrollo en ingenieria de procesos y quimica aplicada (IPQA-CONICET), Córdoba, Argentina
| | - César G Prucca
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina; Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC-CONICET), Córdoba, Argentina
| | - María T Baumgartner
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina; Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC-CONICET), Córdoba, Argentina
| | - Marisa Martinelli
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina; Instituto de investigación y desarrollo en ingenieria de procesos y quimica aplicada (IPQA-CONICET), Córdoba, Argentina.
| |
Collapse
|
5
|
Garcia-Orue I, Santos-Vizcaino E, Uranga J, de la Caba K, Guerrero P, Igartua M, Hernandez RM. Agar/gelatin hydro-film containing EGF and Aloe vera for effective wound healing. J Mater Chem B 2023; 11:6896-6910. [PMID: 37377169 DOI: 10.1039/d2tb02796h] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
In the current study, we produced a hydro-film dressing for the treatment of chronic wounds. The hydro-film structure was composed of gelatin cross-linked with citric acid, agar and Aloe vera extract (AV); additionally epidermal growth factor (EGF) was loaded to promote wound healing. Due to the excellent hydrogel-forming ability of gelatin, the obtained hydro-film was able to swell 884 ± 36% of its dry weight, which could help controlling wound moisture. To improve gelatin mechanical properties, polymer chains were cross-linked with citric acid and agar, reaching an ultimate tensile strength that was in the highest range of human skin. In addition, it showed a slow degradation profile that resulted in a remaining weight of 28 ± 8% at day 28. Regarding, biological activity, the addition of AV and citric acid provided the ability to reduce human macrophage activation, which could help reverse the permanent inflammatory state of chronic wounds. Moreover, loaded EGF, together with the structural AV of the hydro-film, promoted human keratinocyte and fibroblast migration, respectively. Furthermore, the hydro-films presented excellent fibroblast adhesiveness, so they could be useful as provisional matrices for cell migration. Accordingly, these hydro-films showed suitable physicochemical characteristics and biological activity for chronic wound healing applications.
Collapse
Affiliation(s)
- Itxaso Garcia-Orue
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Vitoria-Gasteiz, Spain.
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Institute of Health Carlos III, Madrid, Spain
- Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Edorta Santos-Vizcaino
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Vitoria-Gasteiz, Spain.
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Institute of Health Carlos III, Madrid, Spain
- Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Jone Uranga
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain.
| | - Koro de la Caba
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain.
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940, Leioa, Spain
| | - Pedro Guerrero
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain.
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940, Leioa, Spain
- Proteinmat materials SL, Avenida de Tolosa 72, 20018 Donostia-San Sebastian, Spain
| | - Manoli Igartua
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Vitoria-Gasteiz, Spain.
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Institute of Health Carlos III, Madrid, Spain
- Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Rosa Maria Hernandez
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Vitoria-Gasteiz, Spain.
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Institute of Health Carlos III, Madrid, Spain
- Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| |
Collapse
|
6
|
Farahani H, Neshati J. Application of Nanocube-Functionalized Nitrogen-Doped Melamine Sponge for Dispersive Micro-Solid Phase Extraction (SPE) of Phenolic Compounds From Aquatic Media. ANAL LETT 2023. [DOI: 10.1080/00032719.2023.2191969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
7
|
Canatar İ, Zenger O, Özdaş S, Baydemir Peşint G. Pterostilbene loaded poly(vinyl alcohol)-gelatin cryogels as potential bioactive wound dressing material. J Biomed Mater Res B Appl Biomater 2023; 111:1259-1270. [PMID: 36863724 DOI: 10.1002/jbm.b.35230] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/02/2023] [Accepted: 01/30/2023] [Indexed: 03/04/2023]
Abstract
Cryogels are support materials which are good at mimicking extracellular matrix due to their excellent hydrophilicity, biocompatibility, and macroporous structure, thus they are useful in facilitating cell activities during healing process. In this study, polyvinyl alcohol-gelatin (PVA-Gel) based cryogel membranes loaded with pterostilbene (trans-3,5-dimethoxy-4-hydroxystilbene; PTS) (PVA-Gel/PTS) was synthesized as wound dressing materials. PVA-Gel and PVA-Gel/PTS were synthesized with the polymerization yields of 96% ± 0.23% and 98% ± 0.18%, respectively, and characterized by swelling tests, Brunauer-Emmett-Teller (BET) and scanning electron microscopy (SEM) analysis. The swelling ratios were calculated as 98.6% ± 4.93% and 102% ± 5.1%, macroporosities were determined as 85% ± 2.13% and 88% ± 2.2%, for PVA-Gel and PVA-Gel/PTS, respectively. It was determined that PVA-Gel and PVA-Gel/PTS have 17 m2 /g ± 0.76 m2 /g and 20 m2 /g ± 0.92 m2 /g surface areas, respectively. SEM studies were demonstrated that they have ~100 μm pore sizes. According to 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), trypan blue exclusion and live-dead assay results, it was observed that cell proliferation, cell number and cell viability were higher in PVA-Gel/PTS cryogel at 24, 48, and 72 h compared to PVA-Gel. A strong and transparent fluorescent light intensity was observed indicating higher cell population in PVA-Gel/PTS in comparison with PVA-Gel, according to 4',6-diamidino-2-phenylindole (DAPI) staining. SEM, F-Actin, Giemsa staining and inverted-phase microscope image of fibroblasts in PVA-Gel/PTS cryogels revealed that dense fibroblast proliferation and spindle-shaped morphology of cells were preserved. Moreover, DNA agarose gel data demonstrated that PVA-Gel/PTS cryogels had no effect on DNA integrity. Consequently, produced PVA-Gel/PTS cryogel can be used as wound dressing material to promote wound therapies, inducing cell viability and proliferation.
Collapse
Affiliation(s)
- İpek Canatar
- Faculty of Engineering Sciences, Department of Bioengineering, Adana Alpaslan Türkeş Science and Technology University, Adana, Turkey
| | - Okan Zenger
- Faculty of Engineering Sciences, Department of Bioengineering, Adana Alpaslan Türkeş Science and Technology University, Adana, Turkey
| | - Sibel Özdaş
- Faculty of Engineering Sciences, Department of Bioengineering, Adana Alpaslan Türkeş Science and Technology University, Adana, Turkey
| | - Gözde Baydemir Peşint
- Faculty of Engineering Sciences, Department of Bioengineering, Adana Alpaslan Türkeş Science and Technology University, Adana, Turkey
| |
Collapse
|
8
|
Vilkickyte G, Zilius M, Petrikaite V, Raudone L. Proanthocyanidins from Vaccinium vitis-idaea L. Leaves: Perspectives in Wound Healing and Designing for Topical Delivery. PLANTS (BASEL, SWITZERLAND) 2022; 11:2615. [PMID: 36235484 PMCID: PMC9572574 DOI: 10.3390/plants11192615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 09/25/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
The compositions and health-beneficial properties of lingonberry leaves (Vaccinium vitis-idaea L.) are well established; however, their proanthocyanidins are still heavily underutilized. Optimizing their delivery systems is key to enabling their wider applications. The present study investigates the phytochemical and 'wound-healing' properties of proanthocyanidin-rich fraction(s) (PRF) from lingonberry leaves as well as the development of optimal dermal film as a proanthocyanidin delivery system. The obtained PRF was subjected to HPLC-PDA and DMAC analyses to confirm the qualitative and quantitative profiles of different polymerization-degree proanthocyanidins. A 'wound healing' in vitro assay was performed to assess the ability of PRF to modulate the wound environment for better healing. Low concentrations of lingonberry proanthocyanidins were found to accelerate 'wound' closures, while high levels inhibited human fibroblast migration. Fifteen dermal films containing PRF were prepared and evaluated based on their polymer (MC, HEC, PEG 400) compositions, and physical, mechanical, and biopharmaceutical properties using an experimental design. The composition containing 0.30 g of MC, 0.05 g of HEC, and 3.0 g of PEG 400 was selected as a promising formulation for PRF delivery and a potentially effective functional wound dressing material, supporting the need for further investigations.
Collapse
Affiliation(s)
- Gabriele Vilkickyte
- Laboratory of Biopharmaceutical Research, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania
| | - Modestas Zilius
- Laboratory of Pharmaceutical Sciences, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania
- Department of Clinical Pharmacy, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania
| | - Vilma Petrikaite
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania
| | - Lina Raudone
- Laboratory of Biopharmaceutical Research, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania
- Department of Pharmacognosy, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania
| |
Collapse
|
9
|
Bioactive Natural and Synthetic Polymers for Wound Repair. Macromol Res 2022. [DOI: 10.1007/s13233-022-0062-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Labus K, Radosinski L, Kotowski P. Functional Properties of Two-Component Hydrogel Systems Based on Gelatin and Polyvinyl Alcohol-Experimental Studies Supported by Computational Analysis. Int J Mol Sci 2021; 22:9909. [PMID: 34576071 PMCID: PMC8469860 DOI: 10.3390/ijms22189909] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 12/16/2022] Open
Abstract
The presented research is focused on an investigation of the effect of the addition of polyvinyl alcohol (PVA) to a gelatin-based hydrogel on the functional properties of the resulting material. The main purpose was to experimentally determine and compare the properties of hydrogels differing from the content of PVA in the blend. Subsequently, the utility of these matrices for the production of an immobilized invertase preparation with improved operational stability was examined. We also propose a useful computational tool to predict the properties of the final material depending on the proportions of both components in order to design the feature range of the hydrogel blend desired for a strictly specified immobilization system (of enzyme/carrier type). Based on experimental research, it was found that an increase in the PVA content in gelatin hydrogels contributes to obtaining materials with a visibly higher packaging density, degree of swelling, and water absorption capacity. In the case of hydrolytic degradation and compressive strength, the opposite tendency was observed. The functionality studies of gelatin and gelatin/PVA hydrogels for enzyme immobilization indicate the very promising potential of invertase entrapped in a gelatin/PVA hydrogel matrix as a stable biocatalyst for industrial use. The molecular modeling analysis performed in this work provides qualitative information about the tendencies of the macroscopic parameters observed with the increase in the PVA and insight into the chemical nature of these dependencies.
Collapse
Affiliation(s)
- Karolina Labus
- Department of Micro, Nano and Bioprocess Engineering, Faculty of Chemistry, Wrocław University of Science and Technology, Norwida 4/6, 50-373 Wrocław, Poland
| | - Lukasz Radosinski
- Department of Micro, Nano and Bioprocess Engineering, Faculty of Chemistry, Wrocław University of Science and Technology, Norwida 4/6, 50-373 Wrocław, Poland
| | - Piotr Kotowski
- Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-370 Wrocław, Poland;
| |
Collapse
|