1
|
Abstract
Sodium-glucose cotransporter-2 inhibitors (SGLT2 inhibitors) were originally developed as antidiabetic agents, with cardiovascular (CV) outcome trials demonstrating improved CV outcomes in patients with type 2 diabetes mellitus (T2D). Secondary analyses of CV outcome trials and later dedicated kidney outcome trials consistently reported improved kidney-related outcomes independent of T2D status and across a range of kidney function and albuminuria. Importantly, SGLT2 inhibitors are generally safe and well tolerated, with clinical trials and real-world analyses demonstrating a decrease in the risk of acute kidney injury. The kidney protective effects of SGLT2 inhibitors generally extend across different members of the class, possibly on the basis of hemodynamic, metabolic, anti-inflammatory, and antifibrotic mechanisms. In this review, we summarize the effects of SGLT2 inhibitors on kidney outcomes in diverse patient populations.
Collapse
Affiliation(s)
- Atit Dharia
- Division of Nephrology, Department of Medicine, University Health Network, Toronto, Ontario, Canada; , , , .,Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Abid Khan
- Division of Nephrology, Department of Medicine, University Health Network, Toronto, Ontario, Canada; , , , .,Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Vikas S Sridhar
- Division of Nephrology, Department of Medicine, University Health Network, Toronto, Ontario, Canada; , , , .,Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - David Z I Cherney
- Division of Nephrology, Department of Medicine, University Health Network, Toronto, Ontario, Canada; , , , .,Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Tak Mao C, Yung S. Studying the Effects of New Peritoneal Dialysis Solutions on the Peritoneum. Perit Dial Int 2020. [DOI: 10.1177/089686080702702s16] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
♦ Background Compelling data underscore the bioincompatible nature of glucose-based peritoneal dialysis (PD) solutions and their detrimental effects on peritoneal physiology and morphology. New PD solutions have been formulated to tackle common clinical problems such as inadequate ultrafiltration or malnutrition, and to improve biocompatibility—the latter aimed at preserving the structural and functional integrity of the peritoneum and reducing adverse systemic effects on the patient. ♦ Methods This article reviews the factors in PD fluids that alter normal peritoneal anatomy and physiology, and the data that illustrate approaches to investigating the local and systemic biocompatibility of new PD solutions. ♦ Results Chronic exposure of the peritoneal membrane to glucose-based PD solutions results in denudation of the mesothelium, thickened submesothelium, and hyalinization of the vasculature, often resulting in reduced or lost solute and water clearance. Data from in vitro or animal experiments and clinical studies have shown improved bio-compatibility profiles with new PD solutions that are glucose-free (that is, dialysates with amino acids or icodextrin), bicarbonate-buffered, or compartmentalized during heat sterilization to reduce levels of glucose degradation products. Improved biocompatibility is denoted by reduced induction of proinflammatory, profibrotic, or angiogenic growth factors in mesothelial cells and macrophages, or by less perturbation of leukocyte phagocytic function. ♦ Conclusions Data from in vitro and animal experiments show more favorable biocompatibility profiles with new PD fluids than with glucose-based dialysates. Clinical studies are ongoing to assess the impact of the new PD fluids on peritoneal function, morbidity, and mortality.
Collapse
Affiliation(s)
- Chan Tak Mao
- Department of Medicine, University of Hong Kong, Hong Kong SAR, PR China
| | - Susan Yung
- Department of Medicine, University of Hong Kong, Hong Kong SAR, PR China
| |
Collapse
|
3
|
Roriz D, Abreu I, Costa JF, Soares PB, Caseiro-Alves F. An unusual case of extensive peritoneal calcification: A case report. Eur J Radiol Open 2014; 2:7-10. [PMID: 26937431 PMCID: PMC4750637 DOI: 10.1016/j.ejro.2014.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/26/2014] [Accepted: 12/02/2014] [Indexed: 11/30/2022] Open
Abstract
The peritoneum is the largest serous membrane of the body and can be exposed to several injuries that may cause abnormal findings on imaging exams. Linear peritoneal calcification is remarkably rare, usually secondary to long duration peritoneal dialysis. We report an uncommon case of extensive peritoneal calcification in a 39-year-old female without long exposure to peritoneal dialysis solutions, in which peritoneal calcification could be linked to Alport syndrome and previous adverse reaction to intraperitoneal iodinated contrast. Radiologist should be aware of this and related imaging findings, know when to search for them as well as understand their clinical value.
Collapse
Affiliation(s)
- Diogo Roriz
- Medical Imaging Department and Faculty of Medicine, University Hospital of Coimbra, Praceta Mota Pinto/Av. Bissaya Barreto, 3000-075 Coimbra, Portugal
| | | | | | | | | |
Collapse
|
4
|
Koball S, Korten G, Stange J, Schmidt R, Mitzner S. Biocompatibility Assessment of Peritoneal Dialysis Solutions With a New In Vitro Model of Preconditioned Human HL60 Cells. Artif Organs 2009; 33:544-50. [DOI: 10.1111/j.1525-1594.2009.00735.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|