1
|
Gan L, Geng L, Li Q, Zhang L, Huang Y, Lin J, Ou S. Allicin Ameliorated High-glucose Peritoneal Dialysis Solution-induced Peritoneal Fibrosis in Rats via the JAK2/STAT3 Signaling Pathway. Cell Biochem Biophys 2024:10.1007/s12013-024-01593-2. [PMID: 39448419 DOI: 10.1007/s12013-024-01593-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 10/26/2024]
Abstract
Peritoneal fibrosis (PF) is one of the most serious complications of peritoneal dialysis (PD) and is the greatest obstacle to the clinical application of PD. Chinese herbal monomers have been effective in the prevention and treatment of PF. The aim of this study was to observe the effect of allicin on PF in rats induced by high glucose and to investigate its molecular mechanism of action. A rat model of PF was established by using a 4.25% glucose-based standard peritoneal dialysis solution. The degree of peritoneal pathological damage was assessed by Hematoxylin and eosin (H&E) staining. Peritoneal collagen deposition was detected by Masson's trichrome staining. The levels of Interleukin-6 (IL-6), Tumor necrosis factor-α (TNF-α), Interleukin-1β (IL-1β) and monocyte chemoattractant protein-1 (MCP-1) in the serum were measured by Enzyme Linked Immunosorbent Assay (ELISA). The expression levels of TGF-β, α-smooth muscle actin (α-SMA) and collagen I were examined by western blotting and immunohistochemistry. The protein expression levels and mRNA levels of E-cadherin, N-cadherin, vimentin, janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3) in peritoneal tissue were determined by western blotting and qRT-PCR. TGF-β1 stimulated human peritoneal mesothelial cells (HPMCs), and the cells were treated with allicin and the JAK2/STAT3 pathway activator colivelin alone or in combination. A cell counting kit-8 (CCK-8) assay was used to measure cell viability. The role of JAK2/STAT3 in the effects of allicin was confirmed via in vitro mechanistic research by western blotting, wound healing assays and Transwell assays. Allicin relieves the inflammatory response by downregulating the levels of IL-1β, IL-6, MCP-1 and TNF-α. Furthermore, allicin decreased the expression of TGF-β, α-SMA and collagen I. Allicin also alleviated epithelial-to-mesenchymal transition (EMT), as specifically manifested by increased E-cadherin and reduced N-cadherin and vimentin. Further studies revealed that allicin reduced the protein levels of JAK2, STAT3, p-JAK2, and p-STAT3. The results of the cellular experiments verified the above results. The ability of allicin to inhibit fibrosis and the EMT process was significantly attenuated after HPMCs were treated with colivelin. Taken together, these findings suggest that allicin inhibits inflammation and EMT, thereby improving PF, and this protective effect may be achieved by inhibiting the JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Linwang Gan
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China.
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China.
| | - Lei Geng
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China
| | - Qiancheng Li
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Liling Zhang
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China
| | - Yan Huang
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China
| | - Jiaru Lin
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China
| | - Santao Ou
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China
| |
Collapse
|
2
|
Jo CH, Kim S, Ha TK, Kang DH, Kim GH. Effects of sitagliptin on peritoneal membrane: The potential role of mesothelial cell tight junction proteins. Perit Dial Int 2023; 43:448-456. [PMID: 36998201 DOI: 10.1177/08968608231158224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023] Open
Abstract
BACKGROUND The roles of tight junction (TJ) proteins in peritoneal membrane transport and peritoneal dialysis (PD) require further characterisation. Dipeptidyl peptidase-4 is expressed in mesothelial cells, and its activity may affect peritoneal membrane function and morphology. METHODS Human peritoneal mesothelial cells (HPMCs) were isolated and cultured from omentum obtained during abdominal surgery, and paracellular transport functions were evaluated by measuring transmesothelial electrical resistance (TMER) and dextran flux. Sprague-Dawley rats were infused daily with 4.25% peritoneal dialysate with and without sitagliptin administration for 8 weeks. At the end of this period, rat peritoneal mesothelial cells (RPMCs) were isolated to evaluate TJ protein expression. RESULTS In HPMCs, the protein expression of claudin-1, claudin-15, occludin and E-cadherin was decreased by TGF-β treatment but reversed by sitagliptin co-treatment. TMER was decreased by TGF-β treatment but improved by sitagliptin co-treatment. Consistent with this, dextran flux was increased by TGF-β treatment and reversed by sitagliptin co-treatment. In the animal experiment, sitagliptin-treated rats had a lower D2/D0 glucose ratio and a higher D2/P2 creatinine ratio than PD controls during the peritoneal equilibration test. Protein expression of claudin-1, claudin-15 and E-cadherin decreased in RPMCs from PD controls but was not affected in those from sitagliptin-treated rats. Peritoneal fibrosis was induced in PD controls but ameliorated in sitagliptin-treated rats. CONCLUSION The expression of TJ proteins including claudin-1 and claudin-15 was associated with transport function both in HPMCs and in a rat model of PD. Sitagliptin prevents peritoneal fibrosis in PD and can potentially restore peritoneal mesothelial cell TJ proteins.
Collapse
Affiliation(s)
- Chor Ho Jo
- Institute of Biomedical Science, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Sua Kim
- Institute of Biomedical Science, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Tae Kyung Ha
- Department of Surgery, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Duk-Hee Kang
- Department of Internal Medicine, Ewha Womans University School of Medicine, Seoul, Republic of Korea
| | - Gheun-Ho Kim
- Institute of Biomedical Science, Hanyang University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
3
|
van Gelder MK, Vollenbroek JC, Lentferink BH, Hazenbrink DHM, Besseling PJ, Simonis F, Giovanella S, Ligabue G, Bajo Rubio MA, Cappelli G, Joles JA, Verhaar MC, Gerritsen KGF. Safety of electrooxidation for urea removal in a wearable artificial kidney is compromised by formation of glucose degradation products. Artif Organs 2021; 45:1422-1428. [PMID: 34251693 PMCID: PMC8597045 DOI: 10.1111/aor.14040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/08/2021] [Accepted: 07/06/2021] [Indexed: 12/27/2022]
Abstract
A major challenge for the development of a wearable artificial kidney (WAK) is the removal of urea from the spent dialysate, as urea is the waste solute with the highest daily molar production and is difficult to adsorb. Here we present results on glucose degradation products (GDPs) formed during electrooxidation (EO), a technique that applies a current to the dialysate to convert urea into nitrogen, carbon dioxide, and hydrogen gas. Uremic plasma and peritoneal effluent were dialyzed for 8 hours with a WAK with and without EO‐based dialysate regeneration. Samples were taken regularly during treatment. GDPs (glyoxal, methylglyoxal, and 3‐deoxyglucosone) were measured in EO‐ and non‐EO‐treated fluids. Glyoxal and methylglyoxal concentrations increased 26‐ and 11‐fold, respectively, in uremic plasma (at [glucose] 7 mmol/L) and 209‐ and 353‐fold, respectively, in peritoneal effluent (at [glucose] 100 mmol/L) during treatment with EO, whereas no change was observed in GDP concentrations during dialysate regeneration without EO. EO for dialysate regeneration in a WAK is currently not safe due to the generation of GDPs which are not biocompatible.
Collapse
Affiliation(s)
- Maaike K van Gelder
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jeroen C Vollenbroek
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Babette H Lentferink
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Diënty H M Hazenbrink
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Paul J Besseling
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Silvia Giovanella
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Ligabue
- Surgical, Medical and Dental Department of Morphological Sciences, Section of Nephrology, University of Modena and Reggio Emilia, Modena, Italy
| | - Maria A Bajo Rubio
- Nephrology Service, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital and IRSIN, Madrid, Spain
| | - Gianni Cappelli
- Surgical, Medical and Dental Department of Morphological Sciences, Section of Nephrology, University of Modena and Reggio Emilia, Modena, Italy
| | - Jaap A Joles
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Karin G F Gerritsen
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
4
|
Soulage CO, Egziabher FG. Exposition to glucose-based peritoneal dialysis fluids exacerbates adipocyte lipolysis and glycogen storage in rat adipose cells. Perit Dial Int 2020; 41:423-426. [PMID: 32873148 DOI: 10.1177/0896860820953060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Glucose absorption during peritoneal dialysis (PD) is suspected to promote visceral fat accretion and weight gain in PD patients. The current study was designed to test the impact of glucose-based PD fluids on adipose cell lipolysis and glycogen content. Rat adipose cells, isolated from epididymal fat pad, were exposed to a 30 vol./70 vol. mixture of glucose-based dialysis solutions (containing 1.36% and 3.86% glucose, Physioneal 35®; Baxter) or Krebs-Henseleit buffer for 4 h. Adipose cells were further incubated with laboratory-made solutions containing 1.36% and 3.86% glucose or mannitol as an osmotic control. Baseline and noradrenaline-stimulated lipolysis was measured, and glycogen content assayed. The glucose-based commercial PD fluids as well as the laboratory-manufactured high glucose solutions exacerbated lipolysis in baseline and noradrenaline conditions and increased glycogen stores in adipose cells. Mannitol solutions (1.36% and 3.86%) used as an osmotic control did not produce such effects. This study provides the first evidence that glucose-based dialysis solutions increase basal as well as stimulated lipolysis in adipocytes, an effect that is directly attributable to high concentrations of glucose per se.
Collapse
Affiliation(s)
- Christophe O Soulage
- CarMeN, 27102INSERM U1060, INRA U1397, INSA de Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Villeurbanne, France
| | - Fitsum Guebre Egziabher
- CarMeN, 27102INSERM U1060, INRA U1397, INSA de Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Villeurbanne, France.,Department of Nephrology, Dialysis, and Hypertension, Hôpital E. Herriot, 26900Hospices Civils de Lyon, Lyon, France.,Faculté de Médecine Lyon Est, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
5
|
Witowski J, Jörres A. Effects of Peritoneal Dialysis Solutions on the Peritoneal Membrane: Clinical Consequences. Perit Dial Int 2020. [DOI: 10.1177/089686080502503s08] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This review provides an overview of recent studies that show the clinical significance of biocompatibility of peritoneal dialysis fluids.
Collapse
Affiliation(s)
- Janusz Witowski
- Department of Pathophysiology, University Medical School, Poznań, Poland
- Department of Nephrology and Medical Intensive Care, Charité University Hospital, Campus Virchow-Klinikum, Berlin, Germany
| | - Achim Jörres
- Department of Nephrology and Medical Intensive Care, Charité University Hospital, Campus Virchow-Klinikum, Berlin, Germany
| |
Collapse
|
6
|
Hirahara I, Kusano E, Yanagiba S, Miyata Y, Ando Y, Muto S, Asano Y. Peritoneal Injury by Methylglyoxal in Peritoneal Dialysis. Perit Dial Int 2020. [DOI: 10.1177/089686080602600317] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background Peritoneal dialysis (PD) is a common treatment for patients with reduced or absent renal function. Long-term PD leads to peritoneal injury with structural changes and functional decline, such as ultrafiltration loss. At worst, peritoneal injury leads to encapsulating peritoneal sclerosis, a serious complication of PD. Glucose degradation products contained in PD fluids contribute to the bioincompatibility of conventional PD fluids. Methylglyoxal (MGO) is an extremely toxic glucose degradation product. The present study examined the injurious effect of MGO on peritoneum in vivo. Methods Male Sprague–Dawley rats ( n = 6) were administered PD fluids (pH 5.0) containing 0, 0.66, 2, 6.6, or 20 mmol/L MGO every day for 21 days. On day 22, peritoneal function was estimated by the peritoneal equilibration test. Drained dialysate was analyzed for type IV collagen-7S, matrix metalloproteinase (MMP), and vascular endothelial growth factor (VEGF). Histological analysis was also performed. Results In rats receiving PD fluids containing more than 0.66 mmol/L MGO, peritoneal function decreased significantly and levels of type IV collagen-7S and MMP-2 in drained dialysate increased significantly. In the 20-mmol/L MGO-treated rats, loss of body weight, expression of VEGF, thickening of the peritoneum, and formation of abdominal cocoon were induced. MMP-2 and VEGF were produced by infiltrating cells in the peritoneum. Type IV collagen was detected in basement membrane of microvessels. Conclusion MGO induced not only peritoneal injury but also abdominal cocoon formation in vivo. The decline of peritoneal function may result from reconstitution of microvessel basement membrane or neovascularization.
Collapse
Affiliation(s)
- Ichiro Hirahara
- Department of Nephrology, Jichi Medical School, Kawachi-gun, Tochigi, Japan
| | - Eiji Kusano
- Department of Nephrology, Jichi Medical School, Kawachi-gun, Tochigi, Japan
| | - Satoru Yanagiba
- Department of Nephrology, Jichi Medical School, Kawachi-gun, Tochigi, Japan
| | - Yukio Miyata
- Department of Nephrology, Jichi Medical School, Kawachi-gun, Tochigi, Japan
| | - Yasuhiro Ando
- Department of Nephrology, Jichi Medical School, Kawachi-gun, Tochigi, Japan
| | - Shigeaki Muto
- Department of Nephrology, Jichi Medical School, Kawachi-gun, Tochigi, Japan
| | - Yasushi Asano
- Department of Nephrology, Jichi Medical School, Kawachi-gun, Tochigi, Japan
| |
Collapse
|
7
|
Kang SH, Kim SW, Kim KJ, Cho KH, Park JW, Kim CD, Do JY. Effects of tranilast on the epithelial-to-mesenchymal transition in peritoneal mesothelial cells. Kidney Res Clin Pract 2019; 38:472-480. [PMID: 31554027 PMCID: PMC6913598 DOI: 10.23876/j.krcp.19.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/03/2019] [Accepted: 07/09/2019] [Indexed: 12/17/2022] Open
Abstract
Background We investigated the effects of tranilast on epithelial-to-mesenchymal transition (EMT) in an animal model and on the EMT signaling pathway in human peritoneal mesothelial cells (HPMCs). Methods We performed in vitro studies (cytotoxicity, cell morphology, and western blot analyses) on HPMCs from human omenta, along with in vivo studies (peritoneal membrane function and morphometric and immunohistochemical analyses) on Sprague Dawley rats. Thirty-two rats were divided into three groups: control (C) group (peritoneal dialysis [PD] catheter but not infused with dialysate), PD group (4.25% glucose-containing dialysate), and PD + tranilast group (4.25% glucose-containing dialysate along with tranilast). Results In in vitro experiments, transforming growth factor-beta 1 (TGF-β1) increased α-smooth muscle actin and Snail expression and reduced E-cadherin expression in HPMCs. TGF-β1 also reduced cell contact, induced a fibroblastoid morphology, and increased phosphorylation of Akt, Smad2, and Smad3 in HPMCs. Tranilast significantly inhibited TGF-β1-induced EMT and attenuated these morphological changes in HPMCs. In in vivo studies, after 6 weeks of experimental PD, the peritoneal membrane was significantly thicker in the PD group than in the C group. Tranilast protected against PD-induced glucose mass transfer change and histopathological changes in rats. Conclusion Tranilast prevented EMT both in HPMCs triggered with TGF-β1 and in rats with PD-induced peritoneal fibrosis. Thus, tranilast may be considered a therapeutic intervention that enables long-term PD by regulating TGF-β1 signaling pathways.
Collapse
Affiliation(s)
- Seok Hui Kang
- Division of Nephrology, Department of Internal Medicine, Yeungnam University Medical Center, Daegu, Republic of Korea
| | - Sang Woon Kim
- Division of Gastro-Enterology, Department of Surgery, Yeungnam University Hospital, Daegu, Republic of Korea
| | - Keuk Jun Kim
- Department of Biomedical Laboratory Science, Daekyeung University, Gyeongsan, Republic of Korea
| | - Kyu Hyang Cho
- Division of Nephrology, Department of Internal Medicine, Yeungnam University Medical Center, Daegu, Republic of Korea
| | - Jong Won Park
- Division of Nephrology, Department of Internal Medicine, Yeungnam University Medical Center, Daegu, Republic of Korea
| | - Chan-Duck Kim
- Division of Nephrology, Department of Internal Medicine, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jun Young Do
- Division of Nephrology, Department of Internal Medicine, Yeungnam University Medical Center, Daegu, Republic of Korea
| |
Collapse
|
8
|
Ito Y, Kinashi H, Katsuno T, Suzuki Y, Mizuno M. Peritonitis-induced peritoneal injury models for research in peritoneal dialysis review of infectious and non-infectious models. RENAL REPLACEMENT THERAPY 2017. [DOI: 10.1186/s41100-017-0100-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
9
|
Xiang S, Li M, Xie X, Xie Z, Zhou Q, Tian Y, Lin W, Zhang X, Jiang H, Shou Z, Chen J. Rapamycin inhibits epithelial-to-mesenchymal transition of peritoneal mesothelium cells through regulation of Rho GTPases. FEBS J 2016; 283:2309-25. [PMID: 27093550 DOI: 10.1111/febs.13740] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 04/01/2016] [Accepted: 04/18/2016] [Indexed: 12/26/2022]
Abstract
Epithelial-mesenchymal transition (EMT) of peritoneal mesothelial cells (PMCs) is a key process of peritoneal fibrosis. Rapamycin has been previously shown to inhibit EMT of PMCs and prevent peritoneal fibrosis. In this study, we investigated the undefined molecular mechanisms by which rapamycin inhibits EMT of PMCs. To define the protective effect of rapamycin, we initially used a rat PD model which was daily infused with 20 mL of 4.25% high glucose (HG) dialysis solution for 6 weeks to induce fibrosis. The HG rats showed decreased ultrafiltration volume and obvious fibroproliferative response, with markedly increased peritoneal thickness and higher expression of α-smooth muscle actin (α-SMA) and transforming growth factor-β1. Rapamycin significantly ameliorated those pathological changes. Next, we treated rat PMCs with HG to induce EMT and/or rapamycin for indicated time. Rapamycin significantly inhibited HG-induced EMT, which manifests as increased expression of α-SMA, fibronectin, and collagen I, decreased expression of E-cadherin, and increased mobility. HG increased the phosphorylation of PI3K, Akt, and mTOR. Importantly, rapamycin inhibits the RhoA, Rac1, and Cdc42 activated by HG. Moreover, rapamycin repaired the pattern of F-actin distribution induced by HG, reducing the formation of stress fiber, focal adhesion, lamellipodia, and filopodia. Thus, rapamycin shows an obvious protective effect on HG-induced EMT, by inhibiting the activation of Rho GTPases (RhoA, Rac1, and Cdc42).
Collapse
Affiliation(s)
- Shilong Xiang
- Kidney Disease Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Meng Li
- Kidney Disease Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xishao Xie
- Kidney Disease Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhoutao Xie
- Kidney Disease Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qin Zhou
- Kidney Disease Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuanshi Tian
- Kidney Disease Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weiqiang Lin
- Kidney Disease Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Xiaohui Zhang
- Kidney Disease Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hong Jiang
- Kidney Disease Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhangfei Shou
- Kidney Disease Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Nephrology department, Zhejiang University International Hospital, Hangzhou, China
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Wang J, Liu S, Li H, Sun J, Zhang S, Xu X, Liu Y, Wang Y, Miao L. A review of rodent models of peritoneal dialysis and its complications. Int Urol Nephrol 2014; 47:209-15. [PMID: 25425436 DOI: 10.1007/s11255-014-0829-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 08/26/2014] [Indexed: 12/14/2022]
Abstract
This article reviews the available rodent models of peritoneal dialysis (PD) that have been developed over the past 20 years and the complications associated with their use. Although there are several methods used in different studies, the focus of this article is not to review or provide detailed summaries of these methods. Rather, this article reviews the most common methods of establishing a dialysis model in rodents, the assays used to observe function of the peritoneum in dialysis, and how these models are adapted to study peritonitis and peritoneal fibrosis. We compared the advantages and disadvantages of different methods, which should be helpful in studies of PD and may provide valuable data for further clinical studies.
Collapse
Affiliation(s)
- Ji Wang
- Department of Nephrology, Second Hospital of Jilin University, Ziqiang Street 218, Nanguan District, Changchun, China
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kang SH, Kim SO, Cho KH, Park JW, Yoon KW, Do JY. Paricalcitol ameliorates epithelial-to-mesenchymal transition in the peritoneal mesothelium. Nephron Clin Pract 2014; 126:1-7. [PMID: 24458092 DOI: 10.1159/000357156] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 11/01/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The purpose of the present study was to examine the effectiveness of paricalcitol for the prevention of epithelial-to-mesenchymal transition (EMT). MATERIALS AND METHODS Human peritoneal mesothelial cells (HPMCs) were cultured in media containing transforming growth factor β1 (TGF-β1) with or without paricalcitol. Forty-two male Sprague-Dawley rats were divided into three groups. In the control group, the catheter was inserted but no dialysate was infused. The peritoneal dialysis (PD) group was infused with a conventional 4.25% dialysis solution. The paricalcitol group was infused with 4.25% dialysis solution and cotreated with paricalcitol. RESULTS Exposure of HPMCs to TGF-β1 decreased the protein level of the epithelial cell marker and increased the expression levels of the mesenchymal markers. Cotreatment with paricalcitol increased the protein levels of the epithelial cell marker and decreased those of mesenchymal markers compared with their levels in cells treated with TGF-β1 alone. Exposure of HPMCs to TGF-β1 significantly increased the phosphorylation of Smad2 and Smad3. Cotreatment with paricalcitol significantly decreased the phosphorylation of Smad2 and Smad3 compared with that of cells treated with TGF-β1 alone. After 8 weeks of experimental PD in rats, the thickness of the peritoneal membrane in the PD group was significantly increased compared with that of the control group. Cotreatment with paricalcitol decreased peritoneal thickness. CONCLUSION The present study showed that paricalcitol attenuates the TGF-β1-induced EMT in peritoneal mesothelial cells. We suggest that paricalcitol may preserve peritoneal mesothelial cells during PD and could thus be of value for the success of long-term PD.
Collapse
Affiliation(s)
- Seok Hui Kang
- Division of Nephrology, Department of Internal Medicine, Yeungnam University Hospital, Daegu, Korea
| | | | | | | | | | | |
Collapse
|
12
|
Kim YL, Cho JH, Choi JY, Kim CD, Park SH. Systemic and local impact of glucose and glucose degradation products in peritoneal dialysis solution. J Ren Nutr 2013; 23:218-22. [PMID: 23510669 DOI: 10.1053/j.jrn.2013.01.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Revised: 01/18/2013] [Accepted: 01/20/2013] [Indexed: 12/11/2022] Open
Abstract
The main osmotic agent used in the peritoneal dialysis (PD) solution is glucose because of its great osmotic power, simple metabolism, and safety. Once into the systemic circulation, however, glucose can be a cause for metabolic complications including hyperglycemia, obesity, and dyslipidemia. The glucose absorbed from peritoneal cavity leads to insulin resistance and hyperglycemia, which is associated with oxidative stress. Long-term exposure of peritoneal membrane to glucose in PD solution also has local effects such as functional and structural changes leading to peritoneal membrane failure. Moreover, the intraperitoneal glucose absorption induces conditions similar to postprandial hyperglycemia, which is a proven independent risk factor of coronary artery disease in patients with type 2 diabetes. Though speculative, glucose toxicity might explain a higher mortality of PD patients after the first few years compared with those on hemodialysis. Glucose degradation products (GDPs) induce apoptosis of peritoneal mesothelial cells (PMCs), renal tubular epithelial cells, and endothelial cells, and facilitating epithelial mesenchymal transition of PMCs. GDPs provide a stronger reactivity than glucose in the formation of advanced glycation end-products, a known cause for microvascular complications and arteriosclerosis. Unfortunately, clinical studies using a low-GDP PD solution have provided mixed results on the residual renal function, peritonitis, peritoneal membrane function, and mortality; consistent outcome data are not readily available at present.
Collapse
Affiliation(s)
- Yong-Lim Kim
- Department of Internal Medicine, Kyungpook National University Hospital, Clinical Research Center for End Stage Renal Disease, Daegu, Republic of Korea.
| | | | | | | | | |
Collapse
|
13
|
Johnson DW, Brown FG, Clarke M, Boudville N, Elias TJ, Foo MWY, Jones B, Kulkarni H, Langham R, Ranganathan D, Schollum J, Suranyi MG, Tan SH, Voss D. The effects of biocompatible compared with standard peritoneal dialysis solutions on peritonitis microbiology, treatment, and outcomes: the balANZ trial. Perit Dial Int 2013; 32:497-506. [PMID: 22991015 DOI: 10.3747/pdi.2012.00052] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND A multicenter, multi-country randomized controlled trial (the balANZ study) recently reported that peritonitis rates significantly improved with the use of neutral-pH peritoneal dialysis (PD) solutions low in glucose degradation products ("biocompatible") compared with standard solutions. The present paper reports a secondary outcome analysis of the balANZ trial with respect to peritonitis microbiology, treatment, and outcomes. METHODS Adult incident PD patients with residual renal function were randomized to receive either biocompatible or conventional (control) PD solutions for 2 years. RESULTS The safety population analysis for peritonitis included 91 patients in each group. The unadjusted geometric mean peritonitis rates in those groups were 0.30 [95% confidence interval (CI): 0.22 to 0.41] episodes per patient-year for the biocompatible group and 0.49 (95% CI: 0.39 to 0.62) episodes per patient-year for the control group [incidence rate ratio (IRR): 0.61; 95% CI: 0.41 to 0.90; p = 0.01]. When specific causative organisms were examined, the rates of culture-negative, gram-positive, gram-negative, and polymicrobial peritonitis episodes were not significantly different between the biocompatible and control groups, although the biocompatible group did experience a significantly lower rate of non-pseudomonal gram-negative peritonitis (IRR: 0.41; 95% CI: 0.18 to 0.92; p = 0.03). Initial empiric antibiotic regimens were comparable between the groups. Biocompatible fluid use did not significantly reduce the risk of peritonitis-associated hospitalization (adjusted odds ratio: 0.80; 95% CI: 0.48 to 1.34), but did result in a shorter median duration of peritonitis-associated hospitalization (6 days vs 11 days, p = 0.05). Peritonitis severity was more likely to be rated as mild in the biocompatible group (37% vs 10%, p = 0.001). Overall peritonitis-associated technique failures and peritonitis-related deaths were comparable in the two groups. CONCLUSIONS Biocompatible PD fluid use was associated with a broad reduction in gram-positive, gram-negative, and culture-negative peritonitis that reached statistical significance for non-pseudomonal gram-negative organisms. Peritonitis hospitalization duration was shorter, and peritonitis severity was more commonly rated as mild in patients receiving biocompatible PD fluids, although other peritonitis outcomes were comparable between the groups.
Collapse
Affiliation(s)
- David W Johnson
- Department of Nephrology, University of Queensland, Brisbane, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Yokoi H, Kasahara M, Mori K, Kuwabara T, Toda N, Yamada R, Namoto S, Yamamoto T, Seki N, Souma N, Yamaguchi T, Sugawara A, Mukoyama M, Nakao K. Peritoneal fibrosis and high transport are induced in mildly pre-injured peritoneum by 3,4-dideoxyglucosone-3-ene in mice. Perit Dial Int 2012; 33:143-54. [PMID: 23123666 DOI: 10.3747/pdi.2011.00033] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Peritoneal dialysis (PD) solution contains high concentrations of glucose and glucose degradation products (GDPs). One of several GDPs--3,4-dideoxyglucosone-3-ene (3,4-DGE)--was recently identified as the most reactive and toxic GDP in PD fluids. In vitro, 3,4-DGE has been shown to induce mesothelial cell damage; however, its role in peritoneal fibrosis in vivo remains unclear. In the present study, we intraperitoneally administered chlorhexidine gluconate (CG) for mild peritoneal injury, and we then injected 3,4-DGE [38 μmol/L (low concentration) or 145 μmol/L (high concentration)] 5 times weekly for 4 weeks. Significant thickening of the parietal peritoneal membrane was observed only when treatment with low or high concentrations of 3,4-DGE occurred after CG administration, but not when either CG or 3,4-DGE alone was given. The combination of CG and 3,4-DGE also caused upregulation of messenger RNA expression of transforming growth factor β1, connective tissue growth factor, fibronectin, collagen type 1 α1 chain, alpha smooth muscle actin (α-SMA), vascular endothelial growth factor 164, NADPH oxidase 1 and 4, p22phox, p47phox, and gp91phox in peritoneal tissue. Treatment with CG alone was sufficient to cause significant F4/80-positive macrophage infiltration, appearance of α-SMA-positive cells, and vessel formation in the submesothelial layer. Addition of 3,4-DGE markedly enhanced those changes and induced apoptosis, mainly in leukocytes. The concentration of 3,4-DGE in the abdominal cavity declined more rapidly in CG-treated mice than in PBS-treated mice. Peritoneal membrane permeability determined by peritoneal equilibration test showed high transport conditions in peritoneum treated with both CG and 3,4-DGE. These results indicate that, when mild peritoneal damage is already present, 3,4-DGE causes peritoneal thickening and fibrosis, resulting in deterioration of peritoneal membrane function.
Collapse
Affiliation(s)
- Hideki Yokoi
- Department of Medicine and Clinical Science,Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Li C, Ren Y, Jia X, Liang P, Lou W, He L, Li M, Sun S, Wang H. Twist overexpression promoted epithelial-to-mesenchymal transition of human peritoneal mesothelial cells under high glucose. Nephrol Dial Transplant 2012; 27:4119-24. [PMID: 22498918 DOI: 10.1093/ndt/gfs049] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Long-term peritoneal dialysis (PD) results in functional and structural alterations of the peritoneal membrane. Previous studies have suggested that high glucose (HG) could induce transdifferentiation of peritoneal mesothelial cells into myofibroblasts, but the molecular mechanisms of HG-induced epithelial-to-mesenchymal transition (EMT) of human peritoneal mesothelial cells (HPMCs) are unclear. This study was undertaken to elucidate the effects and mechanisms of Twist on HG-induced EMT of HPMCs. METHODS HPMCs were exposed to 5.6 mM glucose [normal glucose (NG)], 50 mM glucose (HG) or 50 mM glucose with Si-Twist or pcDNA3.1-Twist. Western blot and immuocytochemistry were performed to determine Twist, E-cadherin and α-smooth muscle actin (α-SMA) protein expression. MMP2 and MMP9 were detected by zymography. Rats were daily instilled with PD fluid and lipopolysaccharide (LPS) or sodium chloride during 6 weeks. Histological analyses were carried out in parietal peritoneum. Twist was detected by western blotting. RESULTS Twist and α-SMA protein and immuocytochemistry were significantly increased in HG-conditioned media compared to NG media. E-cadherin protein was lower in pcDNA3.1-Twist-transfected HPMCs compared to pcDNA3.1 cells. Twist protein was upregulated 12 h after HG stimulation. MMP9 was increased in pcDNA3.1-Twist-transfected HPMCs compared to pcDNA3.1 cells. Exposure of rat peritoneum to PD fluid and LPS resulted in an increase of extracellular matrix deposition. Twist and α-SMA were stained in the PD fluid group and compared to the control group. Twist protein was significantly increased in the PD group. CONCLUSIONS In conclusion, HG-induced Twist expression might contribute to EMT of HPMCs. Twist may control EMT of HPMCs by regulating MMP9.
Collapse
Affiliation(s)
- Cuixiang Li
- Department of Nephrology, Yangquan Coalmine Group General Hospital, Shanxi, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Epigallocatechin gallate suppresses peritoneal fibrosis in mice. Chem Biol Interact 2011; 195:95-104. [PMID: 22101032 DOI: 10.1016/j.cbi.2011.11.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 11/02/2011] [Accepted: 11/04/2011] [Indexed: 02/03/2023]
Abstract
Long-term peritoneal dialysis (PD) leads to histological changes in the peritoneal membrane. Angiogenesis and inflammation caused by glucose degradation products (GDPs) play crucial roles in peritoneal fibrosis. One such GDP is methylglyoxal (MGO), which enhances the formation of advanced glycation end products (AGEs). AGEs bind to their receptor (RAGE) and activate nuclear factor-κB (NF-κB), which is a key regulator of angiogenesis and inflammation. Recent studies have indicated that (-)-epigallocatechin gallate (EGCG), a tea polyphenol, inhibits angiogenesis and inflammation. Here, we examined whether EGCG suppresses peritoneal fibrosis in mice. Based on preliminary examination, 2mL of 40mM MGO or PD fluid was injected intraperitoneally and EGCG (50mg/kg) or saline was injected subcutaneously for 3weeks. In comparison to PD fluid+saline-treated mice, the peritoneal tissues of MGO+saline-treated mice showed marked thickening of the submesothelial compact zone. In the submesothelial compact zone of the MGO+saline-treated mice, CD31-positive vessels and vascular endothelial growth factor-positive cells were significantly increased, as were inflammation, F4/80-positive macrophages, and monocyte chemotactic protein-1. Moreover, 8-hydroxydeoxyguanosine, a marker of reactive oxygen species, and NF-κB, determined by Southwestern histochemistry, in the submesothelial compact zone were also increased in MGO+saline-treated mice. These changes were attenuated in MGO+EGCG-treated mice. We demonstrated that EGCG treatment suppresses peritoneal fibrosis via inhibition of NF-κB. Furthermore, EGCG inhibits reactive oxygen species production. The results of this study indicate that EGCG is a potentially novel candidate for the treatment of peritoneal fibrosis.
Collapse
|
17
|
Cho JH, Do JY, Oh EJ, Ryu HM, Park SY, Kim SO, Hyun SH, Seo HJ, Kim GH, Choi JY, Kim CD, Park SH, Kim YL. Are ex vivo mesothelial cells representative of the in vivo transition from epithelial-to-mesenchymal cells in peritoneal membrane? Nephrol Dial Transplant 2011; 27:1768-79. [PMID: 22025117 DOI: 10.1093/ndt/gfr604] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND We investigated whether ex vivo mesothelial cells found in peritoneal dialysis (PD) effluents were representative of the in vivo epithelial-to-mesenchymal transition (EMT) in peritoneal membrane. METHODS Thirty-six male Sprague-Dawley rats were equally divided into three groups: Group C (control), no PD; Group D, infused with 4.25% Dianeal and Group P, infused with 4.25% Physioneal. PD infusions (25 mL) were given twice daily for 8 weeks. The in vivo study included morphometric analyses performed on the peritoneal membranes of tissue specimens obtained at the end of the study. The ex vivo study included peritoneal mesothelial cells collected from PD effluent and cultured to confluence. Cells were scored with light microscopy. RESULTS PD for 8 weeks induced significant EMT. The in vivo expression of EMT markers (α-smooth muscle actin:E-cadherin ratio, matrix metalloproteinase-2 and Snail) was higher in Group D than in Group P. However, ex vivo EMT marker expression was similar in cells derived from Groups D and P. A significant correlation was observed among in vivo EMT markers. Moreover, the ex vivo cell score increased with time on PD. However, changes in the ex vivo cell score did not correlated with changes in the in vivo EMT marker expression. Furthermore, we found no correlation between ex vivo and in vivo cells in the expression of EMT markers. CONCLUSIONS In this animal study, ex vivo findings did not reflect the in vivo EMT changes in the peritoneum. It may be necessary to improve the current methodology for ex vivo studies.
Collapse
Affiliation(s)
- Ji-Hyung Cho
- Department of Internal Medicine, CHA Gumi Medical Center, CHA University, Gumi-si, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Park SH, Do JY, Kim YH, Lee HY, Kim BS, Shin SK, Kim HC, Chang YK, Yang JO, Chung HC, Kim CD, Lee WK, Kim JY, Kim YL. Effects of neutral pH and low-glucose degradation product-containing peritoneal dialysis fluid on systemic markers of inflammation and endothelial dysfunction: a randomized controlled 1-year follow-up study. Nephrol Dial Transplant 2011; 27:1191-9. [DOI: 10.1093/ndt/gfr451] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
19
|
Yu MA, Shin KS, Kim JH, Kim YI, Chung SS, Park SH, Kim YL, Kang DH. HGF and BMP-7 ameliorate high glucose-induced epithelial-to-mesenchymal transition of peritoneal mesothelium. J Am Soc Nephrol 2009; 20:567-81. [PMID: 19193779 DOI: 10.1681/asn.2008040424] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Over time, peritoneal dialysis results in functional and structural alterations of the peritoneal membrane, but the underlying mechanisms and whether these changes are reversible are not completely understood. Here, we studied the effects of high levels of glucose, which are found in the dialysate, on human peritoneal mesothelial cells (HPMCs). We found that high concentrations of glucose induced epithelial-to-mesenchymal transition (EMT) of HPMC, suggested by decreased expression of E-cadherin and increased expression of alpha-smooth muscle actin, fibronectin, and type I collagen and by increased cell migration. Normalization of glucose concentration on day 2 reversed the phenotypic transformation, but the changes were irreversible after 7 d of stimulation with high glucose. In addition, exposure of HPMC to high glucose resulted in a decreased expression of the antifibrotic cytokines, hepatocyte growth factor (HGF) and bone morphogenic protein 7 (BMP-7). Exogenous treatment with HGF resulted in a dosage-dependent prevention of high glucose-induced EMT. Both BMP-7 peptide and gene transfection with an adenoviral vector of BMP-7 also protected HPMCs from EMT. Furthermore, adenoviral BMP-7 transfection decreased peritoneal EMT and ameliorated peritoneal thickening in an animal model of peritoneal dialysis. In summary, high concentrations of glucose induce a reversible EMT of HPMCs, associated with decreased production of HGF and BMP-7. Treatment of HPMCs with HGF or BMP-7 blocks high glucose-induced EMT, and BMP-7 ameliorates peritoneal fibrosis in an animal model of peritoneal dialysis.
Collapse
Affiliation(s)
- Min-A Yu
- Division of Nephrology, Ewha University School of Medicine, Yangchun-Ku, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Furkert J, Zeier M, Schwenger V. Effects of Peritoneal Dialysis Solutions Low in GDPs on Peritonitis and Exit-Site Infection Rates. Perit Dial Int 2008. [DOI: 10.1177/089686080802800616] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background Peritoneal dialysis (PD) solutions sterilized at a low pH level contain only minimal amounts of glucose degradation products (GDPs). The latter are known to have an adverse effect on the peritoneal membrane. The present study retrospectively analyzes the effects on the incidences of peritonitis and exit-site infections. Materials and Methods Data concerning the frequency of peritonitis and exit-site infections for 120 patients treated with PD were collected. Before 2000, 67 of these patients received conventional dialysates and from 2000 on, 53 patients were treated with the new dialysis fluids. Furthermore, a correlation between the incidence of infections and the duration of treatment with dialysis was established. Results It was observed that the use of dialysis solutions low in GDPs resulted in significantly lower rates of peritonitis ( p = 0.002) and exit-site infections ( p = 0.02). When using the new treatment, peritonitis occurred, on average, after 48 months of treatment and exit-site infections after 34 months of treatment. Discussion The result supports the hypothesis that the use of the new, biocompatible, PD solutions contributes to considerable reduction in the rates of peritonitis and exit-site infections. As it is not expected that randomized prospective studies will be conducted in the future, further observational studies should be carried out in order to affirm the observed tendencies.
Collapse
Affiliation(s)
- Jürgen Furkert
- Nephrology and Gastroenterology, SLK-Kliniken Heilbronn, Bad Friedrichshall
| | - Martin Zeier
- Department of Nephrology, University Hospital Heidelberg, Heidelberg, Germany
| | - Vedat Schwenger
- Department of Nephrology, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
21
|
Paolo ND, Nicolai GA, Garosi G. The Peritoneum: From Histological Studies to Mesothelial Transplant through Animal Experimentation. Perit Dial Int 2008. [DOI: 10.1177/089686080802805s02] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Nicola Di Paolo
- Nephrology, Dialysis and Transplantation Unit, Azienda
Universitaria Ospedaliera Senese, Siena, Italy
| | - Giulia A. Nicolai
- Nephrology, Dialysis and Transplantation Unit, Azienda
Universitaria Ospedaliera Senese, Siena, Italy
| | - Guido Garosi
- Nephrology, Dialysis and Transplantation Unit, Azienda
Universitaria Ospedaliera Senese, Siena, Italy
| |
Collapse
|
22
|
Kim CD, Kwon HM, Park SH, Oh EJ, Kim MH, Choi SY, Choi MJ, Kim IS, Park MS, Kim YJ, Kim YL. Effects of low glucose degradation products peritoneal dialysis fluid on the peritoneal fibrosis and vascularization in a chronic rat model. Ther Apher Dial 2007; 11:56-64. [PMID: 17309576 DOI: 10.1111/j.1744-9987.2007.00431.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
In the present study, we examined the effects of a new peritoneal dialysis fluid (PDF) with a low level of low glucose degradation products (GDP) on the functional and structural stability of the peritoneal membrane (PM). Male Sprague-Dawley rats were divided into three groups: group C (n = 8), without dialysate infusion; group P (n = 12), infused with low-level GDP solution (4.25% Physioneal, pH 7.0-7.4); and group D (n = 12), infused with conventional solution (4.25% Dianeal, pH 5.2, adjusted to pH 7.0). In groups D and P, animals were infused through a permanent catheter with 25 mL of PDF, twice daily for 8 weeks. Lipopolysaccharide was added into the PDF immediately before infusion on days 8, 9 and 10 in the two dialysis groups. When compared with group P, group D showed a higher glucose mass transfer at weeks 6 and 8, D/P urea at week 8, TGF-beta1 at weeks 4 and 8, and VEGF level at week 8. The submesothelial matrix layer of the parietal peritoneum was significantly thickened in group D and the lectin-stained blood vessels in this layer were well-visualized in group D compared with group P. There were significantly more peritoneal blood vessels in group D than group P. The transforming growth factor-beta induced gene-h3 (betaig-h3) and TGF-beta1 levels in the peritoneal effluent correlated with the submesothelial thickness, which correlated with the dialysate-to-plasma ratio (D/P) of protein and, inversely, with the rate of glucose transport (D/D(0) glucose, where D is glucose concentration in the dialysate and D(0) is glucose concentration in the dialysis solution before it is infused into the peritoneal cavity). The present study showed that low-GDP PDF effectively attenuated the peritoneal vascularization and fibrosis related to conventional solution.
Collapse
Affiliation(s)
- Chan-Duck Kim
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Zareie M, Fabbrini P, Hekking LHP, Keuning ED, Ter Wee PM, Beelen RHJ, van den Born J. Novel role for mast cells in omental tissue remodeling and cell recruitment in experimental peritoneal dialysis. J Am Soc Nephrol 2006; 17:3447-57. [PMID: 17065241 DOI: 10.1681/asn.2005111173] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Because of its dynamic structure, the omentum plays a key role in the immunity of the peritoneal cavity by orchestrating peritoneal cell recruitment. Because mast cells accumulate in the omentum upon experimental peritoneal dialysis (PD) and may produce angiogenic/profibrotic factors, it was hypothesized that mast cells mediate omental tissue remodeling during PD. Daily treatment with conventional PD fluid (PDF) for 5 wk resulted in a strong omental remodeling response, characterized by an approximately 10-fold increase in mast cell density (P < 0.01), an approximately 20-fold increase in vessel density (P < 0.02), an approximately 20-fold increase in the number of milky spots (P < 0.01), and a four-fold increase in submesothelial matrix thickness (P < 0.0003) in wild-type rats. In contrast, all PDF-induced omental changes were significantly reduced in mast cell-deficient Ws/Ws rats or in wild-type rats that were treated orally with a mast cell stabilizer cromoglycate. A time-course experiment showed mast cell accumulation immediately before the formation of blood vessels and milky spots. Functionally, PDF evoked a peritoneal cell influx, which was significantly reduced in Ws/Ws rats (P < 0.04) and in wild-type rats that were treated with cromoglycate (P < 0.03). Cromoglycate treatment also completely prevented PDF-induced omental adhesions to the catheter tip (P = 0.0002). Mesothelial damage, angiogenesis, and fibrosis of mesentery and parietal peritoneum as well as glucose absorption rate and ultrafiltration capacity proved to be mast cell independent. Data strongly support the hypothesis that mast cells mediate PDF-induced omental tissue remodeling and, subsequently, peritoneal cell influx and adhesion formation, providing therapeutic possibilities of modulating omental function.
Collapse
Affiliation(s)
- Mohammad Zareie
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, PO Box 7057, 1007 MB Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
24
|
Yung S, Chan TM. Glucose Degradation Products and the Peritoneum — how Sweet Things Can Turn Bitter. Perit Dial Int 2006. [DOI: 10.1177/089686080602600305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Susan Yung
- Department of Medicine University of Hong Kong Queen Mary Hospital Hong Kong
| | - Tak Mao Chan
- Department of Medicine University of Hong Kong Queen Mary Hospital Hong Kong
| |
Collapse
|
25
|
Lapolla A, Flamini R, Aricò CN, Rugiu C, Reitano R, Ragazzi E, Seraglia R, Dalla Vedova A, Lupo A, Traldi P. The fate of glyoxal and methylglyoxal in peritoneal dialysis. JOURNAL OF MASS SPECTROMETRY : JMS 2006; 41:405-8. [PMID: 16421866 DOI: 10.1002/jms.985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
|