Bernhard W, Full A, Arand J, Maas C, Poets CF, Franz AR. Choline supply of preterm infants: assessment of dietary intake and pathophysiological considerations.
Eur J Nutr 2012;
52:1269-78. [PMID:
22961562 DOI:
10.1007/s00394-012-0438-x]
[Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 08/07/2012] [Indexed: 11/27/2022]
Abstract
BACKGROUND
Choline forms the head group of phosphatidylcholines, comprising 40-50 % of cellular membranes and 70-95 % of phospholipids in surfactant, bile, and lipoproteins. Moreover, choline serves as the precursor of acetylcholine and is important for brain differentiation and function. While accepted as essential for fetal and neonatal development, its role in preterm infant nutrition has not yet gained much attention.
METHODS
The adequate intake of choline of preterm infants was estimated from international recommendations for infants, children, and adults. Choline intake relative to other nutrients was determined retrospectively in all inborn infants below 1,000 g (extremely low birth weight) or below 28 weeks gestational age, admitted to our department in 2006 and 2007 (N = 93).
RESULTS
Estimation of adequate intake showed that children with 290 g body weight need more choline than those with 1,200 g (31.4 and 25.2 mg/kg/day, respectively). Day-by-day variability was high for all nutrient intakes including choline. In contrast to the continuous intrauterine choline delivery, median supply reached a plateau at d11 (21.7 mg/kg/day; 25th/75th percentile: 19.6; 23.9). Individual choline supply at d0-d1 and d2-d3 was <10 mg/kg/day in 100 and 69 % of infants, respectively. Furthermore, intakes <10 mg/kg/day were frequently observed beyond day 11. Median adequate intakes (27.4 mg/kg/day at 735 g body weight) were achieved in <2 %.
CONCLUSIONS
Nutritional intake of choline in this cohort of preterm infants was frequently less than the estimated adequate intake, with particular shortage until postnatal d10. Because choline is important for brain development, future studies are needed to investigate the effects of adequate nutritional choline intake on long-term neurodevelopment in VLBW infants.
Collapse