1
|
Serbezeanu D, Vlad-Bubulac T, Onofrei MD, Doroftei F, Hamciuc C, Ipate AM, Anisiei A, Lisa G, Anghel I, Şofran IE, Popescu V. Phosphorylated Poly(vinyl alcohol) Electrospun Mats for Protective Equipment Applications. NANOMATERIALS 2022; 12:nano12152685. [PMID: 35957115 PMCID: PMC9370101 DOI: 10.3390/nano12152685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 12/10/2022]
Abstract
The development of intelligent materials for protective equipment applications is still growing, with enormous potential to improve the safety of personnel functioning in specialized professions, such as firefighters. The design and production of such materials by the chemical modification of biodegradable semisynthetic polymers, accompanied by modern manufacturing techniques such as electrospinning, which may increase specific properties of the targeted material, continue to attract the interest of researchers. Phosphorus-modified poly(vinyl alcohol)s have been, thus, synthesized and utilized to prepare environmentally friendly electrospun mats. Poly(vinyl alcohol)s of three different molecular weights and degrees of hydrolysis were phosphorylated by polycondensation reaction in solution in the presence of phenyl dichlorophosphate in order to enhance their flame resistance and thermal stability. The thermal behavior and the flame resistance of the resulting phosphorus-modified poly(vinyl alcohol) products were investigated by thermogravimetric analysis and by cone calorimetry at a micro scale. Based on the as-synthesized phosphorus-modified poly(vinyl alcohol)s, electrospun mats were successfully fabricated by the electrospinning process. Rheology studies were performed to establish the optimal conditions of the electrospinning process, and scanning electron microscopy investigations were undertaken to observe the morphology of the phosphorus-modified poly(vinyl alcohol) electrospun mats.
Collapse
Affiliation(s)
- Diana Serbezeanu
- “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda, 41A, 700487 Iasi, Romania
| | - Tăchiță Vlad-Bubulac
- “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda, 41A, 700487 Iasi, Romania
- Correspondence:
| | - Mihaela Dorina Onofrei
- “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda, 41A, 700487 Iasi, Romania
| | - Florica Doroftei
- “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda, 41A, 700487 Iasi, Romania
| | - Corneliu Hamciuc
- “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda, 41A, 700487 Iasi, Romania
| | - Alina-Mirela Ipate
- “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda, 41A, 700487 Iasi, Romania
| | - Alexandru Anisiei
- “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda, 41A, 700487 Iasi, Romania
| | - Gabriela Lisa
- Department of Chemical Engineering, Faculty of Chemical Engineering and Environmental Protection, Gheorghe Asachi Technical University of Iasi, Bd. Mangeron 73, 700050 Iasi, Romania
| | - Ion Anghel
- Fire Officers Faculty, Police Academy “Alexandru Ioan Cuza”, Morarilor Str. 3, Sector 2, 022451 Bucharest, Romania
| | - Ioana-Emilia Şofran
- Fire Officers Faculty, Police Academy “Alexandru Ioan Cuza”, Morarilor Str. 3, Sector 2, 022451 Bucharest, Romania
| | - Vasilica Popescu
- Department of Chemical Engineering in Textiles and Leather, Gheorghe Asachi Technical University of Iasi, Bd. Mangeron 73, 700050 Iasi, Romania
| |
Collapse
|
2
|
Abstract
AbstractPolyimides, high-performance polymers with superior properties such as high temperature stability, resistance to solvents and high strength, can be used in high-tech applications of the aerospace and aviation, medical or electronics industry in different forms (film, fiber, nanofiber, membrane, foam, adhesive or coating). Among these applications, coating has a special place and is used to develop advanced structures having high temperature resistance, flame retardancy and etc. for high tech industries via an economical and feasible way. Therefore, in this review, we aimed to report the broad application status of polyimide coatings by reviewing publications, patents and commercial products. Thus, this study can assist in selecting suitable polyimide types and production methods for polyimide coating applications and in understanding their applicability for future products.
Collapse
|
3
|
Peng Y, Zhou J, Song X, Pang K, Samy A, Hao Z, Wang J. A Flexible Pressure Sensor with Ink Printed Porous Graphene for Continuous Cardiovascular Status Monitoring. SENSORS (BASEL, SWITZERLAND) 2021; 21:E485. [PMID: 33445532 PMCID: PMC7828094 DOI: 10.3390/s21020485] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/05/2021] [Accepted: 01/09/2021] [Indexed: 01/01/2023]
Abstract
Flexible electronics with continuous monitoring ability a extensively preferred in various medical applications. In this work, a flexible pressure sensor based on porous graphene (PG) is proposed for continuous cardiovascular status monitoring. The whole sensor is fabricated in situ by ink printing technology, which grants it the potential for large-scale manufacture. Moreover, to enhance its long-term usage ability, a polyethylene terephthalate/polyethylene vinylacetate (PET/EVA)-laminated film is employed to protect the sensor from unexpected shear forces on the skin surface. The sensor exhibits great sensitivity (53.99/MPa), high resolution (less than 0.3 kPa), wide detecting range (0.3 kPa to 1 MPa), desirable robustness, and excellent repeatability (1000 cycles). With the assistance of the proposed pressure sensor, vital cardiovascular conditions can be accurately monitored, including heart rate, respiration rate, pulse wave velocity, and blood pressure. Compared to other sensors based on self-supporting 2D materials, this sensor can endure more complex environments and has enormous application potential for the medical community.
Collapse
Affiliation(s)
- Yuxin Peng
- Department of Sports Science, Zhejiang University, Hangzhou 310058, China; (Y.P.); (J.Z.); (Z.H.); (J.W.)
| | - Jingzhi Zhou
- Department of Sports Science, Zhejiang University, Hangzhou 310058, China; (Y.P.); (J.Z.); (Z.H.); (J.W.)
| | - Xian Song
- Department of Sports Science, Zhejiang University, Hangzhou 310058, China; (Y.P.); (J.Z.); (Z.H.); (J.W.)
| | - Kai Pang
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China;
| | - Akram Samy
- Department of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China;
| | - Zengming Hao
- Department of Sports Science, Zhejiang University, Hangzhou 310058, China; (Y.P.); (J.Z.); (Z.H.); (J.W.)
| | - Jian Wang
- Department of Sports Science, Zhejiang University, Hangzhou 310058, China; (Y.P.); (J.Z.); (Z.H.); (J.W.)
| |
Collapse
|
4
|
Mechanical and thermal properties of electrospun polyimide/rGO composite nanofibers via in-situ polymerization and in-situ thermal conversion. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.110083] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
Song W, Cui W, Wang X, Lin Z, Deng W, Ma Y. PEI-SiO2 composite membranes with high thermal stability: Synthesis by self-assembled in situ growth and application in lithium-ion batteries. HIGH PERFORM POLYM 2020. [DOI: 10.1177/0954008320964557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
To improve the safety of lithium-ion batteries (LIBs), a polyether amide–silica (PEI-SiO2) composite membrane was developed by the in situ hydrolysis of tetraethylorthosilicate (TEOS) and its subsequent self-assembly on the surface of PEI fibers. Because of the presence of the SiO2 shell, the PEI-SiO2 composite membrane exhibited good thermal stability at high temperatures. The composite membrane did not change its color and size after heating at 200°C for 1 h as well as exhibited excellent flame retardancy. Moreover, the membrane maintained its high porosity even after the introduction of shell layers. The electrolyte is completely absorbed in the membrane within 0.5 s. The electrolyte uptake was up to 625%, and the ionic conductivity was up to 1.9 mS/cm at room temperature. Compared to the polyolefin membrane and the pure PEI membrane, the PEI-SiO2 composite membrane showed higher electrochemical stability, with an electrochemical window of up to 5.5 V. The battery assembled with the composite membrane showed excellent cycle stability, and the capacity retention rate was as high as 98.6% after 50 cycles. The LIBs based on the PEI-SiO2 composite membrane exhibited safe operation and high electrochemical performance, thus highlighting the applicability of the composite membrane in high-power batteries.
Collapse
Affiliation(s)
- Wei Song
- College of Material Science and Engineering, Harbin University of Science and Technology, Harbin, China
| | - Weiwei Cui
- College of Material Science and Engineering, Harbin University of Science and Technology, Harbin, China
- Suzhou Taihu Electric Advanced Material Co., Ltd., Suzhou, China
| | - Xu Wang
- College of Material Science and Engineering, Harbin University of Science and Technology, Harbin, China
| | - Zeyu Lin
- College of Material Science and Engineering, Harbin University of Science and Technology, Harbin, China
| | - Wei Deng
- College of Material Science and Engineering, Harbin University of Science and Technology, Harbin, China
| | - Yingyi Ma
- College of Material Science and Engineering, Harbin University of Science and Technology, Harbin, China
| |
Collapse
|
6
|
Serbezeanu D, Vlad-Bubulac T, Rusu D, Grădișteanu Pircalabioru G, Samoilă I, Dinescu S, Aflori M. Functional Polyimide-Based Electrospun Fibers for Biomedical Application. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E3201. [PMID: 31569582 PMCID: PMC6804058 DOI: 10.3390/ma12193201] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/21/2019] [Accepted: 09/27/2019] [Indexed: 02/07/2023]
Abstract
The current study focuses on the application of cytotoxicity tests upon one membrane matrix based on electrospun polyimide fibers, appealing for biomedical application, such as scaffolds for cell growth, patches or meshes for wound healing, etc. Assays were performed in order to determine the viability and proliferation of L929 murine fibroblasts after they were kept in direct contact with the studied electrospun polyimide fibers. Increased cell viability and proliferation were detected for cells seeded on electrospun polyimide fibers membrane, in comparison with the control system, either after two or six days of evaluation. The number of live cells was higher on the studied material compared to the control, after two and six days of cell seeding. The tendency of the cells to proliferate on the electrospun polyimide fibers was revealed by confocal microscopy. The morphological stability of electrospun polyimide membrane was evaluated by SEM observation, after immersion of the samples in phosphate buffer saline solution (PBS, 7.4 at 37 °C) at various time intervals. Additionally, the easy production of electrospun polyimide fibers can facilitate the development of these types of matrices into specific biomedical applications in the future.
Collapse
Affiliation(s)
- Diana Serbezeanu
- “Petru Poni” Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda, 41A, 700487 Iasi, Romania; (T.V.-B.); (D.R.)
| | - Tăchiță Vlad-Bubulac
- “Petru Poni” Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda, 41A, 700487 Iasi, Romania; (T.V.-B.); (D.R.)
| | - Daniela Rusu
- “Petru Poni” Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda, 41A, 700487 Iasi, Romania; (T.V.-B.); (D.R.)
| | | | - Iuliana Samoilă
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (I.S.); (S.D.)
| | - Sorina Dinescu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (I.S.); (S.D.)
| | - Magdalena Aflori
- “Petru Poni” Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda, 41A, 700487 Iasi, Romania; (T.V.-B.); (D.R.)
| |
Collapse
|
7
|
Sezer Hicyilmaz A, Altin Y, Bedeloglu A. Polyimide-coated fabrics with multifunctional properties: Flame retardant, UV protective, and water proof. J Appl Polym Sci 2019. [DOI: 10.1002/app.47616] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ayse Sezer Hicyilmaz
- Department of Fiber and Polymer Engineering; Bursa Technical University; Bursa Turkey
| | - Yasin Altin
- Department of Fiber and Polymer Engineering; Bursa Technical University; Bursa Turkey
| | - Ayse Bedeloglu
- Department of Fiber and Polymer Engineering; Bursa Technical University; Bursa Turkey
| |
Collapse
|
8
|
Abstract
Novel flame-retardant phosphorylated chitosan-multiwalled carbon nanotubes (PCS-MWCNTs) were obtained by the loading of PCS on the surface of MWCNTs by a chemical deposition cross-linking method. A series of polyethylene terephthalate (PET) composites were prepared by melt compounding with MWCNTs or PCS-MWCNTs to investigate the flame-retardant properties. Field-emission scanning electron microscopy, transmission electron microscopy, and Fourier transform infrared (FTIR) spectrometry were employed to characterize the morphology, chemical structure, and functionalization effect of MWCNTs. The coating degree and thermal stability of PCS-MWCNTs were investigated by thermogravimetric analysis (TGA). Thermal decomposition products after TGA and flame-retardant properties of PET composites were characterized by FTIR and CONE measurements, respectively. The results indicated that PCS is loaded on the MWCNT surface. Modified PCS-MWCNTs exhibited better dispersion and efficient flame retardancy. TGA data indicated that PCS-MWCNTs can enhance the onset temperature of PET and increase the amount of the char residues. The char residue with 1 wt% PCS-MWCNTs/PET increased from 12.62% (pure PET) to 15.46%. The analysis of the decomposition products and morphology of the char residue indicated that PCS-MWCNTs not only retain the effect of alternating couplet carbon (C) and physical barrier by MWCNTs, but also form P–C compounds, improving the flame retardancy of PET. CONE tests demonstrated that the PCS-MWCNTs lead to the efficient decrease in the flammability parameters, such as the heat release rate (HRR), total release heat rate (THR), total smoke production (TSP), mean mass loss rate (MMLR), and the total combustion time. The peak HRR value decreased from 513.22 kW m−2 to 341 kW m−2. The THR, TSP, and MMLR values decreased by 20.38 MJ m−2, 1.1 m2, and 1.32 g s−1, respectively. The total combustion time decreased by 98 s, from 388 s to 290 s, indicating that PCS-MWCNTs extinguish fire.
Collapse
|
9
|
Chen L, Long Z, Zhang Y, Wang S, Li Z, Guo S, Wang B. Modification of dry-spun Suplon polyimide fibers by mixed-acid oxidation and their effects on the properties of polypropylene-resin-based composites. J Appl Polym Sci 2017. [DOI: 10.1002/app.44932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Le Chen
- Key Laboratory of Ecotextiles (Ministry of Education); Jiangnan University; Wuxi 214122 Jiangsu China
| | - Zhu Long
- Key Laboratory of Ecotextiles (Ministry of Education); Jiangnan University; Wuxi 214122 Jiangsu China
| | - Yifan Zhang
- College of Chemistry; Jilin University; Changchun 130012 Jilin China
| | - Shihua Wang
- Lianyungang Industry Investment Group Company; Limited; Lianyungang 222002 Jiangsu China
| | - Zhiqiang Li
- Lianyungang Industry Investment Group Company; Limited; Lianyungang 222002 Jiangsu China
| | - Shuai Guo
- Lianyungang Industry Investment Group Company; Limited; Lianyungang 222002 Jiangsu China
| | - Bin Wang
- State Key Laboratory of Pulp and Paper Engineering; South China University of Technology; Guangzhou 510640 Guangdong China
| |
Collapse
|
10
|
Liu X, Hao J, Gaan S. Recent studies on the decomposition and strategies of smoke and toxicity suppression for polyurethane based materials. RSC Adv 2016. [DOI: 10.1039/c6ra14345h] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
This review provides insight into recent studies related to thermal degradation, smoke and toxicity production and their reduction strategies for polyurethane-based materials.
Collapse
Affiliation(s)
- Xiu Liu
- National Laboratory of Flame Retardant Materials
- National Engineering and Technology Research Center of Flame Retardant Materials
- School of Materials Science and Engineering
- Beijing Institute of Technology
- Beijing 100081
| | - Jianwei Hao
- National Laboratory of Flame Retardant Materials
- National Engineering and Technology Research Center of Flame Retardant Materials
- School of Materials Science and Engineering
- Beijing Institute of Technology
- Beijing 100081
| | - Sabyasachi Gaan
- Additives and Chemistry Group
- Advanced Fibers
- EMPA Swiss Federal Laboratories for Materials Science and Technology
- 9014 St. Gallen
- Switzerland
| |
Collapse
|