1
|
Yang X, Feng J, Hao X, Li Z, Xu W, Ma Y, Sun X, Li K, Ning P, Wang F, Zhang C. Defect-Confinement Strategy for Constructing CuO Clusters on Carbon Nanotubes for Catalytic Oxidation of AsH 3 at Room Temperature. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:859-870. [PMID: 38060830 DOI: 10.1021/acs.est.3c06741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
The efficient removal of the highly toxic arsine gas (AsH3) from industrial tail gases under mild conditions remains a formidable challenge. In this study, we utilized the confinement effect of defective carbon nanotubes to fabricate a CuO cluster catalyst (CuO/ACNT), which exhibited a capacity much higher than that of CuO supported on pristine multiwalled carbon nanotubes (MWCNT) (CuO/PCNT) for catalytically oxidizing AsH3 under ambient conditions. The experimental and theoretical results show that nitric acid steam treatment could induce MWCNT surface structural defects, which facilitated more stable anchoring of CuO and then improved the oxygen activation ability, therefore leading to excellent catalytic performance. Density functional theory (DFT) calculations revealed that the catalytic oxidation of AsH3 proceeded through stepwise dehydrogenation and subsequent recombination with oxygen to form As2O3 as the final product.
Collapse
Affiliation(s)
- Xinyu Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Jiayu Feng
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, Yunnan 650504, PR China
| | - Xingguang Hao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhao Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Wenkai Xu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yixing Ma
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming 650500, China
| | - Xin Sun
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming 650500, China
| | - Kai Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming 650500, China
| | - Ping Ning
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming 650500, China
| | - Fei Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming 650500, China
| | - Changbin Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
John VL, Gomathi N, Joseph K, Mathew D, Chandran SM, Neogi S. Plasma Functionalized CNT/Cyanate Ester Nanocomposites for Aerospace Structural Applications. ChemistrySelect 2022. [DOI: 10.1002/slct.202201260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Varsha Lisa John
- Indian Institute of Space Science and Technology Trivandrum India
| | - N. Gomathi
- Indian Institute of Space Science and Technology Trivandrum India
| | - K. Joseph
- Indian Institute of Space Science and Technology Trivandrum India
| | - Dona Mathew
- Polymers and Special Chemicals Group Vikram Sarabhai Space Centre Trivandrum India
| | - Satheesh M Chandran
- Polymers and Special Chemicals Group Vikram Sarabhai Space Centre Trivandrum India
| | - S. Neogi
- Department of Chemical Engineering Indian Institute of Technology Kharagpur India
| |
Collapse
|
3
|
Machado-Paula MM, Corat MAF, de Vasconcellos LMR, Araújo JCR, Mi G, Ghannadian P, Toniato TV, Marciano FR, Webster TJ, Lobo AO. Rotary Jet-Spun Polycaprolactone/Hydroxyapatite and Carbon Nanotube Scaffolds Seeded with Bone Marrow Mesenchymal Stem Cells Increase Bone Neoformation. ACS APPLIED BIO MATERIALS 2022; 5:1013-1024. [PMID: 35171572 DOI: 10.1021/acsabm.1c00365] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Clinically, bone tissue replacements and/or bone repair are challenging. Strategies based on well-defined combinations of osteoconductive materials and osteogenic cells are promising to improve bone regeneration but still require improvement. Herein, we combined polycaprolactone (PCL) fibers, carbon nanotubes (CNT), and hydroxyapatite (nHap) nanoparticles to develop the next generation of bone regeneration material. Fibers formed by rotary jet spinning (RJS) instead of traditional electrospinning (ES) with embedded bone marrow mesenchymal stem cells (BMMSCs) showed the best outcomes to repair rat calvarial defects after 6 weeks. To understand this, it was observed that different morphologies were formed depending on the manufacturing method used. RJS fibers presented a particular topography with rough fibers, which allowed for better cellular growth and cell spreading in vitro around and into a three-dimensional (3D) mesh, while fibers made by ES were more smooth and cellular growth was only measured on the 3D mesh surface. The fibers with incorporated nHap/CNT nanoparticles enhanced in vitro cell performance as indicated by more cellular proliferation, alkaline phosphatase activity, proliferation, and deposition of calcium. Greater bone neoformation occurred by combining three characteristics: the presence of nHap and CNT nanoparticles, the topography of the RJS fibers, and the addition of BMMSCs. RJS fibers with nanoparticles and seeded with BMMSCs showed 10 136 mm3 of bone neoformation, meaning a 10-fold increase compared to using RJS only and BMMSCs (0.853 mm3) and a 5-fold increase from using ES only (2054 mm3) after 6 weeks of implantation. Conversely, none of these approaches used individually showed any significant difference for in vivo bone neoformation, suggesting that their combination is essential for optimizing bone formation. In summary, our work generated a potential material composed of well-defined combinations of suitable scaffolds seeded with BMMSCs for enhancing numerous orthopedic tissue engineering applications.
Collapse
Affiliation(s)
- Mirian M Machado-Paula
- Institute of Research and Development, University of Vale do Paraiba, São José dos Campos, SP 12244 - 000, Brazil.,Nanomedicine Laboratory, Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States.,Multidisciplinary Center for Biological Research, State University of Campinas, Campinas, SP 13083-877, Brazil
| | - Marcus A F Corat
- Multidisciplinary Center for Biological Research, State University of Campinas, Campinas, SP 13083-877, Brazil
| | - Luana M R de Vasconcellos
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, Sao Paulo State University, Sao Jose dos Campos, Sao Paulo 12245000, Brazil
| | - Juliani C R Araújo
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, Sao Paulo State University, Sao Jose dos Campos, Sao Paulo 12245000, Brazil
| | - Gujie Mi
- Nanomedicine Laboratory, Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Paria Ghannadian
- Nanomedicine Laboratory, Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Tatiane V Toniato
- Institute of Research and Development, University of Vale do Paraiba, São José dos Campos, SP 12244 - 000, Brazil
| | - Fernanda R Marciano
- Department of Physics, UFPI - Federal University of Piaui, 64049-550 Teresina, PI, Brazil
| | - Thomas J Webster
- Nanomedicine Laboratory, Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Anderson O Lobo
- Nanomedicine Laboratory, Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States.,LIMAV-Interdisciplinary Laboratory for Advanced Materials, BioMatLab, UFPI - Federal University of Piaui, 64049-550 Teresina, PI, Brazil
| |
Collapse
|
4
|
Remanan M, Bhowmik S, Varshney L, Jayanarayanan K. Tungsten carbide, boron carbide, and MWCNT reinforced poly(aryl ether ketone) nanocomposites: Morphology and thermomechanical behavior. J Appl Polym Sci 2018. [DOI: 10.1002/app.47032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- M. Remanan
- Department of Chemical Engineering and Materials Science; Amrita School of Engineering, Amrita Vishwa Vidyapeetham; Coimbatore Tamil Nadu India
| | - S. Bhowmik
- Department of Aerospace Engineering; Amrita School of Engineering, Amrita Vishwa Vidyapeetham; Coimbatore Tamil Nadu India
| | - L. Varshney
- Radiation Technology Development Division; BARC; Mumbai Maharastra India
| | - K. Jayanarayanan
- Department of Chemical Engineering and Materials Science; Amrita School of Engineering, Amrita Vishwa Vidyapeetham; Coimbatore Tamil Nadu India
- Center of Excellence in Advanced Materials & Green Technologies (CoE - AMGT); Amrita School of Engineering, Amrita Vishwa Vidyapeetham; Coimbatore Tamil Nadu India
| |
Collapse
|
5
|
Saka C. Overview on the Surface Functionalization Mechanism and Determination of Surface Functional Groups of Plasma Treated Carbon Nanotubes. Crit Rev Anal Chem 2017; 48:1-14. [DOI: 10.1080/10408347.2017.1356699] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Cafer Saka
- School of Health, Siirt University, Siirt, Turkey
| |
Collapse
|
6
|
Microstructure Development, Wear Characteristics and Kinetics of Thermal Decomposition of Hybrid Nanocomposites Based on Poly Aryl Ether Ketone, Boron Carbide and Multi Walled Carbon Nanotubes. J Inorg Organomet Polym Mater 2017. [DOI: 10.1007/s10904-017-0626-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Wang Y, Wang D, Song Y, Zhao L, Rahoui N, Jiang B, Huang Y. Investigation of the mechanical properties of the modified poly( p-phenylene benzobisoxazole) fibers based on 2-(4-aminophenyl)-1 H-benzimidazol-5-amine. HIGH PERFORM POLYM 2017. [DOI: 10.1177/0954008317706105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Yang Wang
- MIIT Key Laboratory of Critical Materials
Technology for New Energy Conversion and Storage, School of Chemistry and Chemical
Engineering, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute
of Technology, Harbin, China
- Key Laboratory of Functional Inorganic
Material Chemistry, Ministry of Education, School of Chemistry and Materials Science,
Heilongjiang University, Harbin, China
| | - Dan Wang
- Key Laboratory of Functional Inorganic
Material Chemistry, Ministry of Education, School of Chemistry and Materials Science,
Heilongjiang University, Harbin, China
| | - Yuanjun Song
- MIIT Key Laboratory of Critical Materials
Technology for New Energy Conversion and Storage, School of Chemistry and Chemical
Engineering, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute
of Technology, Harbin, China
| | - Lei Zhao
- MIIT Key Laboratory of Critical Materials
Technology for New Energy Conversion and Storage, School of Chemistry and Chemical
Engineering, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute
of Technology, Harbin, China
| | - Nahla Rahoui
- MIIT Key Laboratory of Critical Materials
Technology for New Energy Conversion and Storage, School of Chemistry and Chemical
Engineering, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute
of Technology, Harbin, China
| | - Bo Jiang
- MIIT Key Laboratory of Critical Materials
Technology for New Energy Conversion and Storage, School of Chemistry and Chemical
Engineering, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute
of Technology, Harbin, China
- CAS Key Laboratory of Carbon Materials,
Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi, China
| | - Yudong Huang
- MIIT Key Laboratory of Critical Materials
Technology for New Energy Conversion and Storage, School of Chemistry and Chemical
Engineering, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute
of Technology, Harbin, China
| |
Collapse
|
8
|
Silva E, Vasconcellos LMRD, Rodrigues BVM, Dos Santos DM, Campana-Filho SP, Marciano FR, Webster TJ, Lobo AO. PDLLA honeycomb-like scaffolds with a high loading of superhydrophilic graphene/multi-walled carbon nanotubes promote osteoblast in vitro functions and guided in vivo bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 73:31-39. [PMID: 28183613 DOI: 10.1016/j.msec.2016.11.075] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/24/2016] [Accepted: 11/21/2016] [Indexed: 12/25/2022]
Abstract
Herein, we developed honeycomb-like scaffolds by combining poly (d, l-lactic acid) (PDLLA) with a high amount of graphene/multi-walled carbon nanotube oxides (MWCNTO-GO, 50% w/w). From pristine multi-walled carbon nanotubes (MWCNT) powders, we produced MWCNTO-GO via oxygen plasma etching (OPE), which promoted their exfoliation and oxidation. Initially, we evaluated PDLLA and PDLLA/MWCNTO-GO scaffolds for tensile strength tests, cell adhesion and cell viability (with osteoblast-like MG-63 cells), alkaline phosphatase (ALP, a marker of osteoblast differentiation) activity and mineralized nodule formation. In vivo tests were carried out using PDLLA and PDLLA/MWCNTO-GO scaffolds as fillers for critical defects in the tibia of rats. MWCNTO-GO loading was responsible for decreasing the tensile strength and elongation-at-break of PDLLA scaffolds, although the high mechanical performance observed (~600MPa) assures their application in bone tissue regeneration. In vitro results showed that the scaffolds were not cytotoxic and allowed for osteoblast-like cell interactions and the formation of mineralized matrix nodules. Furthermore, MG-63 cells grown on PDLLA/MWCNTO-GO significantly enhanced osteoblast ALP activity compared to controls (cells alone), while the PDLLA group showed similar ALP activity when compared to controls and PDLLA/MWCNTO-GO. Most impressively, in vivo tests suggested that compared to PDLLA scaffolds, PDLLA/MWCNTO-GO had a superior influence on bone cell activity, promoting greater new bone formation. In summary, the results of this study highlighted that this novel scaffold (MWCNTO-GO, 50% w/w) is a promising alternative for bone tissue regeneration and, thus, should be further studied.
Collapse
Affiliation(s)
- Edmundo Silva
- Laboratory of Biomedical Nanotechnology, University of Vale do Paraiba, Av. Shishima Hifumi 2911, Sao Jose dos Campos 12224-000, São Paulo, Brazil
| | - Luana Marotta Reis de Vasconcellos
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, State University of Sao Paulo (UNESP), Av. Engenheiro Francisco Jose Longo, 777, Sao Jose dos Campos 12245-000, SP, Brazil
| | - Bruno V M Rodrigues
- Laboratory of Biomedical Nanotechnology, University of Vale do Paraiba, Av. Shishima Hifumi 2911, Sao Jose dos Campos 12224-000, São Paulo, Brazil; Laboratory of Biomedical Nanotechnology, Biomedical Engineering Innovation Center, Universidade Brasil, Rua Carolina Fonseca 235, 08230-030, São Paulo, Brazil
| | - Danilo Martins Dos Santos
- Chemistry Institute of Sao Carlos, University of Sao Paulo, Av. Trabalhador Sao-Carlense, 400, 13566-590 Sao Carlos, SP, Brazil
| | - Sergio P Campana-Filho
- Chemistry Institute of Sao Carlos, University of Sao Paulo, Av. Trabalhador Sao-Carlense, 400, 13566-590 Sao Carlos, SP, Brazil
| | - Fernanda Roberta Marciano
- Laboratory of Biomedical Nanotechnology, University of Vale do Paraiba, Av. Shishima Hifumi 2911, Sao Jose dos Campos 12224-000, São Paulo, Brazil; Laboratory of Biomedical Nanotechnology, Biomedical Engineering Innovation Center, Universidade Brasil, Rua Carolina Fonseca 235, 08230-030, São Paulo, Brazil; Department of Medicine, Biomaterials Innovation Research Center, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| | - Anderson Oliveira Lobo
- Laboratory of Biomedical Nanotechnology, University of Vale do Paraiba, Av. Shishima Hifumi 2911, Sao Jose dos Campos 12224-000, São Paulo, Brazil; Laboratory of Biomedical Nanotechnology, Biomedical Engineering Innovation Center, Universidade Brasil, Rua Carolina Fonseca 235, 08230-030, São Paulo, Brazil; Department of Medicine, Biomaterials Innovation Research Center, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|