1
|
Ferdousi F, Isoda H. Regulating Early Biological Events in Human Amniotic Epithelial Stem Cells Using Natural Bioactive Compounds: Extendable Multidirectional Research Avenues. Front Cell Dev Biol 2022; 10:865810. [PMID: 35433672 PMCID: PMC9011193 DOI: 10.3389/fcell.2022.865810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/07/2022] [Indexed: 12/21/2022] Open
Abstract
Stem cells isolated from perinatal tissue sources possess tremendous potential for biomedical and clinical applications. On the other hand, emerging data have demonstrated that bioactive natural compounds regulate numerous cellular and biochemical functions in stem cells and promote cell migration, proliferation, and attachment, resulting in maintaining stem cell proliferation or inducing controlled differentiation. In our previous studies, we have reported for the first time that various natural compounds could induce targeted differentiation of hAESCs in a lineage-specific manner by modulating early biological and molecular events and enhance the therapeutic potential of hAESCs through modulating molecular signaling. In this perspective, we will discuss the advantages of using naturally occurring active compounds in hAESCs and their potential implications for biological research and clinical applications.
Collapse
Affiliation(s)
- Farhana Ferdousi
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.,AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan
| | - Hiroko Isoda
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.,AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan.,R&D Center for Tailor-made QOL, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
2
|
Boreak N, Alkahtani A, Alzahrani K, Kenani AH, Faqehi WH, Faqehi HH, Ageeli RE, Moafa WN, Baeshen HA, Bhandi S, Khurshid Z, Patil VR, Testarelli L, Patil S. Dose-Dependent Effect of Cordycepin on Viability, Proliferation, Cell Cycle, and Migration in Dental Pulp Stem Cells. J Pers Med 2021; 11:jpm11080718. [PMID: 34442362 PMCID: PMC8398271 DOI: 10.3390/jpm11080718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/07/2021] [Accepted: 07/23/2021] [Indexed: 11/22/2022] Open
Abstract
Simple Summary Cordycepin is an adenosine analogue isolated from the fungus Cordyceps militaris. Cordycepin is a nucleoside antimetabolite that has shown a broad spectrum of biological activity including antineoplastic activity. limited research has been carried out on the effects of Cordycepin on the regenerative potential of stem cells, including dental pulp-derived mesenchymal stem cells. The present study was designed to assess if Cordycepin could enhance the vital properties of dental pulp-derived mesenchymal stem cells for regenerative purposes. Abstract Objective: To examine the effect of Cordycepin on the viability, proliferation, and migratory properties of dental pulp-derived mesenchymal stem cells. Materials and methods: The pulp was derived from human premolar teeth extracted for orthodontic purposes after obtaining informed consent. The samples were transferred to the laboratory for processing. DPSCs were expanded and characterized using flow cytometry and differentiation to the bone, adipose, and cartilage cells was examined. MTT Assay was performed using various concentrations of Cordycepin. The growth curve was plotted for 13 days. Cell cycle analysis was performed by flow cytometry. Migratory ability was assessed by wound healing assay. ROS generation was detected by flow cytometry. Gene expression was quantified by RT-qPCR. Statistical analysis was performed. p < 0.05 was considered as significant and p < 0.01 was considered as highly significant (* p < 0.05, and ** p < 0.01). Results: DPSCs expressed characteristic MSC-specific markers and trilineage differentiation. Cordycepin at lower concentrations did not affect the viability of DPSCs. The growth curve of cells showed a dose-dependent increase in cell numbers till the maximum dose. DPSCs treated with 2.5 µM Cordycepin was found to have a reduced G1 phase cell percentage. DPSCs treated with 2.5 µM and 5 µM Cordycepin showed a significant decrease in G2 phase cells. No significant difference was observed for S phase cells. Cordycepin treatment affected the migratory ability in DPSCs in a concentration-dependent manner. Conclusion: Cordycepin can be used at therapeutic doses to maintain stem cells.
Collapse
Affiliation(s)
- Nezar Boreak
- Department of Restorative Dental Sciences, College of Dentistry, Restorative Dental Sciences Jazan University, Jazan 45142, Saudi Arabia; (N.B.); (S.B.)
| | - Ahmed Alkahtani
- Department of Restorative Dental Sciences, College of Dentistry, King Saud University, Riyadh 11362, Saudi Arabia;
| | - Khalid Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia;
| | - Amani Hassan Kenani
- College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia; (A.H.K.); (W.H.F.); (H.H.F.); (R.E.A.); (W.N.M.)
| | - Wafa Hussain Faqehi
- College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia; (A.H.K.); (W.H.F.); (H.H.F.); (R.E.A.); (W.N.M.)
| | - Hadeel Hussain Faqehi
- College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia; (A.H.K.); (W.H.F.); (H.H.F.); (R.E.A.); (W.N.M.)
| | - Raghad Essa Ageeli
- College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia; (A.H.K.); (W.H.F.); (H.H.F.); (R.E.A.); (W.N.M.)
| | - Wafa Nasser Moafa
- College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia; (A.H.K.); (W.H.F.); (H.H.F.); (R.E.A.); (W.N.M.)
| | - Hosam Ali Baeshen
- Department of Orthodontics, College of Dentistry, King Abdulaziz University, Jeddah 11451, Saudi Arabia;
| | - Shilpa Bhandi
- Department of Restorative Dental Sciences, College of Dentistry, Restorative Dental Sciences Jazan University, Jazan 45142, Saudi Arabia; (N.B.); (S.B.)
| | - Zohaib Khurshid
- Department of Prosthodontics and Dental Implantology, College of Dentistry, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | | | - Luca Testarelli
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, 00185 Rome, Italy;
| | - Shankargouda Patil
- Division of Oral Pathology, Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry Jazan University, Jazan 45142, Saudi Arabia
- Correspondence:
| |
Collapse
|
3
|
Sundar G, Joseph J, C P, John A, Abraham A. Natural collagen bioscaffolds for skin tissue engineering strategies in burns: a critical review. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1740991] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Gayathri Sundar
- Department of Biochemistry, Advanced Center for Tissue Engineering, University of Kerala, Thiruvananthapuram, India
- Department of Biotechnology, CEPCI Laboratory and Research Institute, Kollam, India
| | - Josna Joseph
- Department of Biochemistry, Advanced Center for Tissue Engineering, University of Kerala, Thiruvananthapuram, India
| | - Prabhakumari C
- Department of Biotechnology, CEPCI Laboratory and Research Institute, Kollam, India
| | - Annie John
- Department of Biochemistry, Advanced Center for Tissue Engineering, University of Kerala, Thiruvananthapuram, India
| | - Annie Abraham
- Department of Biochemistry, Advanced Center for Tissue Engineering, University of Kerala, Thiruvananthapuram, India
| |
Collapse
|
4
|
Tamburaci S, Kimna C, Tihminlioglu F. Novel phytochemical Cissus quadrangularis extract–loaded chitosan/Na-carboxymethyl cellulose–based scaffolds for bone regeneration. J BIOACT COMPAT POL 2018. [DOI: 10.1177/0883911518793913] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Medicinal plants are attracting considerable interest as a potential therapeutic agent for bone tissue regeneration. Cissus quadrangularis L. is also a medicinal plant known with its osteogenic activity. In this study, a phytochemical scaffold was produced by incorporating Cissus quadrangularis with chitosan/Na-carboxymethyl cellulose blend by lyophilization technique. The effect of Cissus quadrangularis loading on the mechanical, morphological, chemical, and degradation properties as well as in vitro cytotoxicity, cell proliferation, and differentiation of the composites was investigated. Scanning electron microscopy images showed that porous Cissus quadrangularis–loaded scaffolds were obtained with an average pore size of 148–209 µm which is appropriate for bone regeneration. Cissus quadrangularis incorporation enhanced the compression modulus of scaffolds from 76 to 654 kPa. In vitro cell culture results indicated that Cissus quadrangularis/chitosan/Na-carboxymethyl cellulose scaffolds provided a favorable substrate for the osteoblast adhesion, proliferation, and mineralization. Results supported the osteoinductive property of the Cissus quadrangularis extract–incorporated scaffolds even without osteogenic media supplement. Cissus quadrangularis extract increased the alkaline phosphatase activity of the SaOS-2 cells on scaffolds on 7th and 14th days of incubation. The investigation of characterization and cell culture studies suggest that Cissus quadrangularis–loaded osteoinductive Cissus quadrangularis/chitosan/Na-carboxymethyl cellulose scaffold can serve as a potential biomaterial for bone tissue engineering applications.
Collapse
Affiliation(s)
- Sedef Tamburaci
- Biotechnology and Bioengineering Graduate Program, İzmir Institute of Technology, İzmir, Turkey
- Department of Chemical Engineering, İzmir Institute of Technology, İzmir, Turkey
| | - Ceren Kimna
- Department of Chemical Engineering, İzmir Institute of Technology, İzmir, Turkey
| | - Funda Tihminlioglu
- Department of Chemical Engineering, İzmir Institute of Technology, İzmir, Turkey
| |
Collapse
|
5
|
Xue W, Yu J, Chen W. Plants and Their Bioactive Constituents in Mesenchymal Stem Cell-Based Periodontal Regeneration: A Novel Prospective. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7571363. [PMID: 30175141 PMCID: PMC6098897 DOI: 10.1155/2018/7571363] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 06/12/2018] [Accepted: 07/04/2018] [Indexed: 12/24/2022]
Abstract
Periodontitis is a common chronic inflammatory disease, which causes the destruction of both the soft and mineralized tissues. However, current treatments such as bone graft materials, barrier membranes, and protein products all have difficulties in regenerating the complete periodontal tissue structure. Stem cell-based tissue engineering has now emerged as one of the most effective treatments for the patients suffering from periodontal diseases. Plants not only can be substrates for life processes, but also contain hormones or functional molecules. Numbers of preclinical studies have revealed that products from plant can be successfully applied in modulating proliferation and differentiation of human mesenchymal stem cells. Plant-derived substances can induce stem cells osteogenic differentiation, and they also possess angiogenic potency. Furthermore, in the field of tissue engineering, plant-derived compounds or plant extracts can be incorporated with biomaterials or utilized as biomaterials for cell transplantation. So it is speculated that botanical products may become a new perspective in stem cell-based periodontal regeneration. However, the lack of achieving predict clinical efficacy and quality control has been the major impediment to its extensive application. This review gives an overview of the prospect of applying different plant-derived substances in various human mesenchymal stem cells-based periodontal regeneration.
Collapse
Affiliation(s)
- Wenqing Xue
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, China
- Department of Periodontics, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu 210029, China
| | - Jinhua Yu
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, China
- Department of Endodontics, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu 210029, China
| | - Wu Chen
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, China
- Department of Periodontics, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu 210029, China
| |
Collapse
|
6
|
Phytochemical Incorporated Drug Delivery Scaffolds for Tissue Regeneration. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2018. [DOI: 10.1007/s40883-018-0059-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
7
|
Parvathi K, Krishnan AG, Anitha A, Jayakumar R, Nair MB. Poly(L-lactic acid) nanofibers containing Cissus quadrangularis induced osteogenic differentiation in vitro. Int J Biol Macromol 2018; 110:514-521. [DOI: 10.1016/j.ijbiomac.2017.11.094] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/09/2017] [Accepted: 11/14/2017] [Indexed: 12/23/2022]
|