1
|
Cung TD, Hu S, Govindaraj S, Elahi E. Preservation of Infraorbital Nerve in Orbital Floor and Maxillary Defect Reconstruction With Patient-Specific Three-Dimensional Implant: A Case Report. Ophthalmic Plast Reconstr Surg 2022; 38:e136-e141. [PMID: 35550485 DOI: 10.1097/iop.0000000000002180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Reconstruction of orbitomaxillary defects poses many operative challenges because it requires consideration of cosmetic as well as functional elements: reestablishing facial symmetry while constituting the orbital volume and preserving involved neurovascular structures. The development of patient-specific polyetheretherketone implants have revolutionized complex craniofacial reconstruction due to its adaptability to anatomic constraints and accommodation of vital structures. Herein, we described 2 cases of orbitomaxillary reconstruction using PEEK implant with novel modifications to preserve the infraorbital nerve with optimal cosmetic outcomes and minimal postoperative morbidity.
Collapse
Affiliation(s)
- Thai-Duong Cung
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Shirley Hu
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Satish Govindaraj
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ebby Elahi
- Department of Ophthalmology, Department of Otolaryngology-Head and Neck Surgery, Division of Ophthalmic and Oculofacial Surgery, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
2
|
Murray-Douglass A, Snoswell C, Winter C, Harris R. Three-dimensional (3D) printing for post-traumatic orbital reconstruction, a systematic review and meta-analysis. Br J Oral Maxillofac Surg 2022; 60:1176-1183. [DOI: 10.1016/j.bjoms.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/25/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022]
|
3
|
Pugalendhi A, Ranganathan R. A review of additive manufacturing applications in ophthalmology. Proc Inst Mech Eng H 2021; 235:1146-1162. [PMID: 34176362 DOI: 10.1177/09544119211028069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Additive Manufacturing (AM) capabilities in terms of product customization, manufacture of complex shape, minimal time, and low volume production those are very well suited for medical implants and biological models. AM technology permits the fabrication of physical object based on the 3D CAD model through layer by layer manufacturing method. AM use Magnetic Resonance Image (MRI), Computed Tomography (CT), and 3D scanning images and these data are converted into surface tessellation language (STL) file for fabrication. The applications of AM in ophthalmology includes diagnosis and treatment planning, customized prosthesis, implants, surgical practice/simulation, pre-operative surgical planning, fabrication of assistive tools, surgical tools, and instruments. In this article, development of AM technology in ophthalmology and its potential applications is reviewed. The aim of this study is nurturing an awareness of the engineers and ophthalmologists to enhance the ophthalmic devices and instruments. Here some of the 3D printed case examples of functional prototype and concept prototypes are carried out to understand the capabilities of this technology. This research paper explores the possibility of AM technology that can be successfully executed in the ophthalmology field for developing innovative products. This novel technique is used toward improving the quality of treatment and surgical skills by customization and pre-operative treatment planning which are more promising factors.
Collapse
Affiliation(s)
- Arivazhagan Pugalendhi
- Department of Mechanical Engineering, Coimbatore Institute of Technology, Coimbatore, Tamil Nadu, India
| | - Rajesh Ranganathan
- Department of Mechanical Engineering, Coimbatore Institute of Technology, Coimbatore, Tamil Nadu, India
| |
Collapse
|
4
|
Pugalendhi A, Ranganathan R, Venkatapathy N, Narendran K, Shah PK. Design and development of model eye for retina laser by using additive manufacturing. Proc Inst Mech Eng H 2020; 235:89-98. [PMID: 32988319 DOI: 10.1177/0954411920960548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Surgical skill of the surgeon can be improved by surgical simulation. Especially in ophthalmology, it is impossible to use real human/non-human primate eyes for ophthalmology surgery practice. However, surgical practice is most important for ophthalmologist. The retina laser surgery is one of the ophthalmology surgeries and it requires more surgical practice for surgeons to use the laser beam precisely to coagulate and fuse small areas of tissue. Dealing with the prospect of vision reduction or vision loss presents a peculiar problem and that can be highly stressful and frustrating for both doctors and patients. In this regard, training for indirect ophthalmoscopy and retinal photocoagulation is undergone using model eyes instead of real eyes. Properties and functioning of an existing model eye are huge and they differ from real human eye such as casings are completely rigid and focusing of retinal fundus is not completely covered. Therefore, this research concentrates to develop a model eye that assimilates close to the human eye by focussing on the maximum viewing area that is not done at the moment. Finally, the design and development of re-engineered model eye for retina laser is fabricated by additive manufacturing. Compared to existing plastic model eye, viewing area and viewing angle of the re-engineered model eye is increased by 16.66% and 6.14%, respectively. Due to design modifications and elimination of the insert, it can be reduced by 18.99% and 13.95% of height and weight of the top casing respectively. Developed re-engineered model eye will improve the surgical and diagnostic skill of the surgeon and increase their confidence and proficiency. It also augments the effective use of essential ophthalmic instruments. Additionally, it can reduce the surgical error and meet the existing demand of actual eyes for surgical practices.
Collapse
Affiliation(s)
- Arivazhagan Pugalendhi
- Department of Mechanical Engineering, Coimbatore Institute of Technology, Tamil Nadu, India
| | - Rajesh Ranganathan
- Department of Mechanical Engineering, Coimbatore Institute of Technology, Tamil Nadu, India
| | | | - Kalpana Narendran
- Department of Ophthalmology, Aravind Eye Hospital, Coimbatore, Tamil Nadu, India
| | - Parag K Shah
- Department of Ophthalmology, Aravind Eye Hospital, Coimbatore, Tamil Nadu, India
| |
Collapse
|
5
|
Cucchi A, Bianchi A, Calamai P, Rinaldi L, Mangano F, Vignudelli E, Corinaldesi G. Clinical and volumetric outcomes after vertical ridge augmentation using computer-aided-design/computer-aided manufacturing (CAD/CAM) customized titanium meshes: a pilot study. BMC Oral Health 2020; 20:219. [PMID: 32758217 PMCID: PMC7409710 DOI: 10.1186/s12903-020-01205-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/27/2020] [Indexed: 12/13/2022] Open
Abstract
Background One of the most recent innovations in bone augmentation surgery is represented by computer-aided-design/computer-aided-manufacturing (CAD/CAM) customized titanium meshes, which can be used to restore vertical bone defects before implant-prosthetic rehabilitations. The aim of this study was to evaluate the effectiveness/reliability of this technique in a consecutive series of cases. Methods Ten patients in need of bone augmentation before implant therapy were treated using CAD/CAM customized titanium meshes. A digital workflow was adopted to design virtual meshes on 3D bone models. Then, Direct Metal Laser Sintering (DMLS) technology was used to produce the titanium meshes, and vertical ridge augmentation was performed according to an established surgical protocol. Surgical complications, healing complications, vertical bone gain (VBG), planned bone volume (PBV), lacking bone volume (LBV), regenerated bone volume (RBV), average regeneration rate (RR) and implant success rate were evaluated. Results All augmented sites were successfully restored with definitive implant-supported fixed partial dentures. Measurements showed an average VBG of 4.5 ± 1.8 mm at surgical re-entry. Surgical and healing complications occurred in 30% and 10% of cases, respectively. Mean values of PBV, LBV, and RBV were 984, 92, and 892 mm3, respectively. The average RR achieved was 89%. All 26 implants were successfully in function after 1 year of follow-up. Conclusions The results of this study suggest that the bone augmentation by means of DMLS custom-made titanium meshes can be considered a reliable and effective technique in restoring vertical bone defects.
Collapse
Affiliation(s)
- Alessandro Cucchi
- Unit of Oral and Maxillofacial Surgery, Department of Biomedical and Neuromotor Science, University of Bologna, Bologna, Italy.
| | - Alessandro Bianchi
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | | | - Lisa Rinaldi
- Unit of Oral and Maxillofacial Surgery, Department of Biomedical and Neuromotor Science, University of Bologna, Bologna, Italy
| | - Francesco Mangano
- Department of Prevention and Communal Dentistry, Sechenov First State Medical University, Moscow, Russia
| | - Elisabetta Vignudelli
- Unit of Oral and Maxillofacial Surgery, Department of Biomedical and Neuromotor Science, University of Bologna, Bologna, Italy
| | - Giuseppe Corinaldesi
- Unit of Oral and Maxillofacial Surgery, Department of Biomedical and Neuromotor Science, University of Bologna, Bologna, Italy
| |
Collapse
|
6
|
López Gualdrón CI, Bravo Ibarra ER, Murillo Bohórquez AP, Garnica Bohórquez I. Present and future for technologies to develop patient-specific medical devices: a systematic review approach. MEDICAL DEVICES-EVIDENCE AND RESEARCH 2019; 12:253-273. [PMID: 31496840 PMCID: PMC6689557 DOI: 10.2147/mder.s215947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/08/2019] [Indexed: 01/25/2023] Open
Abstract
The main purpose of this investigation was to systematically review the literature regarding case studies on patient-specific implants and devices, with the goal of analyzing the process of developing custom-made medical devices. A content analysis was performed to identify design processes and methodologies implemented to develop devices such as implants adapted to bone geometries. Reverse engineering, computer-aided design, simulation of assets, and rapid prototyping technologies were selected according to their interoperability in a process framework for developing new products. Finally, results from the case studies and process stages identified in the consulted research were analyzed. These results showed a relationship between the scope and complexity of the process and the stage of technology integration of the patient-specific device development. The analyzed case studies were characterized by technical, scientific, and multidisciplinary components to achieve research goals. Likewise, integration of technologies using patient-specific technologies is needed for product development that converges into designing devices, such as implants, biomodels, and cutting drilling guides.
Collapse
Affiliation(s)
| | - Edna-Rocío Bravo Ibarra
- Industrial and Business Studies School, Universidad Industrial de Santander, Bucaramanga, Colombia
| | | | - Israel Garnica Bohórquez
- Industrial and Business Studies School, Universidad Industrial de Santander, Bucaramanga, Colombia
| |
Collapse
|
7
|
Peel S, Eggbeer D, Burton H, Hanson H, Evans PL. Additively manufactured versus conventionally pressed cranioplasty implants: An accuracy comparison. Proc Inst Mech Eng H 2018; 232:949-961. [PMID: 30122102 DOI: 10.1177/0954411918794718] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
This article compared the accuracy of producing patient-specific cranioplasty implants using four different approaches. Benchmark geometry was designed to represent a cranium and a defect added simulating a craniectomy. An 'ideal' contour reconstruction was calculated and compared against reconstructions resulting from the four approaches -'conventional', 'semi-digital', 'digital - non-automated' and 'digital - semi-automated'. The 'conventional' approach relied on hand carving a reconstruction, turning this into a press tool, and pressing titanium sheet. This approach is common in the UK National Health Service. The 'semi-digital' approach removed the hand-carving element. Both of the 'digital' approaches utilised additive manufacturing to produce the end-use implant. The geometries were designed using a non-specialised computer-aided design software and a semi-automated cranioplasty implant-specific computer-aided design software. It was found that all plates were clinically acceptable and that the digitally designed and additive manufacturing plates were as accurate as the conventional implants. There were no significant differences between the additive manufacturing plates designed using non-specialised computer-aided design software and those designed using the semi-automated tool. The semi-automated software and additive manufacturing production process were capable of producing cranioplasty implants of similar accuracy to multi-purpose software and additive manufacturing, and both were more accurate than handmade implants. The difference was not of clinical significance, demonstrating that the accuracy of additive manufacturing cranioplasty implants meets current best practice.
Collapse
Affiliation(s)
- Sean Peel
- 1 PDR - International Centre for Design & Research, Cardiff Metropolitan University, Cardiff, UK
| | - Dominic Eggbeer
- 1 PDR - International Centre for Design & Research, Cardiff Metropolitan University, Cardiff, UK
| | - Hanna Burton
- 1 PDR - International Centre for Design & Research, Cardiff Metropolitan University, Cardiff, UK
| | - Hayley Hanson
- 1 PDR - International Centre for Design & Research, Cardiff Metropolitan University, Cardiff, UK
| | - Peter L Evans
- 2 Morriston Hospital, Abertawe Bro Morgannwg University Health Board, Swansea, UK
| |
Collapse
|
8
|
Oh JH. Recent advances in the reconstruction of cranio-maxillofacial defects using computer-aided design/computer-aided manufacturing. Maxillofac Plast Reconstr Surg 2018; 40:2. [PMID: 29430438 PMCID: PMC5797724 DOI: 10.1186/s40902-018-0141-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 01/16/2018] [Indexed: 11/21/2022] Open
Abstract
With the development of computer-aided design/computer-aided manufacturing (CAD/CAM) technology, it has been possible to reconstruct the cranio-maxillofacial defect with more accurate preoperative planning, precise patient-specific implants (PSIs), and shorter operation times. The manufacturing processes include subtractive manufacturing and additive manufacturing and should be selected in consideration of the material type, available technology, post-processing, accuracy, lead time, properties, and surface quality. Materials such as titanium, polyethylene, polyetheretherketone (PEEK), hydroxyapatite (HA), poly-DL-lactic acid (PDLLA), polylactide-co-glycolide acid (PLGA), and calcium phosphate are used. Design methods for the reconstruction of cranio-maxillofacial defects include the use of a pre-operative model printed with pre-operative data, printing a cutting guide or template after virtual surgery, a model after virtual surgery printed with reconstructed data using a mirror image, and manufacturing PSIs by directly obtaining PSI data after reconstruction using a mirror image. By selecting the appropriate design method, manufacturing process, and implant material according to the case, it is possible to obtain a more accurate surgical procedure, reduced operation time, the prevention of various complications that can occur using the traditional method, and predictive results compared to the traditional method.
Collapse
Affiliation(s)
- Ji-Hyeon Oh
- Department of Oral and MaxilloFacial Surgery, Dental Hospital, Gangneung-Wonju National University, Gangneung, South Korea
| |
Collapse
|