1
|
Hu Z, Luo Y, Ni R, Hu Y, Yang F, Du T, Zhu Y. Biological importance of human amniotic membrane in tissue engineering and regenerative medicine. Mater Today Bio 2023; 22:100790. [PMID: 37711653 PMCID: PMC10498009 DOI: 10.1016/j.mtbio.2023.100790] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/21/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023] Open
Abstract
The human amniotic membrane (hAM) is the innermost layer of the placenta. Its distinctive structure and the biological and physical characteristics make it a highly biocompatible material in a variety of regenerative medicine applications. It also acts as a supply of bioactive factors and cells, which indicate the advantages over other tissues. In this review, we firstly discussed the biological properties of hAM-derived cells in vivo or in vitro, along with their stemness of markers, pointing out a promising source of stem cells for regenerative medicine. Then, we systematically summarized current knowledge on the collection, preparation, preservation, and decellularization of hAM, as well as their characteristics helping to improve the understanding of applications in tissue engineering. Finally, we highlighted the recent advances in which hAM has undergone additional modifications to achieve an adequate perspective of regenerative medicine applications. More investigations are required in utilizing appropriate modifications to enhance the therapeutic effectiveness of hAM in the future.
Collapse
Affiliation(s)
- Zeming Hu
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Yang Luo
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Renhao Ni
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Yiwei Hu
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Fang Yang
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Tianyu Du
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Yabin Zhu
- Health Science Center, Ningbo University, Ningbo, 315211, China
| |
Collapse
|
2
|
Crouch DJ, Sheridan CM, Behnsen JG, D’Sa RA, Bosworth LA. Cryo-Electrospinning Generates Highly Porous Fiber Scaffolds Which Improves Trabecular Meshwork Cell Infiltration. J Funct Biomater 2023; 14:490. [PMID: 37888155 PMCID: PMC10607045 DOI: 10.3390/jfb14100490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
Human trabecular meshwork is a sieve-like tissue with large pores, which plays a vital role in aqueous humor outflow. Dysfunction of this tissue can occur, which leads to glaucoma and permanent vision loss. Replacement of trabecular meshwork with a tissue-engineered device is the ultimate objective. This study aimed to create a biomimetic structure of trabecular meshwork using electrospinning. Conventional electrospinning was compared to cryogenic electrospinning, the latter being an adaptation of conventional electrospinning whereby dry ice is incorporated in the fiber collector system. The dry ice causes ice crystals to form in-between the fibers, increasing the inter-fiber spacing, which is retained following sublimation. Structural characterization demonstrated cryo-scaffolds to have closer recapitulation of the trabecular meshwork, in terms of pore size, porosity, and thickness. The attachment of a healthy, human trabecular meshwork cell line (NTM5) to the scaffold was not influenced by the fabrication method. The main objective was to assess cell infiltration. Cryo-scaffolds supported cell penetration deep within their structure after seven days, whereas cells remained on the outer surface for conventional scaffolds. This study demonstrates the suitability of cryogenic electrospinning for the close recapitulation of trabecular meshwork and its potential as a 3D in vitro model and, in time, a tissue-engineered device.
Collapse
Affiliation(s)
- Devon J. Crouch
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L7 8TX, UK; (D.J.C.); (C.M.S.)
| | - Carl M. Sheridan
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L7 8TX, UK; (D.J.C.); (C.M.S.)
| | - Julia G. Behnsen
- Department of Mechanical, Materials, and Aerospace Engineering, University of Liverpool, Liverpool L69 6GB, UK;
| | - Raechelle A. D’Sa
- School of Engineering, University of Liverpool, Liverpool L69 3GH, UK;
| | - Lucy A. Bosworth
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L7 8TX, UK; (D.J.C.); (C.M.S.)
| |
Collapse
|
3
|
Liu C, Du G, Guo Q, Li R, Li C, He H. Fabrication and Characterization of Polylactic Acid Electrospun Wound Dressing Modified with Polyethylene Glycol, Rosmarinic Acid and Graphite Oxide. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2000. [PMID: 37446516 DOI: 10.3390/nano13132000] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023]
Abstract
Polylactic acid (PLA) is a biodegradable polymer made from natural sources, and its electrospinning (e-spinning) nanofiber membrane doped with antibacterial ingredients is widely used in the field of medical dressings. In this research, 9 wt% of rosmarinic acid (RosA) and 0.04 wt% of graphite oxide (GO) with synergistic antibacterial activity were introduced into the e-spinning PLA precursor solution, and the obtained PLA nanofiber membrane showed good antibacterial properties and wound healing effects. At the same time, a nonionic amphiphilic polymer, polyethylene glycol (PEG), was also introduced into this system to improve the hydrophilicity of the e-spinning membrane for wound healing application. The morphological characterization showed the RosA/GO and PEG did not affect the e-spinning of PLA. The tests of mechanical performance and wettability demonstrated that PEG and RosA/GO incorporated in PLA have migrated easily to the surface of the fiber. The e-spun PLA/PEG/RosA/GO membrane showed good antibacterial activity and promoted initial wound healing quickly, which would be a promising application in wound dressing.
Collapse
Affiliation(s)
- Chengyi Liu
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Guicai Du
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Qunqun Guo
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Ronggui Li
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Changming Li
- Schneider Institute of Industrial Technology, School of Automation, Qingdao University, Qingdao 266071, China
| | - Hongwei He
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China
| |
Collapse
|
4
|
Ning C, Li P, Gao C, Fu L, Liao Z, Tian G, Yin H, Li M, Sui X, Yuan Z, Liu S, Guo Q. Recent advances in tendon tissue engineering strategy. Front Bioeng Biotechnol 2023; 11:1115312. [PMID: 36890920 PMCID: PMC9986339 DOI: 10.3389/fbioe.2023.1115312] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/06/2023] [Indexed: 02/22/2023] Open
Abstract
Tendon injuries often result in significant pain and disability and impose severe clinical and financial burdens on our society. Despite considerable achievements in the field of regenerative medicine in the past several decades, effective treatments remain a challenge due to the limited natural healing capacity of tendons caused by poor cell density and vascularization. The development of tissue engineering has provided more promising results in regenerating tendon-like tissues with compositional, structural and functional characteristics comparable to those of native tendon tissues. Tissue engineering is the discipline of regenerative medicine that aims to restore the physiological functions of tissues by using a combination of cells and materials, as well as suitable biochemical and physicochemical factors. In this review, following a discussion of tendon structure, injury and healing, we aim to elucidate the current strategies (biomaterials, scaffold fabrication techniques, cells, biological adjuncts, mechanical loading and bioreactors, and the role of macrophage polarization in tendon regeneration), challenges and future directions in the field of tendon tissue engineering.
Collapse
Affiliation(s)
- Chao Ning
- Chinese PLA Medical School, Beijing, China
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Pinxue Li
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Cangjian Gao
- Chinese PLA Medical School, Beijing, China
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Liwei Fu
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Zhiyao Liao
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Guangzhao Tian
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Han Yin
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Muzhe Li
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Xiang Sui
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Zhiguo Yuan
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Shuyun Liu
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Quanyi Guo
- Chinese PLA Medical School, Beijing, China
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
5
|
Wu S, Dong T, Li Y, Sun M, Qi Y, Liu J, Kuss MA, Chen S, Duan B. State-of-the-art review of advanced electrospun nanofiber yarn-based textiles for biomedical applications. APPLIED MATERIALS TODAY 2022; 27:101473. [PMID: 35434263 PMCID: PMC8994858 DOI: 10.1016/j.apmt.2022.101473] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/23/2022] [Accepted: 03/31/2022] [Indexed: 05/02/2023]
Abstract
The pandemic of the coronavirus disease 2019 (COVID-19) has made biotextiles, including face masks and protective clothing, quite familiar in our daily lives. Biotextiles are one broad category of textile products that are beyond our imagination. Currently, biotextiles have been routinely utilized in various biomedical fields, like daily protection, wound healing, tissue regeneration, drug delivery, and sensing, to improve the health and medical conditions of individuals. However, these biotextiles are commonly manufactured with fibers with diameters on the micrometer scale (> 10 μm). Recently, nanofibrous materials have aroused extensive attention in the fields of fiber science and textile engineering because the fibers with nanoscale diameters exhibited obviously superior performances, such as size and surface/interface effects as well as optical, electrical, mechanical, and biological properties, compared to microfibers. A combination of innovative electrospinning techniques and traditional textile-forming strategies opens a new window for the generation of nanofibrous biotextiles to renew and update traditional microfibrous biotextiles. In the last two decades, the conventional electrospinning device has been widely modified to generate nanofiber yarns (NYs) with the fiber diameters less than 1000 nm. The electrospun NYs can be further employed as the primary processing unit for manufacturing a new generation of nano-textiles using various textile-forming strategies. In this review, starting from the basic information of conventional electrospinning techniques, we summarize the innovative electrospinning strategies for NY fabrication and critically discuss their advantages and limitations. This review further covers the progress in the construction of electrospun NY-based nanotextiles and their recent applications in biomedical fields, mainly including surgical sutures, various scaffolds and implants for tissue engineering, smart wearable bioelectronics, and their current and potential applications in the COVID-19 pandemic. At the end, this review highlights and identifies the future needs and opportunities of electrospun NYs and NY-based nanotextiles for clinical use.
Collapse
Key Words
- CNT, carbon nanotube
- COVID-19, coronavirus disease 2019
- ECM, extracellular matrix
- Electrospinning
- FDA, food and drug administration
- GF, gauge factor
- GO, graphene oxide
- HAVIC, human aortic valve interstitial cell
- HAp, hydroxyapatite
- MSC, mesenchymal stem cell
- MSC-SC, MSC derived Schwann cell-like cell
- MWCNT, multiwalled carbon nanotube
- MY, microfiber yarn
- MeGel, methacrylated gelatin
- NGC, nerve guidance conduit
- NHMR, neutral hollow metal rod
- NMD, neutral metal disc
- NY, nanofiber yarn
- Nanoyarns
- PA6, polyamide 6
- PA66, polyamide 66
- PAN, polyacrylonitrile
- PANi, polyaniline
- PCL, polycaprolactone
- PEO, polyethylene oxide
- PGA, polyglycolide
- PHBV, poly(3-hydroxybutyrate-co-3-hydroxyvalerate)
- PLCL, poly(L-lactide-co-ε-caprolactone)
- PLGA, poly(lactic-co-glycolic acid)
- PLLA, poly(L-lactic acid)
- PMIA, poly(m-phenylene isophthalamide)
- PPDO, polydioxanone
- PPy, polypyrrole
- PSA, poly(sulfone amide)
- PU, polyurethane
- PVA, poly(vinyl alcohol)
- PVAc, poly(vinyl acetate)
- PVDF, poly(vinylidene difluoride)
- PVDF-HFP, poly(vinylidene floride-co-hexafluoropropylene)
- PVDF-TrFE, poly(vinylidene fluoride trifluoroethylene)
- PVP, poly(vinyl pyrrolidone)
- SARS-CoV-2, severe acute respiratory syndrome coronavirus 2
- SC, Schwann cell
- SF, silk fibroin
- SWCNT, single-walled carbon nanotube
- TGF-β1, transforming growth factor-β1
- Textile-forming technique
- Tissue scaffolds
- VEGF, vascular endothelial growth factor
- Wearable bioelectronics
- bFGF, basic fibroblast growth factor
Collapse
Affiliation(s)
- Shaohua Wu
- College of Textiles & Clothing, Qingdao University, Qingdao, China
| | - Ting Dong
- College of Textiles & Clothing, Qingdao University, Qingdao, China
| | - Yiran Li
- College of Textiles & Clothing, Qingdao University, Qingdao, China
| | - Mingchao Sun
- College of Textiles & Clothing, Qingdao University, Qingdao, China
| | - Ye Qi
- College of Textiles & Clothing, Qingdao University, Qingdao, China
| | - Jiao Liu
- College of Textiles & Clothing, Qingdao University, Qingdao, China
| | - Mitchell A Kuss
- Mary & Dick Holland Regenerative Medicine Program and Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shaojuan Chen
- College of Textiles & Clothing, Qingdao University, Qingdao, China
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program and Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
6
|
Arifin N, Sudin I, Ngadiman NHA, Ishak MSA. A Comprehensive Review of Biopolymer Fabrication in Additive Manufacturing Processing for 3D-Tissue-Engineering Scaffolds. Polymers (Basel) 2022; 14:2119. [PMID: 35632000 PMCID: PMC9147259 DOI: 10.3390/polym14102119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/29/2022] [Accepted: 05/01/2022] [Indexed: 01/25/2023] Open
Abstract
The selection of a scaffold-fabrication method becomes challenging due to the variety in manufacturing methods, biomaterials and technical requirements. The design and development of tissue engineering scaffolds depend upon the porosity, which provides interconnected pores, suitable mechanical strength, and the internal scaffold architecture. The technology of the additive manufacturing (AM) method via photo-polymerization 3D printing is reported to have the capability to fabricate high resolution and finely controlled dimensions of a scaffold. This technology is also easy to operate, low cost and enables fast printing, compared to traditional methods and other additive manufacturing techniques. This article aims to review the potential of the photo-polymerization 3D-printing technique in the fabrication of tissue engineering scaffolds. This review paper also highlights the comprehensive comparative study between photo-polymerization 3D printing with other scaffold fabrication techniques. Various parameter settings that influence mechanical properties, biocompatibility and porosity behavior are also discussed in detail.
Collapse
Affiliation(s)
- Nurulhuda Arifin
- Quality Engineering, Malaysian Institute of Industrial Technology, Universiti Kuala Lumpur (UniKL), Persiaran Sinaran Ilmu, Bandar Seri Alam 81750, Johor, Malaysia;
| | - Izman Sudin
- School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Bahru 81310, Johor, Malaysia;
| | - Nor Hasrul Akhmal Ngadiman
- School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Bahru 81310, Johor, Malaysia;
| | - Mohamad Shaiful Ashrul Ishak
- Faculty of Mechanical Engineering Technology, Universiti Malaysia Perlis, Kampus Pauh Putra, Arau 02600, Perlis, Malaysia;
| |
Collapse
|
7
|
Kareem MM, Tanner KE. Methods of producing three dimensional electrospun scaffolds for bone tissue engineering: A review. Proc Inst Mech Eng H 2022; 236:9544119211069463. [PMID: 35048771 DOI: 10.1177/09544119211069463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Bone is a dynamic, living tissue that exists and renews itself continuously in a 3D manner. Nevertheless, complex clinical conditions require a bone substitute to replace the defective bone and/or accelerate bone healing. Bone tissue engineering aims to treat bone defects that fail to heal on their own. Electrospinning provides an opportunity to create nano- to micro-fibrous scaffolds that mimic the architecture of the natural extracellular matrix (ECM) with high porosity and large specific surface area. Despite these advantages, traditional electrospun meshes can only provide a 2D architecture for cell attachment and proliferation rather than the 3D attachment in native tissue. Fabrication of 3D electrospun scaffolds for bone tissue regeneration is a challenging task, which has attracted significant attention over the past couple of decades. This review highlights recent strategies used to produce 3D electrospun/co-electrospun scaffolds for bone tissue applications describing the materials and procedures. It also considers combining conventional and coaxial electrospinning with other scaffold manufacturing techniques to produce 3D structures which have the potential to engineer missing bone in the human body.Graphical abstract[Formula: see text].
Collapse
Affiliation(s)
- Muna M Kareem
- Department of Medical Instrumentation Techniques Engineering, Dijlah University College, Baghdad, Iraq
| | - K E Tanner
- School of Engineering and Materials Science, Queen Mary University of London, London, UK
| |
Collapse
|
8
|
Voniatis C, Gottscháll R, Barczikai D, Szabó G, Jedlovszky‐Hajdu A. Enhancing critical features of poly(amino acid) based meshes. J Appl Polym Sci 2021. [DOI: 10.1002/app.51933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Constantinos Voniatis
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology Semmelweis University Budapest Hungary
- Department of Surgical Research and Techniques, Heart and Vascular Centre Semmelweis University Budapest Hungary
| | - Ramóna Gottscháll
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology Semmelweis University Budapest Hungary
- Premed Pharma KFT Budapest Hungary
| | - Dóra Barczikai
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology Semmelweis University Budapest Hungary
| | | | - Angela Jedlovszky‐Hajdu
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology Semmelweis University Budapest Hungary
| |
Collapse
|
9
|
Emerging approaches of wound healing in experimental models of high-grade oral mucositis induced by anticancer therapy. Oncotarget 2021; 12:2283-2299. [PMID: 34733419 PMCID: PMC8555685 DOI: 10.18632/oncotarget.28091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/24/2021] [Indexed: 01/22/2023] Open
Abstract
Clinical guidelines for oral mucositis (OM) still consist in palliative care. Herein, we summarize cellular and molecular mechanisms of OM ulceration in response to chemical therapies in animal models. We discuss evidenced anti-inflammatory and anti-oxidant drugs which have not been ever used for OM, such as synthetic peptides as well as cell therapy with mesenchymal stem cells; amniotic membranes, mucoadhesive polymers loaded with anti-inflammatory agents and natural or synthetic electrospun. These approaches have been promising to allow the production of drug-loaded membranes, scaffolds for cells encapsulation or guided tissue regeneration.
Collapse
|
10
|
Lakkireddy C, Vishwakarma SK, Raju N, Ahmed SI, Bardia A, Khan MA, Annamaneni S, Khan AA. Fabrication of Decellularized Amnion and Chorion Scaffolds to Develop Bioengineered Cell-Laden Constructs. Cell Mol Bioeng 2021; 15:137-150. [DOI: 10.1007/s12195-021-00707-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 09/15/2021] [Indexed: 12/21/2022] Open
|
11
|
Osório LA, Silva E, Mackay RE. A Review of Biomaterials and Scaffold Fabrication for Organ-on-a-Chip (OOAC) Systems. Bioengineering (Basel) 2021; 8:113. [PMID: 34436116 PMCID: PMC8389238 DOI: 10.3390/bioengineering8080113] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022] Open
Abstract
Drug and chemical development along with safety tests rely on the use of numerous clinical models. This is a lengthy process where animal testing is used as a standard for pre-clinical trials. However, these models often fail to represent human physiopathology. This may lead to poor correlation with results from later human clinical trials. Organ-on-a-Chip (OOAC) systems are engineered microfluidic systems, which recapitulate the physiochemical environment of a specific organ by emulating the perfusion and shear stress cellular tissue undergoes in vivo and could replace current animal models. The success of culturing cells and cell-derived tissues within these systems is dependent on the scaffold chosen; hence, scaffolds are critical for the success of OOACs in research. A literature review was conducted looking at current OOAC systems to assess the advantages and disadvantages of different materials and manufacturing techniques used for scaffold production; and the alternatives that could be tailored from the macro tissue engineering research field.
Collapse
Affiliation(s)
- Luana A. Osório
- Department of Mechanical, Aerospace and Civil Engineering, Brunel University London, Uxbridge UB8 3PH, UK;
| | - Elisabete Silva
- Department of Life Science, Brunel University London, Uxbridge UB8 3PH, UK;
| | - Ruth E. Mackay
- Department of Mechanical, Aerospace and Civil Engineering, Brunel University London, Uxbridge UB8 3PH, UK;
| |
Collapse
|
12
|
Shi X, Sun Y, Wang P, Ma Z, Liu H, Ning H. Compression properties and optimization design of SLM Ti6Al4V square pore tissue engineering scaffolds. Proc Inst Mech Eng H 2021; 235:1265-1273. [PMID: 34281449 DOI: 10.1177/09544119211028061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The tissue engineering technology provides a new way to solve bone defect. Porous scaffolds supply support and adhesion space for cells. Design of pore structure of scaffolds is one of the key points in tissue engineering scaffolds, because the structure affects the performance of scaffolds directly. In this paper, mechanical properties of square porous Ti6Al4V scaffolds are studied. By finite element simulation, it can be found that the support structure in vertical direction assumes main force, so the structure can be optimized through relative density mapping (RDM) method. The modified arch structures can improve bearing effect of structure with the same porosity. The designed structures are obtained by selective laser melting. Results of compressive strength indicate that the compressive strength decreases with the increase of porosity. When the porosity is between 40% and 60%, the error of compressive strength calculated by Gibson-Ashby model is below 8%. Moreover, the optimized structure clears a better bearing effect, and the bearing capacity can be increased by 20%-30% under the same porosity.
Collapse
Affiliation(s)
- Xiaoquan Shi
- Department of Mechanical Engineering and Automation, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Yazhou Sun
- Department of Mechanical Engineering and Automation, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Pengju Wang
- Department of Mechanical Engineering and Automation, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Ziyang Ma
- Department of Mechanical Engineering and Automation, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Haitao Liu
- Department of Mechanical Engineering and Automation, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Haohao Ning
- Department of Mechanical Engineering and Automation, Harbin Institute of Technology, Harbin, Heilongjiang, China
| |
Collapse
|
13
|
Pedrosa MCG, dos Anjos SA, Mavropoulos E, Bernardo PL, Granjeiro JM, Rossi AM, Dias ML. Structure and biological compatibility of polycaprolactone/zinc-hydroxyapatite electrospun nanofibers for tissue regeneration. J BIOACT COMPAT POL 2021. [DOI: 10.1177/08839115211022448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although guided tissue regeneration (GTR) is a useful tool for regenerating lost tissue as bone and periodontal tissue, a biocompatible membrane capable of regenerating large defects has yet to be discovered. This study aimed to characterize the physicochemical properties and biological compatibility of polycaprolactone (PCL) membranes associated with or without nanostructured hydroxyapatite (HA) (PCL/HA) and Zn-doped HA (PCL/ZnHA), produced by electrospinning. PCL, PCL/HA, and PCL/ZnHA were characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), thermal gravimetric analysis (TGA), and differential scanning calorimetry (DSC). Nanoparticles of HA or ZnHA were homogeneously distributed and dispersed inside the PCL fibers, which decreased the fiber thickness. At 1 wt% of HA or ZnHA, these nanoparticles acted as nucleating agents. Moreover, HA and ZnHA increased the onset of the degradation temperature and thermal stability of the electrospun membrane. All tested membranes showed no cytotoxicity and allowed murine pre-osteoblast adhesion and spreading; however, higher concentrations of PCL/ZnHA showed less cells and an irregular cell morphology compared to PCL and PCL/HA. This article presents a cytocompatible, electrospun, nanocomposite membrane with a novel morphology and physicochemical properties that make it eligible as a scaffold for GTR.
Collapse
Affiliation(s)
- Maria Clara Guimaraes Pedrosa
- Instituto de Macromoléculas Professora Eloisa Mano (IMA), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Elena Mavropoulos
- Centro Brasileiro de Pesquisas Físicas (CBPF), Rio de Janeiro, Brazil
| | | | - José Mauro Granjeiro
- Directory of Life Sciences Applied Metrology, Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Duque de Caxias, RJ, Brazil
| | | | - Marcos Lopes Dias
- Instituto de Macromoléculas Professora Eloisa Mano (IMA), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Application of Computational Method in Designing a Unit Cell of Bone Tissue Engineering Scaffold: A Review. Polymers (Basel) 2021; 13:polym13101584. [PMID: 34069101 PMCID: PMC8156807 DOI: 10.3390/polym13101584] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/27/2022] Open
Abstract
The design of a scaffold of bone tissue engineering plays an important role in ensuring cell viability and cell growth. Therefore, it is a necessity to produce an ideal scaffold by predicting and simulating the properties of the scaffold. Hence, the computational method should be adopted since it has a huge potential to be used in the implementation of the scaffold of bone tissue engineering. To explore the field of computational method in the area of bone tissue engineering, this paper provides an overview of the usage of a computational method in designing a unit cell of bone tissue engineering scaffold. In order to design a unit cell of the scaffold, we discussed two categories of unit cells that can be used to design a feasible scaffold, which are non-parametric and parametric designs. These designs were later described and being categorised into multiple types according to their characteristics, such as circular structures and Triply Periodic Minimal Surface (TPMS) structures. The advantages and disadvantages of these designs were discussed. Moreover, this paper also represents some software that was used in simulating and designing the bone tissue scaffold. The challenges and future work recommendations had also been included in this paper.
Collapse
|
15
|
Guo Z, Poot AA, Grijpma DW. Advanced polymer-based composites and structures for biomedical applications. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110388] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Moulefera I, Trabelsi M, Mamun A, Sabantina L. Electrospun Carbon Nanofibers from Biomass and Biomass Blends-Current Trends. Polymers (Basel) 2021; 13:1071. [PMID: 33805323 PMCID: PMC8036826 DOI: 10.3390/polym13071071] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/19/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
In recent years, ecological issues have led to the search for new green materials from biomass as precursors for producing carbon materials (CNFs). Such green materials are more attractive than traditional petroleum-based materials, which are environmentally harmful and non-biodegradable. Biomass could be ideal precursors for nanofibers since they stem from renewable sources and are low-cost. Recently, many authors have focused intensively on nanofibers' production from biomass using microwave-assisted pyrolysis, hydrothermal treatment, ultrasonication method, but only a few on electrospinning methods. Moreover, still few studies deal with the production of electrospun carbon nanofibers from biomass. This review focuses on the new developments and trends of electrospun carbon nanofibers from biomass and aims to fill this research gap. The review is focusing on recollecting the most recent investigations about the preparation of carbon nanofiber from biomass and biopolymers as precursors using electrospinning as the manufacturing method, and the most important applications, such as energy storage that include fuel cells, electrochemical batteries and supercapacitors, as well as wastewater treatment, CO2 capture, and medicine.
Collapse
Affiliation(s)
| | - Marah Trabelsi
- Junior Research Group “Nanomaterials”, Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany; (M.T.); (A.M.)
- Ecole Nationale d’Ingénieurs de Sfax (ENIS), Department of Materials Engineering, Sfax 3038, Tunisia
| | - Al Mamun
- Junior Research Group “Nanomaterials”, Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany; (M.T.); (A.M.)
| | - Lilia Sabantina
- Junior Research Group “Nanomaterials”, Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany; (M.T.); (A.M.)
| |
Collapse
|
17
|
Shahrousvand M, Haddadi-Asl V, Shahrousvand M. Step-by-step design of poly (ε-caprolactone) /chitosan/Melilotus officinalis extract electrospun nanofibers for wound dressing applications. Int J Biol Macromol 2021; 180:36-50. [PMID: 33727184 DOI: 10.1016/j.ijbiomac.2021.03.046] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/26/2021] [Accepted: 03/09/2021] [Indexed: 01/04/2023]
Abstract
Composition of polymers and choosing the type of solvents in electrospinning systems is of great importance to achieve a mat with optimal properties. In this work, with emphasizing the influence of a novel solvent system, an electrospun wound dressing was designed in four steps. Firstly, to study the effect of polymer-solvent interactions and electrospinning distance, a constant amount of polycaprolactone (PCL) was dissolved at different compositions of formic acid (FA)/dichloromethane (DCM) and was electrospun at different distances. The composition of 80FA/20DCM and distance of 15 cm were selected as optimal conditions by lowest average diameter of fibers and simultaneously good surface uniformity. In the second step, the concentration of PCL was considered variable to achieve the lowest diameter of fibers. Finally, in the third and fourth steps, different concentrations of chitosan (CN) and constant dosage of Melilotus officinalis (MO) extract were added to the solution. The extract contained fibers had a mean diameter of 275 ± 41 nm which is in the required condition for wound caring. Eventually, the optimized PCL/CN and PCL/CN/MO specimens were evaluated by FTIR, DSC, Tensile, water contact angle, antibacterial assays, cell viability, and drug release analysis for determining their function and properties.
Collapse
Affiliation(s)
- Mohammad Shahrousvand
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Hafez Avenue, 15875-4413 Tehran, Iran
| | - Vahid Haddadi-Asl
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Hafez Avenue, 15875-4413 Tehran, Iran.
| | - Mohsen Shahrousvand
- Caspian Faculty of Engineering, College of Engineering, University of Tehran, P.O. Box 119-43841, Chooka Branch, Rezvanshahr, 4386156387, Guilan Province, Iran.
| |
Collapse
|
18
|
Exploiting biomaterial approaches to manufacture an artificial trabecular meshwork: A progress report. BIOMATERIALS AND BIOSYSTEMS 2021; 1:100011. [PMID: 36825164 PMCID: PMC9934513 DOI: 10.1016/j.bbiosy.2021.100011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 01/11/2023] Open
Abstract
Glaucoma is the second leading cause of irreversible blindness worldwide. Glaucoma is a progressive optic neuropathy in which permanent loss of peripheral vision results from neurodegeneration in the optic nerve head. The trabecular meshwork is responsible for regulating intraocular pressure, which to date, is the only modifiable risk factor associated with the development of glaucoma. Lowering intraocular pressure reduces glaucoma progression and current surgical approaches for glaucoma attempt to reduce outflow resistance through the trabecular meshwork. Many surgical approaches use minimally invasive glaucoma surgeries (MIGS) to control glaucoma. In this progress report, biomaterials currently employed to treat glaucoma, such as MIGS, and the issues associated with them are described. The report also discusses innovative biofabrication approaches that aim to revolutionise glaucoma treatment through tissue engineering and regenerative medicine (TERM). At present, there are very few applications targeted towards TM engineering in vivo, with a great proportion of these biomaterial structures being developed for in vitro model use. This is a consequence of the many anatomical and physiological attributes that must be considered when designing a TERM device for microscopic tissues, such as the trabecular meshwork. Ongoing advancements in TERM research from multi-disciplinary teams should lead to the development of a state-of-the-art device to restore trabecular meshwork function and provide a bio-engineering solution to improve patient outcomes.
Collapse
|
19
|
da Silva RJ, Mojica-Sánchez LC, Gorza FDS, Pedro GC, Maciel BG, Ratkovski GP, da Rocha HD, do Nascimento KTO, Medina-Llamas JC, Chávez-Guajardo AE, Alcaraz-Espinoza JJ, de Melo CP. Kinetics and thermodynamic studies of Methyl Orange removal by polyvinylidene fluoride-PEDOT mats. J Environ Sci (China) 2021; 100:62-73. [PMID: 33279054 DOI: 10.1016/j.jes.2020.04.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/21/2020] [Accepted: 04/21/2020] [Indexed: 05/08/2023]
Abstract
We report the preparation of poly(3,4-ethylene dioxythiophene) (PEDOT)-modified polyvinylidene fluoride electrospun fibers and their use as a novel adsorbent material for the removal of the anionic dye Methyl Orange (MO) from aqueous media. This novel adsorbent material can be used to selectively remove MO on a wide pH range (3.0-10.0), with a maximum capacity of 143.8 mg/g at pH 3.0. When used in a recirculating filtration system, the maximum absorption capacity was reached in a shorter time (20 min) than that observed for batch mode experiments (360 min). Based on the analyses of the kinetics and adsorption isotherm data, one can conclude that the predominant mechanism of interaction between the membrane and the dissolved dye molecules is electrostatic. Besides, considering the estimated values for the Gibbs energy, and entropy and enthalpy changes, it was established that the adsorption process is spontaneous and occurs in an endothermic manner. The good mechanical and environmental stability of these membranes allowed their use in at least 20 consecutive adsorption/desorption cycles, without significant loss of their characteristics. We suggest that the physical-chemical characteristics of PEDOT make these hybrid mats a promising adsorbent material for use in water remediation protocols and effluent treatment systems.
Collapse
Affiliation(s)
- Romário J da Silva
- Programa de Pós-Graduação em Ciência de Materiais, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil
| | | | - Filipe D S Gorza
- Programa de Pós-Graduação em Ciência de Materiais, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil
| | - Graciela C Pedro
- Programa de Pós-Graduação em Ciência de Materiais, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil
| | - Bruna G Maciel
- Programa de Pós-Graduação em Ciência de Materiais, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil
| | - Gabriela P Ratkovski
- Departamento de Física, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil
| | - Hérica D da Rocha
- Programa de Pós-Graduação em Ciência de Materiais, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil
| | - Kamila T O do Nascimento
- Programa de Pós-Graduação em Ciência de Materiais, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil
| | - Juan C Medina-Llamas
- Centro de Estudios Científicos y Tecnológicos No.18, Instituto Politécnico Nacional, 98160 Zacatecas, Zac, Mexico
| | - Alicia E Chávez-Guajardo
- Unidad Académica de Ciencias de la Tierra, Universidad Autónoma de Zacatecas, 98058 Zacatecas, Zac, Mexico
| | - José J Alcaraz-Espinoza
- Departamento de Química, Universidad Autónoma Metropolitana, 09340, Ciudad de México, México
| | - Celso P de Melo
- Programa de Pós-Graduação em Ciência de Materiais, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil; Departamento de Física, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil.
| |
Collapse
|
20
|
Abstract
One of the largest fields of application of electrospun materials is the biomedical field, including development of scaffolds for tissue engineering, drug delivery and wound healing. Electrospinning appears as a promising technique in terms of scaffolds composition and architecture, which is the main aspect of this review paper, with a special attention to natural polymers including collagen, fibrinogen, silk fibroin, chitosan, chitin etc. Thanks to the adaptability of the electrospinning process, versatile hybrid, custom tailored structure scaffolds have been reported. The same is achieved due to the vast biomaterials’ processability as well as modifications of the basic electrospinning set-up and its combination with other techniques, simultaneously or by post-processing.
Collapse
|
21
|
Bellani C, Yue K, Flaig F, Hébraud A, Ray P, Annabi N, Selistre de Araújo HS, Branciforti MC, Minarelli Gaspar AM, Shin SR, Khademhosseini A, Schlatter G. Suturable elastomeric tubular grafts with patterned porosity for rapid vascularization of 3D constructs. Biofabrication 2021; 13. [PMID: 33482658 DOI: 10.1088/1758-5090/abdf1d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 01/22/2021] [Indexed: 12/11/2022]
Abstract
Vascularization is considered to be one of the key challenges in engineering functional 3D tissues. Engineering suturable vascular grafts containing pores with diameter of several tens of microns in tissue engineered constructs may provide an instantaneous blood perfusion through the grafts improving cell infiltration and thus, allowing rapid vascularization and vascular branching. The aim of this work was to develop suturable tubular scaffolds to be integrated in biofabricated constructs, enabling the direct connection of the biofabricated construct with the host blood stream, providing an immediate blood flow inside the construct. Here, tubular grafts with customizable shapes (tubes, Y-shape capillaries) and controlled diameter ranging from several hundreds of microns to few mm are fabricated based on poly(glycerol sebacate) (PGS) / poly(vinyl alcohol) (PVA) electrospun scaffolds. Furthermore, a network of pore channels of diameter in the order of 100 µm was machined by laser femtosecond ablation in the tube wall. Both non-machined and laser machined tubular scaffolds elongated more than 100% of their original size have shown suture retention, being 5.85 and 3.96 N/mm2 respectively. To demonstrate the potential of application, the laser machined porous grafts were embedded in gelatin methacryloyl (GelMA) hydrogels, resulting in elastomeric porous tubular graft/GelMA 3D constructs. These constructs were then co-seeded with osteoblast-like cells (MG-63) at the external side of the graft and endothelial cells (HUVEC) inside, forming a bone osteon model. The laser machined pore network allowed an immediate endothelial cell flow towards the osteoblasts enabling the osteoblasts and endothelial cells to interact and form 3D structures. This rapid vascularization approach could be applied, not only for bone tissue regeneration, but also for a variety of tissues and organs.
Collapse
Affiliation(s)
- Caroline Bellani
- University of Sao Paulo, AVENIDA TRABALHADOR SÃO-CARLENSE, 400, Sao Carlos, São Paulo, 13566-590, BRAZIL
| | - Kan Yue
- South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, 381 Wushan Rd, Guangzhou, Guangdong, 510641, CHINA
| | - Florence Flaig
- ICPEES, University of Strasbourg, 25 rue Bécquerel, Strasbourg, 67087, FRANCE
| | - Anne Hébraud
- ICPEES, 25 rue Bécquerel, Strasbourg, 67087, FRANCE
| | - Pengfei Ray
- Division of Health Sciences and Technology, MIT, 45 Carleton Street, Cambridge, Massachusetts, 02142, UNITED STATES
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, UCLA, 5531 Boelter Hall, Los Angeles, California, CA 90095, UNITED STATES
| | | | - Marcia Cristina Branciforti
- Depatament of Materials Engineering, University of Sao Paulo, AVENIDA TRABALHADOR SÃO-CARLENSE, 400, ARNOLD SCHMITED, SAO CARLOS, Sao Paulo, SAO PAULO, 13566-590, BRAZIL
| | - Ana Maria Minarelli Gaspar
- Department of Morphology, School of Dentistry at Araraquara, Sao Paulo State University Julio de Mesquita Filho, R. Humaitá, 1680, Araraquara, SP, 14801-385, BRAZIL
| | - Su Ryon Shin
- Medicine, Harvard Medical School, 25 Shattuck Street, Boston, Massachusetts, MA 02115, UNITED STATES
| | - Ali Khademhosseini
- Department of Chemical and Biomolecular Engineering, UCLA, 5531 Boelter Hall, Los Angeles, California, CA 90095, UNITED STATES
| | - Guy Schlatter
- ICPEES, University of Strasbourg, 25 rue Bécquerel, Strasbourg, 67087, FRANCE
| |
Collapse
|
22
|
Leal-Marin S, Kern T, Hofmann N, Pogozhykh O, Framme C, Börgel M, Figueiredo C, Glasmacher B, Gryshkov O. Human Amniotic Membrane: A review on tissue engineering, application, and storage. J Biomed Mater Res B Appl Biomater 2020; 109:1198-1215. [PMID: 33319484 DOI: 10.1002/jbm.b.34782] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/07/2020] [Accepted: 12/02/2020] [Indexed: 12/15/2022]
Abstract
Human amniotic membrane (hAM) has been employed as scaffolding material in a wide range of tissue engineering applications, especially as a skin dressing and as a graft for corneal treatment, due to the structure of the extracellular matrix and excellent biological properties that enhance both wound healing and tissue regeneration. This review highlights recent work and current knowledge on the application of native hAM, and/or production of hAM-based tissue-engineered products to create scaffolds mimicking the structure of the native membrane to enhance the hAM performance. Moreover, an overview is presented on the available (cryo) preservation techniques for storage of native hAM and tissue-engineered products that are necessary to maintain biological functions such as angiogenesis, anti-inflammation, antifibrotic and antibacterial activity.
Collapse
Affiliation(s)
- Sara Leal-Marin
- Institute for Multiphase Processes, Leibniz University Hannover, Garbsen, Germany
| | - Thomas Kern
- Department of Ophthalmology, University Eye Hospital, Hannover Medical School, Hannover, Germany
| | - Nicola Hofmann
- German Society for Tissue Transplantation (DGFG), Hannover, Germany
| | - Olena Pogozhykh
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Carsten Framme
- Department of Ophthalmology, University Eye Hospital, Hannover Medical School, Hannover, Germany
| | - Martin Börgel
- German Society for Tissue Transplantation (DGFG), Hannover, Germany
| | - Constanca Figueiredo
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Birgit Glasmacher
- Institute for Multiphase Processes, Leibniz University Hannover, Garbsen, Germany
| | - Oleksandr Gryshkov
- Institute for Multiphase Processes, Leibniz University Hannover, Garbsen, Germany
| |
Collapse
|
23
|
Dufay M, Jimenez M, Degoutin S. Effect of Cold Plasma Treatment on Electrospun Nanofibers Properties: A Review. ACS APPLIED BIO MATERIALS 2020; 3:4696-4716. [DOI: 10.1021/acsabm.0c00154] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Malo Dufay
- CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, Université de Lille, F-59000 Lille, France
| | - Maude Jimenez
- CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, Université de Lille, F-59000 Lille, France
| | - Stéphanie Degoutin
- CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, Université de Lille, F-59000 Lille, France
| |
Collapse
|
24
|
Rezvova MA, Ovcharenko EA, Klyshnikov KY, Kudryavtseva YA. Promising polymeric compounds for coronary stent graft membrane. КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2020. [DOI: 10.15829/1728-8800-2020-2318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The literature review discusses the studies on developing the polymer membrane of a coronary stent graft. The new generation of coronary stent grafts is designed to increase the hemocompatibility and ensure its delivery to poorly accessible artery regions. Based on the clinical use results, three groups of promising polymers were identified: biostable polyurethanes, polyvinyl alcohol-based cryogels, bioresorbable compositions based on polylactide-caprolactone and lactic acid-glycolic acid copolymer. However, the possibility of their clinical application requires further experimental studying.
Collapse
Affiliation(s)
- M. A. Rezvova
- Research Institute for Complex Issues of Cardiovascular Diseases
| | - E. A. Ovcharenko
- Research Institute for Complex Issues of Cardiovascular Diseases
| | | | | |
Collapse
|
25
|
Chernonosova VS, Laktionov PP, Murashov IS, Karpenko AA, Laktionov PP. Comparative gene expression profiling of human primary endotheliocytes cultivated on polyurethane-based electrospun 3D matrices and natural decellularized vein. ACTA ACUST UNITED AC 2020; 15:045012. [PMID: 32143210 DOI: 10.1088/1748-605x/ab7d84] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The formation of a continuous layer of normally functioning endothelium on the lumen surface of small diameter vascular grafts is considered a prerequisite of their long-term functioning without stenosis. Thus, materials supporting not only endothelialization but also the normal functioning state of endotheliocytes are demanded. In this study, we have evaluated the functional state of human umbilical vein endothelial cells (HUVEC) cultivated on the surface of autologous decellularized human umbilical vein and electrospun polyurethane-based matrices by next generation sequencing gene expression profiling. Three types of matrices produced by electrospinning from hexafluoroisopropanol solutions of pure TECOFLEX™ EG-80A polyurethane, polyurethane with gelatin and polyurethane with gelatin and bivalirudin were studied. Cells cultivated on different supports were subjected to RNA-Seq profiling on an Illumina HiSeq platform. The data demonstrated that the structure of 3D matrices and the chemical composition of the fibers have a significant effect on the gene expression profiles of HUVEC. The results suggest that protein-enriched polyurethane-based 3D matrices represent a convenient surface for obtaining a normally functioning endothelial layer.
Collapse
Affiliation(s)
- Vera S Chernonosova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (ICBFM SB RAS), pr. Lavrentieva 8, Novosibirsk 630090, Russia. Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, ul. Rechkunovskaya 15, Novosibirsk 630055, Russia
| | | | | | | | | |
Collapse
|
26
|
Lim WL, Liau LL, Ng MH, Chowdhury SR, Law JX. Current Progress in Tendon and Ligament Tissue Engineering. Tissue Eng Regen Med 2019; 16:549-571. [PMID: 31824819 PMCID: PMC6879704 DOI: 10.1007/s13770-019-00196-w] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/07/2019] [Accepted: 05/22/2019] [Indexed: 02/08/2023] Open
Abstract
Background Tendon and ligament injuries accounted for 30% of all musculoskeletal consultations with 4 million new incidences worldwide each year and thus imposed a significant burden to the society and the economy. Damaged tendon and ligament can severely affect the normal body movement and might lead to many complications if not treated promptly and adequately. Current conventional treatment through surgical repair and tissue graft are ineffective with a high rate of recurrence. Methods In this review, we first discussed the anatomy, physiology and pathophysiology of tendon and ligament injuries and its current treatment. Secondly, we explored the current role of tendon and ligament tissue engineering, describing its recent advances. After that, we also described stem cell and cell secreted product approaches in tendon and ligament injuries. Lastly, we examined the role of the bioreactor and mechanical loading in in vitro maturation of engineered tendon and ligament. Results Tissue engineering offers various alternative ways of treatment from biological tissue constructs to stem cell therapy and cell secreted products. Bioreactor with mechanical stimulation is instrumental in preparing mature engineered tendon and ligament substitutes in vitro. Conclusions Tissue engineering showed great promise in replacing the damaged tendon and ligament. However, more study is needed to develop ideal engineered tendon and ligament.
Collapse
Affiliation(s)
- Wei Lee Lim
- Tissue Engineering Centre, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Kuala Lumpur, Malaysia
| | - Ling Ling Liau
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, JalanYaacob Latif, 56000 Kuala Lumpur, Malaysia
| | - Min Hwei Ng
- Tissue Engineering Centre, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Kuala Lumpur, Malaysia
| | - Shiplu Roy Chowdhury
- Tissue Engineering Centre, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Kuala Lumpur, Malaysia
| | - Jia Xian Law
- Tissue Engineering Centre, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Kuala Lumpur, Malaysia
| |
Collapse
|
27
|
Shick TM, Abdul Kadir AZ, Ngadiman NHA, Ma’aram A. A review of biomaterials scaffold fabrication in additive manufacturing for tissue engineering. J BIOACT COMPAT POL 2019. [DOI: 10.1177/0883911519877426] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The current developments in three-dimensional printing also referred as “additive manufacturing” have transformed the scenarios for modern manufacturing and engineering design processes which show greatest advantages for the fabrication of complex structures such as scaffold for tissue engineering. This review aims to introduce additive manufacturing techniques in tissue engineering, types of biomaterials used in scaffold fabrication, as well as in vitro and in vivo evaluations. Biomaterials and fabrication methods could critically affect the outcomes of scaffold mechanical properties, design architectures, and cell proliferations. In addition, an ideal scaffold aids the efficiency of cell proliferation and allows the movements of cell nutrient inside the human body with their specific material properties. This article provides comprehensive review that covers broad range of all the biomaterial types using various additive manufacturing technologies. The data were extracted from 2008 to 2018 mostly from Google Scholar, ScienceDirect, and Scopus using keywords such as “Additive Manufacturing,” “3D Printing,” “Tissue Engineering,” “Biomaterial” and “Scaffold.” A 10 years research in this area was found to be mostly focused toward obtaining an ideal scaffold by investigating the fabrication strategies, biomaterials compatibility, scaffold design effectiveness through computer-aided design modeling, and optimum printing machine parameters identification. As a conclusion, this ideal scaffold fabrication can be obtained with the combination of different materials that could enhance the material properties which performed well in optimum additive manufacturing condition. Yet, there are still many challenges from the printing methods, bioprinting and cell culturing that needs to be discovered and investigated in the future.
Collapse
Affiliation(s)
- Tang Mei Shick
- School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Skudai, Johor Bahru, Malaysia
| | - Aini Zuhra Abdul Kadir
- School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Skudai, Johor Bahru, Malaysia
| | - Nor Hasrul Akhmal Ngadiman
- School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Skudai, Johor Bahru, Malaysia
| | - Azanizawati Ma’aram
- School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Skudai, Johor Bahru, Malaysia
| |
Collapse
|
28
|
Pugliese R, Maleki M, Zuckermann RN, Gelain F. Self-assembling peptides cross-linked with genipin: resilient hydrogels and self-standing electrospun scaffolds for tissue engineering applications. Biomater Sci 2019; 7:76-91. [PMID: 30475373 DOI: 10.1039/c8bm00825f] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Self-assembling peptides (SAPs) are synthetic bioinspired biomaterials that can be feasibly multi-functionalized for applications in surgery, drug delivery, optics and tissue engineering (TE). Despite their promising biocompatibility and biomimetic properties, they have never been considered real competitors of polymers and/or cross-linked extracellular matrix (ECM) natural proteins. Indeed, synthetic SAP-made hydrogels usually feature modest mechanical properties, limiting their potential applications, due to the transient non-covalent interactions involved in the self-assembling phenomenon. Cross-linked SAP-hydrogels have been recently introduced to bridge this gap, but several questions remain open. New strategies leading to stiffer gels of SAPs may allow for a full exploitation of the SAP technology in TE and beyond. We have developed and characterized a genipin cross-linking strategy significantly increasing the stiffness and resiliency of FAQ(LDLK)3, a functionalized SAP already used for nervous cell cultures. We characterized different protocols of cross-linking, analyzing their dose and time-dependent efficiency, influencing stiffness, bioabsorption time and molecular arrangements. We choose the best developed protocol to electrospin into nanofibers, for the first time, self-standing, water-stable and flexible fibrous mats and micro-channels entirely made of SAPs. This work may open the door to the development and tailoring of bioprostheses entirely made of SAPs for different TE applications.
Collapse
Affiliation(s)
- Raffaele Pugliese
- IRCSS Casa Sollievo della Sofferenza, Unità di Ingegneria Tissutale, Viale Cappuccini 1, San Giovanni Rotondo, FG 71013, Italy.
| | | | | | | |
Collapse
|
29
|
Parvathi K, Krishnan AG, Anitha A, Jayakumar R, Nair MB. Poly(L-lactic acid) nanofibers containing Cissus quadrangularis induced osteogenic differentiation in vitro. Int J Biol Macromol 2018; 110:514-521. [DOI: 10.1016/j.ijbiomac.2017.11.094] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/09/2017] [Accepted: 11/14/2017] [Indexed: 12/23/2022]
|
30
|
Ngadiman NHA, Yusof NM, Idris A, Fallahiarezoudar E, Kurniawan D. Novel Processing Technique to Produce Three Dimensional Polyvinyl Alcohol/Maghemite Nanofiber Scaffold Suitable for Hard Tissues. Polymers (Basel) 2018; 10:E353. [PMID: 30966388 PMCID: PMC6414894 DOI: 10.3390/polym10040353] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/20/2018] [Accepted: 03/21/2018] [Indexed: 11/16/2022] Open
Abstract
Fabrication of three dimensional (3D) tissue engineering scaffolds, particularly for hard tissues remains a challenge. Electrospinning has been used to fabricate scaffolds made from polymeric materials which are suitable for hard tissues. The electrospun scaffolds also have structural arrangement that mimics the natural extracellular matrix. However, electrospinning has a limitation in terms of scaffold layer thickness that it can fabricate. Combining electrospinning with other processes is the way forward, and in this proposed technique, the basic shape of the scaffold is obtained by a fused deposition modelling (FDM) three dimensional (3D) printing machine using the partially hydrolysed polyvinyl alcohol (PVA) as the filament material. The 3D printed PVA becomes a template to be placed inside a mould which is then filled with the fully hydrolysed PVA/maghemite (γ-Fe₂O₃) solution. After the content in the mould solidified, the mould is opened and the content is freeze dried and immersed in water to dissolve the template. The 3D structure made of PVA/maghemite is then layered by electrospun PVA/maghemite fibers, resulting in 3D tissue engineering scaffold made from PVA/maghemite. The morphology and mechanical properties (strength and stiffness) were analysed and in vitro tests by degradation test and cell penetration were also performed. It was revealed that internally, the 3D scaffold has milli- and microporous structures whilst externally; it has a nanoporous structure as a result of the electrospun layer. The 3D scaffold has a compressive strength of 78.7 ± 0.6 MPa and a Young's modulus of 1.43 ± 0.82 GPa, which are within the expected range for hard tissue engineering scaffolds. Initial biocompatibility tests on cell penetration revealed that the scaffold can support growth of human fibroblast cells. Overall, the proposed processing technique which combines 3D printing process, thermal inversion phase separation (TIPS) method and electrospinning process has the potential for producing hard tissue engineering 3D scaffolds.
Collapse
Affiliation(s)
| | - Noordin Mohd Yusof
- Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia.
| | - Ani Idris
- Faculty of Chemical Engineering, c/o Institute of Bioproduct Development, Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia.
| | - Ehsan Fallahiarezoudar
- Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia.
| | - Denni Kurniawan
- Department of Mechanical Engineering, Curtin University, 98009 Miri, Malaysia.
| |
Collapse
|
31
|
Abstract
Electrospinning is commonly used to produce polymeric nanofibers. Potential applications for such fibers include novel drug delivery systems, tissue engineering scaffolds, and filters. Electrospinning, however, has shortcomings such as needle clogging and limited ability to control the fiber-properties in a non-chemical manner. This study reports on an orifice-less technique that employs high-intensity focused ultrasound, i.e. ultrasound-enhanced electrospinning. Ultrasound bursts were used to generate a liquid protrusion with a Taylor cone from the surface of a polymer solution of polyethylene oxide. When the polymer was charged with a high negative voltage, nanofibers jetted off from the tip of the protrusion landed on an electrically grounded target held at a constant distance from the tip. Controlling the ultrasound characteristics permitted physical modification of the nanofiber topography at will without using supplemental chemical intervention. Possible applications of tailor-made fibers generated by ultrasound-enhanced electrospinning include pharmaceutical controlled-release applications and biomedical scaffolds with spatial gradients in fiber thickness and mechanical properties.
Collapse
|
32
|
Electrospinning pectin-based nanofibers: a parametric and cross-linker study. APPLIED NANOSCIENCE 2018. [DOI: 10.1007/s13204-018-0649-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Abstract
Pectin, a natural biopolymer mainly derived from citrus fruits and apple peels, shows excellent biodegradable and biocompatible properties. This study investigated the electrospinning of pectin-based nanofibers. The parameters, pectin:PEO (polyethylene oxide) ratio, surfactant concentration, voltage, and flow rate, were studied to optimize the electrospinning process for generating the pectin-based nanofibers. Oligochitosan, as a novel and nonionic cross-liker of pectin, was also researched. Nanofibers were characterized by using AFM, SEM, and FTIR spectroscopy. The results showed that oligochitosan was preferred over Ca2+ because it cross-linked pectin molecules without negatively affecting the nanofiber morphology. Moreover, oligochitosan treatment produced a positive surface charge of nanofibers, determined by zeta potential measurement, which is desired for tissue engineering applications.
Collapse
|
33
|
Effect of resveratrol release kinetic from electrospun nanofibers on osteoblast and osteoclast differentiation. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2017.12.035] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
34
|
|