1
|
Overbergh T, Severijns P, Beaucage-Gauvreau E, Ackermans T, Moke L, Jonkers I, Scheys L. Subject-Specific Spino-Pelvic Models Reliably Measure Spinal Kinematics During Seated Forward Bending in Adult Spinal Deformity. Front Bioeng Biotechnol 2021; 9:720060. [PMID: 34540815 PMCID: PMC8440831 DOI: 10.3389/fbioe.2021.720060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/17/2021] [Indexed: 11/13/2022] Open
Abstract
Image-based subject-specific models and simulations are recently being introduced to complement current state-of-the-art mostly static insights of the adult spinal deformity (ASD) pathology and improve the often poor surgical outcomes. Although the accuracy of a recently developed subject-specific modeling and simulation framework has already been quantified, its reliability to perform marker-driven kinematic analyses has not yet been investigated. The aim of this work was to evaluate the reliability of this subject-specific framework to measure spine kinematics in ASD patients, in terms of 1) the overall test-retest repeatability; 2) the inter-operator agreement of spine kinematic estimates; and, 3) the uncertainty of those spine kinematics to operator-dependent parameters of the framework. To evaluate the overall repeatability 1], four ASD subjects and one control subject participated in a test-retest study with a 2-week interval. At both time instances, subject-specific spino-pelvic models were created by one operator to simulate a recorded forward trunk flexion motion. Next, to evaluate inter-operator agreement 2], three trained operators each created a model for three ASD subjects to simulate the same forward trunk flexion motion. Intraclass correlation coefficients (ICC's) of the range of motion (ROM) of conventional spino-pelvic parameters [lumbar lordosis (LL), sagittal vertical axis (SVA), thoracic kyphosis (TK), pelvic tilt (PT), T1-and T9-spino-pelvic inclination (T1/T9-SPI)] were used to evaluate kinematic reliability 1] and inter-operator agreement 2]. Lastly, a Monte-Carlo probabilistic simulation was used to evaluate the uncertainty of the intervertebral joint kinematics to operator variability in the framework, for three ASD subjects 3]. LL, SVA, and T1/T9-SPI had an excellent test-retest reliability for the ROM, while TK and PT did not. Inter-operator agreement was excellent, with ICC values higher than test-retest reliability. These results indicate that operator-induced uncertainty has a limited impact on kinematic simulations of spine flexion, while test-retest reliability has a much higher variability. The definition of the intervertebral joints in the framework was identified as the most sensitive operator-dependent parameter. Nevertheless, intervertebral joint estimations had small mean 90% confidence intervals (1.04°-1.75°). This work will contribute to understanding the limitations of kinematic simulations in ASD patients, thus leading to a better evaluation of future hypotheses.
Collapse
Affiliation(s)
- Thomas Overbergh
- Department of Development and Regeneration, Faculty of Medicine, Institute for Orthopaedic Research and Training (IORT), KU Leuven, Leuven, Belgium
| | - Pieter Severijns
- Department of Development and Regeneration, Faculty of Medicine, Institute for Orthopaedic Research and Training (IORT), KU Leuven, Leuven, Belgium
| | - Erica Beaucage-Gauvreau
- Department of Development and Regeneration, Faculty of Medicine, Institute for Orthopaedic Research and Training (IORT), KU Leuven, Leuven, Belgium
| | - Thijs Ackermans
- Department of Development and Regeneration, Faculty of Medicine, Institute for Orthopaedic Research and Training (IORT), KU Leuven, Leuven, Belgium
| | - Lieven Moke
- Department of Development and Regeneration, Faculty of Medicine, Institute for Orthopaedic Research and Training (IORT), KU Leuven, Leuven, Belgium.,Division of Orthopaedics, University Hospitals Leuven, Leuven, Belgium
| | - Ilse Jonkers
- Department of Movement Sciences, Human Movement Biomechanics Research Group, KU Leuven, Leuven, Belgium
| | - Lennart Scheys
- Department of Development and Regeneration, Faculty of Medicine, Institute for Orthopaedic Research and Training (IORT), KU Leuven, Leuven, Belgium.,Division of Orthopaedics, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Modeling Musculoskeletal Dynamics during Gait: Evaluating the Best Personalization Strategy through Model Anatomical Consistency. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11188348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
No consensus exists on how to model human articulations within MSK models for the analysis of gait dynamics. We propose a method to evaluate joint models and we apply it to three models with different levels of personalization. The method evaluates the joint model’s adherence to the MSK hypothesis of negligible joint work by quantifying ligament and cartilage deformations resulting from joint motion; to be anatomically consistent, these deformations should be minimum. The contrary would require considerable external work to move the joint, violating a strong working hypothesis and raising concerns about the credibility of the MSK outputs. Gait analysis and medical resonance imaging (MRI) from ten participants were combined to build lower limb subject-specific MSK models. MRI-reconstructed anatomy enabled three levels of personalization using different ankle joint models, in which motion corresponded to different ligament elongation and cartilage co-penetration. To estimate the impact of anatomical inconsistency in MSK outputs, joint internal forces resulting from tissue deformations were computed for each joint model and MSK simulations were performed ignoring or considering their contribution. The three models differed considerably for maximum ligament elongation and cartilage co-penetration (between 5.94 and 50.69% and between −0.53 and −5.36 mm, respectively). However, the model dynamic output from the gait simulations were similar. When accounting for the internal forces associated with tissue deformation, outputs changed considerably, the higher the personalization level the smaller the changes. Anatomical consistency provides a solid method to compare different joint models. Results suggest that consistency grows with personalization, which should be tailored according to the research question. A high level of anatomical consistency is recommended when individual specificity and the behavior of articular structures is under investigation.
Collapse
|
3
|
Generic scaled versus subject-specific models for the calculation of musculoskeletal loading in cerebral palsy gait: Effect of personalized musculoskeletal geometry outweighs the effect of personalized neural control. Clin Biomech (Bristol, Avon) 2021; 87:105402. [PMID: 34098149 DOI: 10.1016/j.clinbiomech.2021.105402] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/08/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Musculoskeletal modelling is used to assess musculoskeletal loading during gait. Linear scaling methods are used to personalize generic models to each participant's anthropometry. This approach introduces simplifications, especially when used in paediatric and/or pathological populations. This study aimed to compare results from musculoskeletal simulations using various models ranging from linear scaled to highly subject-specific models, i.e., including the participant's musculoskeletal geometry and electromyography data. METHODS Magnetic resonance images (MRI) and gait data of one typically developing child and three children with cerebral palsy were analysed. Musculoskeletal simulations were performed to calculate joint kinematics, joint kinetics, muscle forces and joint contact forces using four modelling frameworks: 1) Generic-scaled model with static optimization, 2) Generic-scaled model with an electromyography-informed approach, 3) MRI-based model with static optimization, and 4) MRI-based model with an electromyography-informed approach. FINDINGS Root-mean-square-differences in joint kinematics and kinetics between generic-scaled and MRI-based models were below 5° and 0.15 Nm/kg, respectively. Root-mean-square-differences over all muscles was below 0.2 body weight for every participant. Root-mean-square-differences in joint contact forces between the different modelling frameworks were up to 2.2 body weight. Comparing the simulation results from the typically developing child with the results from the children with cerebral palsy showed similar root-mean-square-differences for all modelling frameworks. INTERPRETATION In our participants, the impact of MRI-based models on joint contact forces was higher than the impact of including electromyography. Clinical reasoning based on overall root-mean-square-differences in musculoskeletal simulation results between healthy and pathological participants are unlikely to be affected by the modelling choice.
Collapse
|
4
|
Automatic generation of personalised skeletal models of the lower limb from three-dimensional bone geometries. J Biomech 2020; 116:110186. [PMID: 33515872 DOI: 10.1016/j.jbiomech.2020.110186] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/06/2020] [Accepted: 12/11/2020] [Indexed: 02/07/2023]
Abstract
The generation of personalised and patient-specific musculoskeletal models is currently a cumbersome and time-consuming task that normally requires several processing hours and trained operators. We believe that this aspect discourages the use of computational models even when appropriate data are available and personalised biomechanical analysis would be beneficial. In this paper we present a computational tool that enables the fully automatic generation of skeletal models of the lower limb from three-dimensional bone geometries, normally obtained by segmentation of medical images. This tool was evaluated against four manually created lower limb models finding remarkable agreement in the computed joint parameters, well within human operator repeatability. The coordinate systems origins were identified with maximum differences between 0.5 mm (hip joint) and 5.9 mm (subtalar joint), while the joint axes presented discrepancies between 1° (knee joint) to 11° (subtalar joint). To prove the robustness of the methodology, the models were built from four datasets including both genders, anatomies ranging from juvenile to elderly and bone geometries reconstructed from high-quality computed tomography as well as lower-quality magnetic resonance imaging scans. The entire workflow, implemented in MATLAB scripting language, executed in seconds and required no operator intervention, creating lower extremity models ready to use for kinematic and kinetic analysis or as baselines for more advanced musculoskeletal modelling approaches, of which we provide some practical examples. We auspicate that this technical advancement, together with upcoming progress in medical image segmentation techniques, will promote the use of personalised models in larger-scale studies than those hitherto undertaken.
Collapse
|
5
|
Zhang Y, Chen Z, Peng Y, Zhao H, Liang X, Jin Z. Predicting ground reaction and tibiotalar contact forces after total ankle arthroplasty during walking. Proc Inst Mech Eng H 2020; 234:1432-1444. [PMID: 32741296 DOI: 10.1177/0954411920947208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The motion capture and force plates data are essential inputs for musculoskeletal multibody dynamics models to predict in vivo tibiotalar contact forces. However, it could be almost impossible to obtain valid force plates data in old patients undergoing total ankle arthroplasty under some circumstances, such as smaller gait strides and inconsistent walking speeds during gait analysis. To remove the dependence of force plates, this study has established a patient-specific musculoskeletal multibody dynamics model with total ankle arthroplasty by combining a foot-ground contact model based on elastic contact elements. And the established model could predict ground reaction forces, ground reaction moments and tibiotalar contact forces simultaneously. Three patients' motion capture and force plates data during their normal walking were used to establish the patient-specific musculoskeletal models and evaluate the predicted ground reaction forces and ground reaction moments. Reasonable accuracies were achieved for the predicted and measured ground reaction forces and ground reaction moments. The predicted tibiotalar contact forces for all patients using the foot-ground contact model had good consistency with those using force plates data. These findings suggested that the foot-ground contact model could take the place of the force plates data for predicting the tibiotalar contact forces in other total ankle arthroplasty patients, thus providing a simplified and valid platform for further study of the patient-specific prosthetic designs and clinical problems of total ankle arthroplasty in the absence of force plates data.
Collapse
Affiliation(s)
- Yanwei Zhang
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Zhenxian Chen
- Key Laboratory of Road Construction Technology and Equipment (Ministry of Education), School of Mechanical Engineering, Chang'an University, Xi'an, China
| | - Yinghu Peng
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Hongmou Zhao
- Foot and Ankle Surgery Department, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Xiaojun Liang
- Foot and Ankle Surgery Department, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Zhongmin Jin
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China.,Tribology Research Institute, School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, China.,Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Leeds, UK
| |
Collapse
|
6
|
Machine learning methods to support personalized neuromusculoskeletal modelling. Biomech Model Mechanobiol 2020; 19:1169-1185. [DOI: 10.1007/s10237-020-01367-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 07/08/2020] [Indexed: 12/19/2022]
|
7
|
Zhang Y, Chen Z, Zhao H, Liang X, Sun C, Jin Z. Musculoskeletal modeling of total ankle arthroplasty using force-dependent kinematics for predicting in vivo joint mechanics. Proc Inst Mech Eng H 2019; 234:210-222. [PMID: 31752588 DOI: 10.1177/0954411919890724] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In vivo load and motion in the ankle joint play a key role in the understanding of the failure mechanism and function outcomes of total ankle arthroplasty. However, a thorough understanding of the biomechanics of the ankle joint in daily activities is lacking. The objective of this study was to develop a novel lower extremity musculoskeletal multibody dynamics model with total ankle arthroplasty considering the 6 degrees of freedom of the ankle joint motions and the deformable contact mechanics of the implant, based on force-dependent kinematics method. A patient who underwent total ankle arthroplasty surgery was considered. The walking gait data of the patient was measured in a gait laboratory and used as the input for the patient-specific musculoskeletal modeling. The predictions from the musculoskeletal model of total ankle arthroplasty included dorsiflexion-plantar flexion, inversion-eversion, internal-external rotation, anterior-posterior translation, inferior-superior translation, and medial-lateral translation of the tibiotalar joint, the ankle contact forces, the muscle activations, and the ligament forces. The magnitudes and tendencies of the predicted results were all within reasonable ranges, as compared with the data available in the literature. The predicted peak total ankle contact force was 6.55 body weight. In addition, the peak contact forces of the lateral and medial compartments were 4.22 body weight and 2.59 body weight, respectively. This study provides a potential new platform for the design of a better ankle prosthesis, the improvement of the operation techniques of the clinicians, and the accelerated postoperative recovery of the patients.
Collapse
Affiliation(s)
- Yanwei Zhang
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Zhenxian Chen
- Key Laboratory of Road Construction Technology and Equipment (Ministry of Education), School of Mechanical Engineering, Chang'an University, Xi'an, China
| | - Hongmou Zhao
- Foot and Ankle Surgery Department, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaojun Liang
- Foot and Ankle Surgery Department, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Cheng Sun
- Foot and Ankle Surgery Department, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China.,Xi'an Medical University, Xi'an, China
| | - Zhongmin Jin
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China.,Tribology Research Institute, School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, China.,Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Leeds, UK
| |
Collapse
|
8
|
Montefiori E, Modenese L, Di Marco R, Magni-Manzoni S, Malattia C, Petrarca M, Ronchetti A, de Horatio LT, van Dijkhuizen P, Wang A, Wesarg S, Viceconti M, Mazzà C. Linking Joint Impairment and Gait Biomechanics in Patients with Juvenile Idiopathic Arthritis. Ann Biomed Eng 2019; 47:2155-2167. [PMID: 31111329 PMCID: PMC6838035 DOI: 10.1007/s10439-019-02287-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/08/2019] [Indexed: 11/27/2022]
Abstract
Juvenile Idiopathic Arthritis (JIA) is a paediatric musculoskeletal disease of unknown aetiology, leading to walking alterations when the lower-limb joints are involved. Diagnosis of JIA is mostly clinical. Imaging can quantify impairments associated to inflammation and joint damage. However, treatment planning could be better supported using dynamic information, such as joint contact forces (JCFs). To this purpose, we used a musculoskeletal model to predict JCFs and investigate how JCFs varied as a result of joint impairment in eighteen children with JIA. Gait analysis data and magnetic resonance images (MRI) were used to develop patient-specific lower-limb musculoskeletal models, which were evaluated for operator-dependent variability (< 3.6°, 0.05 N kg-1 and 0.5 BW for joint angles, moments, and JCFs, respectively). Gait alterations and JCF patterns showed high between-subjects variability reflecting the pathology heterogeneity in the cohort. Higher joint impairment, assessed with MRI-based evaluation, was weakly associated to overall joint overloading. A stronger correlation was observed between impairment of one limb and overload of the contralateral limb, suggesting risky compensatory strategies being adopted, especially at the knee level. This suggests that knee overloading during gait might be a good predictor of disease progression and gait biomechanics should be used to inform treatment planning.
Collapse
Affiliation(s)
- Erica Montefiori
- Department of Mechanical Engineering, University of Sheffield, Sheffield, UK.
- INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, UK.
| | - Luca Modenese
- INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, UK
- Department of Civil and Environmental Engineering, Imperial College London, London, UK
| | - Roberto Di Marco
- INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, UK
- Department of Mechanical and Aerospace Engineering, "Sapienza" University of Rome, Rome, Italy
| | - Silvia Magni-Manzoni
- Pediatric Rheumatology Unit, IRCCS "Bambino Gesù" Children's Hospital, Passoscuro, Rome, Italy
| | - Clara Malattia
- Pediatria II - Reumatologia, Istituto Giannina Gaslini, Genoa, Italy
| | - Maurizio Petrarca
- Movement Analysis and Robotics Laboratory (MARLab), Neurorehabilitation Units, IRCCS "Bambino Gesù" Children's Hospital, Passoscuro, Rome, Italy
| | - Anna Ronchetti
- UOC Medicina Fisica e Riabilitazione, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Pieter van Dijkhuizen
- Paediatric Immunology, University Medical Centre Utrecht Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - Anqi Wang
- Visual Healthcare Technologies, Fraunhofer IGD, Darmstadt, Germany
| | - Stefan Wesarg
- Visual Healthcare Technologies, Fraunhofer IGD, Darmstadt, Germany
| | - Marco Viceconti
- Department of Industrial Engineering, Alma Mater Studiorum - University of Bologna, Bologna, Italy
- Laboratorio di Tecnologia Medica, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Claudia Mazzà
- Department of Mechanical Engineering, University of Sheffield, Sheffield, UK
- INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, UK
| |
Collapse
|
9
|
Grabke EP, Masani K, Andrysek J. Lower Limb Assistive Device Design Optimization Using Musculoskeletal Modeling: A Review. J Med Device 2019. [DOI: 10.1115/1.4044739] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
AbstractMany individuals with lower limb amputations or neuromuscular impairments face mobility challenges attributable to suboptimal assistive device design. Forward dynamic modeling and simulation of human walking using conventional biomechanical gait models offer an alternative to intuition-based assistive device design, providing insight into the biomechanics underlying pathological gait. Musculoskeletal models enable better understanding of prosthesis and/or exoskeleton contributions to the human musculoskeletal system, and device and user contributions to both body support and propulsion during gait. This paper reviews current literature that have used forward dynamic simulation of clinical population musculoskeletal models to perform assistive device design optimization using optimal control, optimal tracking, computed muscle control (CMC) and reflex-based control. Musculoskeletal model complexity and assumptions inhibit forward dynamic musculoskeletal modeling in its current state, hindering computational assistive device design optimization. Future recommendations include validating musculoskeletal models and resultant assistive device designs, developing less computationally expensive forward dynamic musculoskeletal modeling methods, and developing more efficient patient-specific musculoskeletal model generation methods to enable personalized assistive device optimization.
Collapse
Affiliation(s)
- Emerson Paul Grabke
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Kei Masani
- KITE—Toronto Rehabilitation Institute, University Health Network, Toronto, ON M4G 3V9, Canada
| | - Jan Andrysek
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON M4G1R8, Canada
| |
Collapse
|
10
|
Viceconti M, Ascani D, Mazzà C. Pre-operative prediction of soft tissue balancing in knee arthoplasty part 1: Effect of surgical parameters during level walking. J Orthop Res 2019; 37:1537-1545. [PMID: 30908694 PMCID: PMC6617758 DOI: 10.1002/jor.24289] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 03/08/2019] [Indexed: 02/04/2023]
Abstract
An important reason for poor functional outcome of Total Knee Arthroplasty is inadequate soft tissue balancing. Custom-made cutting guides or computer-aided surgical navigation make possible to accurately achieve what is planned; the challenge is to perform a pre-operative planning that properly accounts for soft-tissue balancing. The first step in the development of a patient-specific computer model that can predict during pre-operative planning the post-operative soft-tissue balancing is a better understanding of the role that cutting heights and angles have on the balancing of the soft tissues after TKA as the patient perform the more common daily tasks. In the present study, we conducted a sensitivity analysis of the ligament elongations during level walking due to TKA as a function of position and orientation of the cutting guides, by means of a validated patient-specific dynamic model of the post-TKA knee biomechanics. The results suggest a considerable sensitivity of the collateral ligaments elongation to the surgical variables, and in particular to the varus-valgus angles of both tibia and femur. This complete elongation map can be used as a baseline for the development of reduced-order models to be integrated in pre-operative planning environments. © 2019 The Authors Journal of Orthopaedic Research. Published by Wiley Periodicals, Inc. J Orthop Res 37:1537-1545, 2019.
Collapse
Affiliation(s)
- Marco Viceconti
- Department of Industrial EngineeringUniversity of BolognaViale Risorgimento 2Bologna 40136Italy,Laboratorio di Tecnologia MedicaIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Daniele Ascani
- Department of Mechanical Engineering and INSIGNEO Institute for in silico MedicineUniversity of SheffieldSheffieldUnited Kingdom
| | - Claudia Mazzà
- Department of Mechanical Engineering and INSIGNEO Institute for in silico MedicineUniversity of SheffieldSheffieldUnited Kingdom
| |
Collapse
|
11
|
Montefiori E, Modenese L, Di Marco R, Magni-Manzoni S, Malattia C, Petrarca M, Ronchetti A, de Horatio LT, van Dijkhuizen P, Wang A, Wesarg S, Viceconti M, Mazzà C. An image-based kinematic model of the tibiotalar and subtalar joints and its application to gait analysis in children with Juvenile Idiopathic Arthritis. J Biomech 2019; 85:27-36. [DOI: 10.1016/j.jbiomech.2018.12.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 10/06/2018] [Accepted: 12/28/2018] [Indexed: 01/08/2023]
|
12
|
Modenese L, Montefiori E, Wang A, Wesarg S, Viceconti M, Mazzà C. Investigation of the dependence of joint contact forces on musculotendon parameters using a codified workflow for image-based modelling. J Biomech 2018; 73:108-118. [DOI: 10.1016/j.jbiomech.2018.03.039] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 02/09/2018] [Accepted: 03/21/2018] [Indexed: 11/24/2022]
|