1
|
Ikeda A, Shimokawa A, Harada K, Tsukahara-Kawamura T, Huang J, Ozaki H, Uchio E. Computer Modelling Study of Volume Kinetics in Intraocular Segments Following Airbag Impact Using Finite Element Analysis. Clin Ophthalmol 2024; 18:2575-2582. [PMID: 39263254 PMCID: PMC11389705 DOI: 10.2147/opth.s479607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024] Open
Abstract
Background We have previously studied the physiological and mechanical responses of the eye to blunt trauma in various situations using finite element analysis (FEA). In this study, we evaluated the volume kinetics of an airbag impact on the eye using FEA to sequentially determine the volume change rates of intraocular segments at various airbag deployment velocities. Methods The human eye model we created was used in simulations with the FEA program PAM-GENERISTM (Nihon ESI, Tokyo, Japan). Different airbag deployment velocities, 30, 40, 50, 60 and 70 m/s, were applied in the forward direction. The volume of the deformed eye impacted by the airbag was calculated as the integrated value of all meshes in each segment, and the decrease rate was calculated as the ratio of the decreased volume of each segment at particular timepoints to the value before the airbag impact. Results The minimum volume of the anterior chamber was 63%, 69% and 50% at 50, 60 and 70 m/s airbag impact velocity, respectively, showing a curve with a sharp decline followed by gradual recovery. In contrast to the anterior chamber, the volume of the lens recovered promptly, reaching 80-90% at the end of observation, except for the case of 60 m/s. Following the decrease, the volume increased to more than that of baseline at 60 m/s. The rate of volume change of the vitreous was distributed in a narrow range, 99.2-100.4%. Conclusion In this study, we found a large, prolonged decrease of volume in the anterior chamber, a similar large decrease followed by prompt recovery of volume in the lens, and a time-lag in the volume decrease between these tissues. These novel findings may provide an important insight into the pathophysiological mechanism of airbag ocular injuries through this further evaluation, employing a refined FEA model representing cuboidal deformation, to develop a more safe airbag system.
Collapse
Affiliation(s)
- Aya Ikeda
- Department of Ophthalmology, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Asami Shimokawa
- Department of Ophthalmology, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Kazuhiro Harada
- Department of Ophthalmology, Fukuoka University School of Medicine, Fukuoka, Japan
| | | | - Jane Huang
- Department of Ophthalmology, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Hiroaki Ozaki
- Department of Ophthalmology, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Eiichi Uchio
- Department of Ophthalmology, Fukuoka University School of Medicine, Fukuoka, Japan
| |
Collapse
|
2
|
Ueno T, Fujita H, Ikeda A, Harada K, Tsukahara-Kawamura T, Ozaki H, Uchio E. Finite Element Analysis of Changes in Deformation of Intraocular Segments by Airbag Impact in Eyes of Various Axial Lengths. Clin Ophthalmol 2024; 18:699-712. [PMID: 38468913 PMCID: PMC10926924 DOI: 10.2147/opth.s445253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/20/2024] [Indexed: 03/13/2024] Open
Abstract
Background We studied the kinetic phenomenon of an airbag impact on eyes with different axial lengths using finite element analysis (FEA) to sequentially determine the physical and mechanical responses of intraocular segments at various airbag deployment velocities. Methods The human eye model we created was used in simulations with the FEA program PAM-GENERISTM. The airbag was set to impact eyes with axial lengths of 21.85 mm (hyperopia), 23.85 mm (emmetropia) and 25.85 mm (myopia), at initial velocities of 20, 30, 40, 50 and 60 m/s. The deformation rate was calculated as the ratio of the length of three segments, anterior chamber, lens and vitreous, to that at the baseline from 0.2 ms to 2.0 ms after the airbag impact. Results Deformation rate of the anterior chamber was greater than that of other segments, especially in the early phase, 0.2-0.4 ms after the impact (P < 0.001), and it reached its peak, 80%, at 0.8 ms. A higher deformation rate in the anterior chamber was found in hyperopia compared with other axial length eyes in the first half period, 0.2-0.8 ms, followed by the rate in emmetropia (P < 0.001). The lens deformation rate was low, its peak ranging from 40% to 75%, and exceeded that of the anterior chamber at 1.4 ms and 1.6 ms after the impact (P < 0.01). The vitreous deformation rate was lower throughout the simulation period than that of the other segments and ranged from a negative value (elongation) in the later phase. Conclusion Airbag impact on the eyeball causes evident deformation, especially in the anterior chamber. The results obtained in this study, such as the time lag of the peak deformation between the anterior chamber and lens, suggest a clue to the pathophysiological mechanism of airbag ocular injury.
Collapse
Affiliation(s)
- Tomohiro Ueno
- Department of Ophthalmology, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Hideaki Fujita
- Department of Ophthalmology, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Aya Ikeda
- Department of Ophthalmology, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Kazuhiro Harada
- Department of Ophthalmology, Fukuoka University School of Medicine, Fukuoka, Japan
| | | | - Hiroaki Ozaki
- Department of Ophthalmology, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Eiichi Uchio
- Department of Ophthalmology, Fukuoka University School of Medicine, Fukuoka, Japan
| |
Collapse
|
3
|
Iannucci V, Manni P, Alisi L, Mecarelli G, Lambiase A, Bruscolini A. Bilateral Angle Recession and Chronic Post-Traumatic Glaucoma: A Review of the Literature and a Case Report. Life (Basel) 2023; 13:1814. [PMID: 37763218 PMCID: PMC10532958 DOI: 10.3390/life13091814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Ocular trauma affects millions of people worldwide and is a leading cause of secondary glaucoma. Angle recession is the main cause of post-traumatic glaucoma after blunt eye trauma, and it is usually unilateral. The aim of this paper is to investigate the possible causes of angle recession with a bilateral presentation. Airbag activation during traffic accidents is a likely cause to be ruled out, along with repeated head or eye trauma, due to contact sports or a history of physical abuse. These aspects can aid in early detection, appropriate management, and improved outcomes for patients with ocular trauma. Finally, we report the case of a 75-year-old Caucasian man who developed a bilateral angle recession after an airbag impact, with advanced glaucoma in the right eye and ocular hypertension in the left eye. To our knowledge, this is the first case in the literature of chronic post-traumatic glaucoma probably caused by an airbag.
Collapse
Affiliation(s)
| | | | | | | | - Alessandro Lambiase
- Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy; (V.I.); (P.M.); (L.A.); (G.M.)
| | | |
Collapse
|
4
|
Rauchman SH, Locke B, Albert J, De Leon J, Peltier MR, Reiss AB. Toxic External Exposure Leading to Ocular Surface Injury. Vision (Basel) 2023; 7:vision7020032. [PMID: 37092465 PMCID: PMC10123707 DOI: 10.3390/vision7020032] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 04/07/2023] Open
Abstract
The surface of the eye is directly exposed to the external environment, protected only by a thin tear film, and may therefore be damaged by contact with ambient particulate matter, liquids, aerosols, or vapors. In the workplace or home, the eye is subject to accidental or incidental exposure to cleaning products and pesticides. Organic matter may enter the eye and cause infection. Ocular surface damage can trigger a range of symptoms such as itch, discharge, hyperemia, photophobia, blurred vision, and foreign body sensation. Toxin exposure can be assessed clinically in multiple ways, including via measurement of tear production, slit-lamp examination, corneal staining, and conjunctival staining. At the cellular level, environmental toxins can cause oxidative damage, apoptosis of corneal and conjunctival cells, cell senescence, and impaired motility. Outcomes range from transient and reversible with complete healing to severe and sight-compromising structural changes. Classically, evaluation of tolerance and safety was carried out using live animal testing; however, new in vitro and computer-based, in silico modes are superseding the gold standard Draize test. This review examines how environmental features such as pollutants, temperature, and seasonality affect the ocular surface. Chemical burns to the eye are considered, and approaches to protect the ocular surface are detailed.
Collapse
Affiliation(s)
| | - Brandon Locke
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA
| | - Jacqueline Albert
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA
| | - Joshua De Leon
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA
| | - Morgan R. Peltier
- Department of Psychiatry and Behavioral Health, Jersey Shore University Medical Center, Neptune, NJ 07753, USA
| | - Allison B. Reiss
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA
| |
Collapse
|
5
|
Foster WJ, Berg BW, Luminais SN, Hadayer A, Schaal S. Computational Modeling of Ophthalmic Procedures: Computational Modeling of Ophthalmic Procedures. Am J Ophthalmol 2022; 241:87-107. [PMID: 35358485 PMCID: PMC9444883 DOI: 10.1016/j.ajo.2022.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 01/16/2022] [Accepted: 03/17/2022] [Indexed: 11/01/2022]
Abstract
PURPOSE To explore how finite-element calculations can continue to contribute to diverse problems in ophthalmology and vision science, we describe our recent work on modeling the force on the peripheral retina in intravitreal injections and how that force increases with shorter, smaller gauge needles. We also present a calculation that determines the location and stress on a retinal pigment epithelial detachment during an intravitreal injection, the possibility that stress induced by the injection can lead to a tear of the retinal pigment epithelium. BACKGROUND Advanced computational models can provide a critical insight into the underlying physics in many surgical procedures, which may not be intuitive. METHODS The simulations were implemented using COMSOL Multiphysics. We compared the monkey retinal adhesive force of 18 Pa with the results of this study to quantify the maximum retinal stress that occurs during intravitreal injections. CONCLUSIONS Currently used 30-gauge needles produce stress on the retina during intravitreal injections that is only slightly below the limit that can create retinal tears. As retina specialists attempt to use smaller needles, the risk of complications may increase. In addition, we find that during an intravitreal injection, the stress on the retina in a pigment epithelial detachment occurs at the edge of the detachment (found clinically), and the stress is sufficient to tear the retina. These findings may guide physicians in future clinical research. NOTE: Publication of this article is sponsored by the American Ophthalmological Society.
Collapse
Affiliation(s)
- William J Foster
- From the Department of Bioengineering (W.J.F.), Lewes Katz School of Medicine (B.W.B., S.N.L.), Temple University, Philadelphia, Pennsylvania, USA; Altasciences, Montréal, Québec, Canada (W.J.F.).
| | - Brian W Berg
- From the Department of Bioengineering (W.J.F.), Lewes Katz School of Medicine (B.W.B., S.N.L.), Temple University, Philadelphia, Pennsylvania, USA
| | - Steven N Luminais
- From the Department of Bioengineering (W.J.F.), Lewes Katz School of Medicine (B.W.B., S.N.L.), Temple University, Philadelphia, Pennsylvania, USA
| | - Amir Hadayer
- Department of Ophthalmology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel (A.H.)
| | - Shlomit Schaal
- Department of Ophthalmology, University of Massachusetts Medical School, Worcester, Massachusetts, USA (S.S.)
| |
Collapse
|