1
|
Brogini S, Crovace A, Piccininni A, Serratore G, Marchiori G, Maglio M, Guglielmi P, Cusanno A, De Napoli L, Conte R, Fini M, Ambrogio G, Palumbo G, Giavaresi G. In vivo validation of highly customized cranial Ti-6AL-4V ELI prostheses fabricated through incremental forming and superplastic forming: an ovine model study. Sci Rep 2024; 14:7959. [PMID: 38575608 PMCID: PMC10995190 DOI: 10.1038/s41598-024-57629-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 03/20/2024] [Indexed: 04/06/2024] Open
Abstract
Cranial reconstructions are essential for restoring both function and aesthetics in patients with craniofacial deformities or traumatic injuries. Titanium prostheses have gained popularity due to their biocompatibility, strength, and corrosion resistance. The use of Superplastic Forming (SPF) and Single Point Incremental Forming (SPIF) techniques to create titanium prostheses, specifically designed for cranial reconstructions was investigated in an ovine model through microtomographic and histomorphometric analyses. The results obtained from the explanted specimens revealed significant variations in bone volume, trabecular thickness, spacing, and number across different regions of interest (VOIs or ROIs). Those regions next to the center of the cranial defect exhibited the most immature bone, characterized by higher porosity, decreased trabecular thickness, and wider trabecular spacing. Dynamic histomorphometry demonstrated differences in the mineralizing surface to bone surface ratio (MS/BS) and mineral apposition rate (MAR) depending on the timing of fluorochrome administration. A layer of connective tissue separated the prosthesis and the bone tissue. Overall, the study provided validation for the use of cranial prostheses made using SPF and SPIF techniques, offering insights into the processes of bone formation and remodeling in the implanted ovine model.
Collapse
Affiliation(s)
- Silvia Brogini
- Scienze e Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano, 1/10, Bologna, Italy
| | - Alberto Crovace
- Dipartimento di Medicina Veterinaria, Università di Sassari, Via Vienna 2, 07100, Sassari, Italy
| | - Antonio Piccininni
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Via Orabona 4, 70125, Bari, Italy.
| | - Giuseppe Serratore
- Dipartimento di Ingegneria Meccanica, Energetica e Gestionale, Università Della Calabria, Ponte P. Bucci Cubo 45C, 87036, Rende, CS, Italy
| | - Gregorio Marchiori
- Scienze e Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano, 1/10, Bologna, Italy
| | - Melania Maglio
- Scienze e Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano, 1/10, Bologna, Italy
| | - Pasquale Guglielmi
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Via Orabona 4, 70125, Bari, Italy
| | - Angela Cusanno
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Via Orabona 4, 70125, Bari, Italy
| | - Luigi De Napoli
- Dipartimento di Ingegneria Meccanica, Energetica e Gestionale, Università Della Calabria, Ponte P. Bucci Cubo 45C, 87036, Rende, CS, Italy
| | - Romina Conte
- Dipartimento di Ingegneria Meccanica, Energetica e Gestionale, Università Della Calabria, Ponte P. Bucci Cubo 45C, 87036, Rende, CS, Italy
| | - Milena Fini
- Direzione Scientifica, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, Bologna, Italy
| | - Giuseppina Ambrogio
- Dipartimento di Ingegneria Meccanica, Energetica e Gestionale, Università Della Calabria, Ponte P. Bucci Cubo 45C, 87036, Rende, CS, Italy
| | - Gianfranco Palumbo
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Via Orabona 4, 70125, Bari, Italy
| | - Gianluca Giavaresi
- Scienze e Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano, 1/10, Bologna, Italy
| |
Collapse
|
2
|
Garnica-Bohórquez I, Güiza-Argüello VR, López-Gualdrón CI. Effect of Sterilization on the Dimensional and Mechanical Behavior of Polylactic Acid Pieces Produced by Fused Deposition Modeling. Polymers (Basel) 2023; 15:3317. [PMID: 37571211 PMCID: PMC10422276 DOI: 10.3390/polym15153317] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
To successfully implement additive manufacturing (AM) techniques for custom medical device (MD) production with low-cost resources, it is imperative to understand the effect of common and affordable sterilization processes, such as formaldehyde or steam sterilization, on pieces manufactured by AM. In this way, the performance of low-risk MDs, such as biomodels and surgical guides, could be assessed for complying with safety, precision, and MD delivery requirements. In this context, the aim of the present work was to evaluate the effect of formaldehyde and steam sterilization on the dimensional and mechanical stability of standard polylactic acid (PLA) test pieces produced by fused deposition modeling (FDM). To achieve this, PLA samples were sterilized according to the sterilization protocol of a public hospital in the city of Bucaramanga, Colombia. Significant changes regarding mechanical and dimensional properties were found as a function of manufacturing parameters. This research attempts to contribute to the development of affordable approaches for the fabrication of functional and customized medical devices through AM technologies, an issue of particular interest for low- and middle-income countries.
Collapse
Affiliation(s)
- Israel Garnica-Bohórquez
- Industrial Design Department, Universidad Industrial de Santander, Bucaramanga 680002, Colombia;
| | - Viviana R. Güiza-Argüello
- Metallurgical Engineering and Materials Science Department, Universidad Industrial de Santander, Bucaramanga 680002, Colombia;
| | - Clara I. López-Gualdrón
- Industrial Design Department, Universidad Industrial de Santander, Bucaramanga 680002, Colombia;
| |
Collapse
|
3
|
Sivakumar NK, Palaniyappan S, Sekar V, Alodhayb A, Braim M. An optimization approach for studying the effect of lattice unit cell's design-based factors on additively manufactured poly methyl methacrylate cranio-implant. J Mech Behav Biomed Mater 2023; 141:105791. [PMID: 37004304 DOI: 10.1016/j.jmbbm.2023.105791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/15/2023] [Accepted: 03/19/2023] [Indexed: 03/28/2023]
Abstract
In craniomaxillofacial surgery the inclusion of lattice structure on the Cranio-implants for the surgical procedure of cranial defects is difficult. Additive manufacturing open ups a huge space for the development of intricate profiles for complex surgical practices. Designing lattice structures with various design topologies has gained more interest in the medical community for reducing the weight of the implants in the cranial region. This research proposes the mimicking of cranial defective portion concerning bone-like porous structure by means of Poly methyl methacrylate (PMMA) material via 3D printing technology. The experiments were optimized by incorporating square-type porous lattice structure in the development of cranial implants. The design-based factors of the unit cell were enhanced with the aid of the Design of experiments (DOE) technique. L9 orthogonal array is developed by incorporating various design-based factors of the lattice unit cell like unit cell size (mm), skewing angle (°), wall thickness (mm), and unit cell orientation (°). The experiments are optimized with respect to obtaining better compressive strength and compressive strength/density of the prepared lattice structure incorporated polymeric samples. The result shows that for obtaining the maximum compressive strength in the porous square lattice-structured PMMA compression samples will be a lower cell size of 2 mm, a higher skewing angle of 30°, a higher wall thickness of 1 mm, and a unit cell orientation of 90°. The experimental optimized condition results of the design-based factors achieve the maximum compressive strength and compressive strength/density of 83.37 MPa and 189.73 MPa/g mm-3. The lattice structure orientated with 90° has a significant contribution towards reducing the development of structural deviations of incorporating square lattice structure on the PMMA polymeric material. Therefore, the topologically modified square lattice structure incorporated 3D printed PMMA material has a potential scope for the replacement of conventional maxillofacial cranial implants.
Collapse
|
4
|
Thimukonda Jegadeesan J, Baldia M, Basu B. Next-generation personalized cranioplasty treatment. Acta Biomater 2022; 154:63-82. [PMID: 36272686 DOI: 10.1016/j.actbio.2022.10.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 12/14/2022]
Abstract
Decompressive craniectomy (DC) is a surgical procedure, that is followed by cranioplasty surgery. DC is usually performed to treat patients with traumatic brain injury, intracranial hemorrhage, cerebral infarction, brain edema, skull fractures, etc. In many published clinical case studies and systematic reviews, cranioplasty surgery is reported to restore cranial symmetry with good cosmetic outcomes and neurophysiologically relevant functional outcomes in hundreds of patients. In this review article, we present a number of key issues related to the manufacturing of patient-specific implants, clinical complications, cosmetic outcomes, and newer alternative therapies. While discussing alternative therapeutic treatments for cranioplasty, biomolecules and cellular-based approaches have been emphasized. The current clinical practices in the restoration of cranial defects involve 3D printing to produce patient-specific prefabricated cranial implants, that provide better cosmetic outcomes. Regardless of the advancements in image processing and 3D printing, the complete clinical procedure is time-consuming and requires significant costs. To reduce manual intervention and to address unmet clinical demands, it has been highlighted that automated implant fabrication by data-driven methods can accelerate the design and manufacturing of patient-specific cranial implants. The data-driven approaches, encompassing artificial intelligence (machine learning/deep learning) and E-platforms, such as publicly accessible clinical databases will lead to the development of the next generation of patient-specific cranial implants, which can provide predictable clinical outcomes. STATEMENT OF SIGNIFICANCE: Cranioplasty is performed to reconstruct cranial defects of patients who have undergone decompressive craniectomy. Cranioplasty surgery improves the aesthetic and functional outcomes of those patients. To meet the clinical demands of cranioplasty surgery, accelerated designing and manufacturing of 3D cranial implants are required. This review provides an overview of biomaterial implants and bone flap manufacturing methods for cranioplasty surgery. In addition, tissue engineering and regenerative medicine-based approaches to reduce clinical complications are also highlighted. The potential use of data-driven computer applications and data-driven artificial intelligence-based approaches are emphasized to accelerate the clinical protocols of cranioplasty treatment with less manual intervention and shorter intraoperative time.
Collapse
Affiliation(s)
| | - Manish Baldia
- Department of Neurosurgery, Jaslok Hospital and Research Centre, Mumbai, Maharashtra 400026, India
| | - Bikramjit Basu
- Materials Research Centre, Indian Institute of Science, CV Raman Road, Bangalore, Karnataka 560012, India; Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India.
| |
Collapse
|
5
|
Kroczek K, Turek P, Mazur D, Szczygielski J, Filip D, Brodowski R, Balawender K, Przeszłowski Ł, Lewandowski B, Orkisz S, Mazur A, Budzik G, Cebulski J, Oleksy M. Characterisation of Selected Materials in Medical Applications. Polymers (Basel) 2022; 14:1526. [PMID: 35458276 PMCID: PMC9027145 DOI: 10.3390/polym14081526] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 11/19/2022] Open
Abstract
Tissue engineering is an interdisciplinary field of science that has developed very intensively in recent years. The first part of this review describes materials with medical and dental applications from the following groups: metals, polymers, ceramics, and composites. Both positive and negative sides of their application are presented from the point of view of medical application and mechanical properties. A variety of techniques for the manufacture of biomedical components are presented in this review. The main focus of this work is on additive manufacturing and 3D printing, as these modern techniques have been evaluated to be the best methods for the manufacture of medical and dental devices. The second part presents devices for skull bone reconstruction. The materials from which they are made and the possibilities offered by 3D printing in this field are also described. The last part concerns dental transitional implants (scaffolds) for guided bone regeneration, focusing on polylactide-hydroxyapatite nanocomposite due to its unique properties. This section summarises the current knowledge of scaffolds, focusing on the material, mechanical and biological requirements, the effects of these devices on the human body, and their great potential for applications.
Collapse
Affiliation(s)
- Kacper Kroczek
- Doctoral School of Engineering and Technical Sciences, Rzeszow University of Technology, 35-959 Rzeszow, Poland;
| | - Paweł Turek
- Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, 35-959 Rzeszow, Poland; (Ł.P.); (G.B.)
| | - Damian Mazur
- Faculty of Electrical and Computer Engineering, Rzeszow University of Technology, 35-959 Rzeszow, Poland
| | - Jacek Szczygielski
- Faculty of Medicine, University of Rzeszow, 35-959 Rzeszow, Poland; (J.S.); (K.B.); (B.L.); (S.O.); (A.M.)
- Department of Neurosurgery, Faculty of Medicine, Saarland University, 66123 Saarbrücken, Germany
| | - Damian Filip
- Institute of Medical Science, University of Rzeszow, 35-959 Rzeszow, Poland;
| | - Robert Brodowski
- Department of Maxillofacial Surgery, Fryderyk Chopin Clinical Voivodeship Hospital No.1 in Rzeszow, 35-055 Rzeszow, Poland;
| | - Krzysztof Balawender
- Faculty of Medicine, University of Rzeszow, 35-959 Rzeszow, Poland; (J.S.); (K.B.); (B.L.); (S.O.); (A.M.)
| | - Łukasz Przeszłowski
- Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, 35-959 Rzeszow, Poland; (Ł.P.); (G.B.)
| | - Bogumił Lewandowski
- Faculty of Medicine, University of Rzeszow, 35-959 Rzeszow, Poland; (J.S.); (K.B.); (B.L.); (S.O.); (A.M.)
- Department of Maxillofacial Surgery, Fryderyk Chopin Clinical Voivodeship Hospital No.1 in Rzeszow, 35-055 Rzeszow, Poland;
| | - Stanisław Orkisz
- Faculty of Medicine, University of Rzeszow, 35-959 Rzeszow, Poland; (J.S.); (K.B.); (B.L.); (S.O.); (A.M.)
| | - Artur Mazur
- Faculty of Medicine, University of Rzeszow, 35-959 Rzeszow, Poland; (J.S.); (K.B.); (B.L.); (S.O.); (A.M.)
| | - Grzegorz Budzik
- Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, 35-959 Rzeszow, Poland; (Ł.P.); (G.B.)
| | - Józef Cebulski
- Institute of Physics, University of Rzeszow, 35-959 Rzeszow, Poland;
| | - Mariusz Oleksy
- Faculty of Chemistry, Rzeszow University of Technology, 35-959 Rzeszow, Poland;
| |
Collapse
|
6
|
A Structured Approach for the Design and Manufacturing of Titanium Cranial Prostheses via Sheet Metal Forming. METALS 2022. [DOI: 10.3390/met12020293] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Currently, the growing need for highly customized implants has become one of the key aspects to increase the life expectancy and reduce time and costs for prolonged hospitalizations due to premature failures of implanted prostheses. According to the literature, several technological solutions are considered suitable to achieve the necessary geometrical complexity, from the conventional subtractive approaches to the more innovative additive solutions. In the case of cranial prostheses, which must guarantee a very good fitting of the region surrounding the implant in order to minimize micromotions and reduce infections, the need of a product characterized by high geometrical complexity combined with both strength and limited weight, has pushed the research towards the adoption of manufacturing processes able to improve the product’s quality but being fast and flexible enough. The attention has been thus focused in this paper on sheet metal forming processes and, namely on the Single Point Incremental Forming (SPIF) and the Superplastic Forming (SPF). In particular, the complete procedure to design and produce titanium cranial prostheses for in vivo tests is described: starting from Digital Imaging and COmmunications in Medicine (DICOM) images of the ovine animal, the design was conducted and the production process simulated to evaluate the process parameters and the production set up. The forming characteristics of the prostheses were finally evaluated in terms of thickness distributions and part’s geometry. The effectiveness of the proposed methodology has been finally assessed through the implantation of the manufactured prostheses in sheep.
Collapse
|
7
|
Pugalendhi A, Ranganathan R. A review of additive manufacturing applications in ophthalmology. Proc Inst Mech Eng H 2021; 235:1146-1162. [PMID: 34176362 DOI: 10.1177/09544119211028069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Additive Manufacturing (AM) capabilities in terms of product customization, manufacture of complex shape, minimal time, and low volume production those are very well suited for medical implants and biological models. AM technology permits the fabrication of physical object based on the 3D CAD model through layer by layer manufacturing method. AM use Magnetic Resonance Image (MRI), Computed Tomography (CT), and 3D scanning images and these data are converted into surface tessellation language (STL) file for fabrication. The applications of AM in ophthalmology includes diagnosis and treatment planning, customized prosthesis, implants, surgical practice/simulation, pre-operative surgical planning, fabrication of assistive tools, surgical tools, and instruments. In this article, development of AM technology in ophthalmology and its potential applications is reviewed. The aim of this study is nurturing an awareness of the engineers and ophthalmologists to enhance the ophthalmic devices and instruments. Here some of the 3D printed case examples of functional prototype and concept prototypes are carried out to understand the capabilities of this technology. This research paper explores the possibility of AM technology that can be successfully executed in the ophthalmology field for developing innovative products. This novel technique is used toward improving the quality of treatment and surgical skills by customization and pre-operative treatment planning which are more promising factors.
Collapse
Affiliation(s)
- Arivazhagan Pugalendhi
- Department of Mechanical Engineering, Coimbatore Institute of Technology, Coimbatore, Tamil Nadu, India
| | - Rajesh Ranganathan
- Department of Mechanical Engineering, Coimbatore Institute of Technology, Coimbatore, Tamil Nadu, India
| |
Collapse
|
8
|
Barros da Silva E, da Silva Lobo C, Henrique de Aragão A, Martinelli de Oliveira R, de Paula Loureiro M, Ramina R. Using Cranial Sutures in a Single-Step Frame-Guided Resection and Reconstruction for Intraosseous Meningiomas: Technical Note. World Neurosurg 2021; 151:44-51. [PMID: 33895375 DOI: 10.1016/j.wneu.2021.04.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Single-stage surgical treatment of cranial intraosseous meningiomas includes complete tumor resection followed by aesthetic reconstruction. Tailored tumor resection with a computer-aided design/computer-aided manufacturing custom-made implant for the defect has been advocated in recent years to achieve a satisfactory cosmetic result with reduced operative time and fewer complications. However, several technical nuances related to the area of osseous removal may compromise cranioplasty. METHODS We present 2 cases of intraosseous meningiomas (sphenoid wing and retromastoid) to illustrate a step-by-step approach, from preoperative planning to single-step surgery. RESULTS For each case, a customized frame template delimiting bone removal was designed using cranial sutures as anatomical landmarks for precise placement of the cranioplasty template over the area of interest. CONCLUSIONS Custom templates based in cranial sutures may benefit single-step frame-guided resection and reconstruction of intraosseous tumors with compelling results.
Collapse
Affiliation(s)
- Erasmo Barros da Silva
- Department of Neurosurgery, Instituto de Neurologia de Curitiba, Curitiba, Paraná, Brazil.
| | | | | | | | - Marcelo de Paula Loureiro
- Postgraduate Department of Industrial Biotechnology, Universidade Positivo, Curitiba, Paraná, Brazil
| | - Ricardo Ramina
- Department of Neurosurgery, Instituto de Neurologia de Curitiba, Curitiba, Paraná, Brazil
| |
Collapse
|
9
|
da Silva Júnior EB, de Aragão AH, de Paula Loureiro M, Lobo CS, Oliveti AF, de Oliveira RM, Ramina R. Cranioplasty with three-dimensional customised mould for polymethylmethacrylate implant: a series of 16 consecutive patients with cost-effectiveness consideration. 3D Print Med 2021; 7:4. [PMID: 33548008 PMCID: PMC7866687 DOI: 10.1186/s41205-021-00096-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/31/2021] [Indexed: 02/08/2023] Open
Abstract
Background Different methods of cranioplasty for the reconstruction of bony skull defects exist. In the absence of the autologous bone flap, a customised manufactured implant may be the optimal choice, but this implant has several limitations regarding its technical standardisation and better cost-effectiveness. Methods This study presents a series of 16 consecutive patients who had undergone cranioplasty with customised three-dimensional (3D) template moulds for polymethylmethacrylate (PMMA) implants manufactured after 3D modelling on a specific workstation. The virtual images were transformed into a two-piece physical model using a 3D printer for the biomaterials. PMMA implant was produced intraoperatively with the custom mould. Cosmetic results were analysed by comparing pre- and postoperative 3D computed tomography (CT) images and asking if the patient was satisfied with the result. Results The average total time for planning and production of customised mould was 10 days. The 16 patients were satisfied with the result, and CT images presented harmonious symmetry when comparing pre- and postoperative scans. Cases of postoperative infection, bleeding, or reoperation in this series were not observed. Conclusion Cranioplasty with high-technology customised 3D moulds for PMMA implants can allow for an aesthetic reconstruction with a fast and cost-effective manufacturing process and possibly with low complication rates.
Collapse
Affiliation(s)
- Erasmo Barros da Silva Júnior
- Department of Neurosurgery, Instituto de Neurologia de Curitiba, Jeremias Maciel Perretto, 300 - Campo Comprido, Curitiba, Paraná, 81210-310, Brazil.
| | - Afonso Henrique de Aragão
- Department of Neurosurgery, Instituto de Neurologia de Curitiba, Jeremias Maciel Perretto, 300 - Campo Comprido, Curitiba, Paraná, 81210-310, Brazil
| | | | | | | | | | - Ricardo Ramina
- Department of Neurosurgery, Instituto de Neurologia de Curitiba, Jeremias Maciel Perretto, 300 - Campo Comprido, Curitiba, Paraná, 81210-310, Brazil
| |
Collapse
|