1
|
Yu H, Ueckert S, Zhou L, Cheng J, Robertson D, Hansen L, Flor A, Parker V, Hamrén B, Khan AA. Exposure-response modeling for nausea incidence for cotadutide using a Markov modeling approach. CPT Pharmacometrics Syst Pharmacol 2024; 13:1582-1594. [PMID: 39044369 PMCID: PMC11533102 DOI: 10.1002/psp4.13194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/25/2024] Open
Abstract
Cotadutide is a dual glucagon-like peptide-1 (GLP-1)/glucagon receptor agonist. Gastrointestinal adverse effects are known to be associated with GLP-1 receptor agonism and can be mitigated through tolerance development via a gradual up-titration. This analysis aimed to characterize the relationship between exposure and nausea incidence and to optimize titration schemes. The model was developed with pooled data from cotadutide-administrated studies. Three different modeling approaches, proportional odds (PO), discrete-time Markov, and two-stage discrete-time Markov models, were employed to characterize the exposure-nausea relationship. The severity of nausea was modeled as different states (non-nausea, mild, and moderate/severe). The most appropriate model was selected to perform the covariate analysis, and the final covariate model was used to simulate the nausea event rates for various titration scenarios. The two Markov models demonstrated comparable performance and were better than the PO model. The covariate analysis was conducted with the standard Markov model for operational simplification and identified disease indications (NASH, obesity) and sex as covariates on Markov parameters. The simulations indicated that the biweekly titration with twofold dose escalation is superior to other titration schemes with a relatively low predicted nausea event rate at 600 μg (25%) and a shorter titration interval (8 weeks) to reach the therapeutic dose. The model can be utilized to optimize starting dose and titration schemes for other therapeutics in clinical trials to achieve an optimal risk-benefit balance and reach the therapeutic dose with minimal titration steps.
Collapse
Affiliation(s)
- Hongtao Yu
- Clinical Pharmacology and Quantitative PharmacologyClinical Pharmacology and Safety Sciences, R&D, AstraZenecaGaithersburgMarylandUSA
| | - Sebastian Ueckert
- Clinical Pharmacology and Quantitative PharmacologyClinical Pharmacology and Safety Sciences, R&D, AstraZenecaGothenburgSweden
| | - Lina Zhou
- Clinical Pharmacology and Quantitative PharmacologyClinical Pharmacology and Safety Sciences, R&D, AstraZenecaGaithersburgMarylandUSA
- Department of Pharmaceutical Sciences, College of PharmacyThe University of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Jenny Cheng
- Clinical Pharmacology and Quantitative PharmacologyClinical Pharmacology and Safety Sciences, R&D, AstraZenecaGaithersburgMarylandUSA
| | - Darren Robertson
- Early Clinical Development, Cardio‐Vascular, Renal and MetabolismR&D, AstraZenecaCambridgeUK
| | - Lars Hansen
- Early Clinical Development, Cardio‐Vascular, Renal and MetabolismR&D, AstraZenecaGaithersburgUSA
| | - Armando Flor
- Early Clinical Development, Cardio‐Vascular, Renal and MetabolismR&D, AstraZenecaGaithersburgUSA
| | - Victoria Parker
- Early Clinical Development, Cardio‐Vascular, Renal and MetabolismR&D, AstraZenecaCambridgeUK
| | - Bengt Hamrén
- Clinical Pharmacology and Quantitative PharmacologyClinical Pharmacology and Safety Sciences, R&D, AstraZenecaGothenburgSweden
| | - Anis A. Khan
- Clinical Pharmacology and Quantitative PharmacologyClinical Pharmacology and Safety Sciences, R&D, AstraZenecaGaithersburgMarylandUSA
| |
Collapse
|
2
|
Hoyos W, Aguilar J, Raciny M, Toro M. Case studies of clinical decision-making through prescriptive models based on machine learning. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 242:107829. [PMID: 37837889 DOI: 10.1016/j.cmpb.2023.107829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/11/2023] [Accepted: 09/22/2023] [Indexed: 10/16/2023]
Abstract
BACKGROUND The development of computational methodologies to support clinical decision-making is of vital importance to reduce morbidity and mortality rates. Specifically, prescriptive analytic is a promising area to support decision-making in the monitoring, treatment and prevention of diseases. These aspects remain a challenge for medical professionals and health authorities. MATERIALS AND METHODS In this study, we propose a methodology for the development of prescriptive models to support decision-making in clinical settings. The prescriptive model requires a predictive model to build the prescriptions. The predictive model is developed using fuzzy cognitive maps and the particle swarm optimization algorithm, while the prescriptive model is developed with an extension of fuzzy cognitive maps that combines them with genetic algorithms. We evaluated the proposed approach in three case studies related to monitoring (warfarin dose estimation), treatment (severe dengue) and prevention (geohelminthiasis) of diseases. RESULTS The performance of the developed prescriptive models demonstrated the ability to estimate warfarin doses in coagulated patients, prescribe treatment for severe dengue and generate actions aimed at the prevention of geohelminthiasis. Additionally, the predictive models can predict coagulation indices, severe dengue mortality and soil-transmitted helminth infections. CONCLUSIONS The developed models performed well to prescribe actions aimed to monitor, treat and prevent diseases. This type of strategy allows supporting decision-making in clinical settings. However, validations in health institutions are required for their implementation.
Collapse
Affiliation(s)
- William Hoyos
- Grupo de Investigaciones Microbiológicas y Biomédicas de Córdoba, Universidad de Córdoba, Montería, Colombia; Grupo de Investigación en I+D+i en TIC, Universidad EAFIT, Medellín, Colombia
| | - Jose Aguilar
- Grupo de Investigación en I+D+i en TIC, Universidad EAFIT, Medellín, Colombia; Centro de Estudios en Microelectrónica y Sistemas Distribuidos, Universidad de Los Andes, Merida, Venezuela; IMDEA Networks Institute, Madrid, Spain.
| | - Mayra Raciny
- Grupo de Investigaciones Microbiológicas y Biomédicas de Córdoba, Universidad de Córdoba, Montería, Colombia
| | - Mauricio Toro
- Grupo de Investigación en I+D+i en TIC, Universidad EAFIT, Medellín, Colombia
| |
Collapse
|
3
|
Vemula D, Jayasurya P, Sushmitha V, Kumar YN, Bhandari V. CADD, AI and ML in drug discovery: A comprehensive review. Eur J Pharm Sci 2023; 181:106324. [PMID: 36347444 DOI: 10.1016/j.ejps.2022.106324] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/26/2022] [Accepted: 11/03/2022] [Indexed: 11/06/2022]
Abstract
Computer-aided drug design (CADD) is an emerging field that has drawn a lot of interest because of its potential to expedite and lower the cost of the drug development process. Drug discovery research is expensive and time-consuming, and it frequently took 10-15 years for a drug to be commercially available. CADD has significantly impacted this area of research. Further, the combination of CADD with Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) technologies to handle enormous amounts of biological data has reduced the time and cost associated with the drug development process. This review will discuss how CADD, AI, ML, and DL approaches help identify drug candidates and various other steps of the drug discovery process. It will also provide a detailed overview of the different in silico tools used and how these approaches interact.
Collapse
Affiliation(s)
- Divya Vemula
- National Institute of Pharmaceutical Education and Research- Hyderabad, India
| | - Perka Jayasurya
- National Institute of Pharmaceutical Education and Research- Hyderabad, India
| | - Varthiya Sushmitha
- National Institute of Pharmaceutical Education and Research- Hyderabad, India
| | | | - Vasundhra Bhandari
- National Institute of Pharmaceutical Education and Research- Hyderabad, India.
| |
Collapse
|
4
|
Li F, Jörg F, Li X, Feenstra T. A Promising Approach to Optimizing Sequential Treatment Decisions for Depression: Markov Decision Process. PHARMACOECONOMICS 2022; 40:1015-1032. [PMID: 36100825 PMCID: PMC9550715 DOI: 10.1007/s40273-022-01185-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
The most appropriate next step in depression treatment after the initial treatment fails is unclear. This study explores the suitability of the Markov decision process for optimizing sequential treatment decisions for depression. We conducted a formal comparison of a Markov decision process approach and mainstream state-transition models as used in health economic decision analysis to clarify differences in the model structure. We performed two reviews: the first to identify existing applications of the Markov decision process in the field of healthcare and the second to identify existing health economic models for depression. We then illustrated the application of a Markov decision process by reformulating an existing health economic model. This provided input for discussing the suitability of a Markov decision process for solving sequential treatment decisions in depression. The Markov decision process and state-transition models differed in terms of flexibility in modeling actions and rewards. In all, 23 applications of a Markov decision process within the context of somatic disease were included, 16 of which concerned sequential treatment decisions. Most existing health economic models relating to depression have a state-transition structure. The example application replicated the health economic model and enabled additional capacity to make dynamic comparisons of more interventions over time than was possible with traditional state-transition models. Markov decision processes have been successfully applied to address sequential treatment-decision problems, although the results have been published mostly in economics journals that are not related to healthcare. One advantage of a Markov decision process compared with state-transition models is that it allows extended action space: the possibility of making dynamic comparisons of different treatments over time. Within the context of depression, although existing state-transition models are too basic to evaluate sequential treatment decisions, the assumptions of a Markov decision process could be satisfied. The Markov decision process could therefore serve as a powerful model for optimizing sequential treatment in depression. This would require a sufficiently elaborate state-transition model at the cohort or patient level.
Collapse
Affiliation(s)
- Fang Li
- University of Groningen, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
| | - Frederike Jörg
- University of Groningen, University Medical Center Groningen, University Center Psychiatry, Rob Giel Research Center, Interdisciplinary Centre for Psychopathology and Emotion Regulation, Groningen, The Netherlands
- Research Department, GGZ Friesland, Leeuwarden, The Netherlands
| | - Xinyu Li
- University of Groningen, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Talitha Feenstra
- University of Groningen, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
- Center for Nutrition, Prevention and Health Services Research, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
5
|
Eghbali-Zarch M, Tavakkoli-Moghaddam R, Esfahanian F, Masoud S. Prioritizing the glucose-lowering medicines for type 2 diabetes by an extended fuzzy decision-making approach with target-based attributes. Med Biol Eng Comput 2022; 60:2423-2444. [DOI: 10.1007/s11517-022-02602-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/07/2022] [Indexed: 11/30/2022]
|
6
|
Oh SH, Lee SJ, Noh J, Mo J. Optimal treatment recommendations for diabetes patients using the Markov decision process along with the South Korean electronic health records. Sci Rep 2021; 11:6920. [PMID: 33767324 PMCID: PMC7994640 DOI: 10.1038/s41598-021-86419-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/15/2021] [Indexed: 01/17/2023] Open
Abstract
The extensive utilization of electronic health records (EHRs) and the growth of enormous open biomedical datasets has readied the area for applications of computational and machine learning techniques to reveal fundamental patterns. This study’s goal is to develop a medical treatment recommendation system using Korean EHRs along with the Markov decision process (MDP). The sharing of EHRs by the National Health Insurance Sharing Service (NHISS) of Korea has made it possible to analyze Koreans’ medical data which include treatments, prescriptions, and medical check-up. After considering the merits and effectiveness of such data, we analyzed patients’ medical information and recommended optimal pharmaceutical prescriptions for diabetes, which is known to be the most burdensome disease for Koreans. We also proposed an MDP-based treatment recommendation system for diabetic patients to help doctors when prescribing diabetes medications. To build the model, we used the 11-year Korean NHISS database. To overcome the challenge of designing an MDP model, we carefully designed the states, actions, reward functions, and transition probability matrices, which were chosen to balance the tradeoffs between reality and the curse of dimensionality issues.
Collapse
Affiliation(s)
- Sang-Ho Oh
- Department of Information and Industrial Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Su Jin Lee
- Department of Internal Medicine, Seoul Red Cross Hospital, Seoul, 03181, Republic of Korea
| | - Juhwan Noh
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jeonghoon Mo
- Department of Information and Industrial Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
7
|
Roshan M, Tavakkoli-Moghaddam R, Rahimi Y. A two-stage approach to agile pharmaceutical supply chain management with product substitutability in crises. Comput Chem Eng 2019. [DOI: 10.1016/j.compchemeng.2019.05.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|