1
|
Jindal P, Bharti J, Gupta V, Dhami SS. Mechanical behaviour of reconstructed defected skull with custom PEEK implant and Titanium fixture plates under dynamic loading conditions using FEM. J Mech Behav Biomed Mater 2023; 146:106063. [PMID: 37556925 DOI: 10.1016/j.jmbbm.2023.106063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/11/2023]
Abstract
Skull reconstruction using cranial implants is often required for repairing skull defects caused due to trauma, diseases, or malignancy to protect intracranial structures. For relieving Intracranial Pressure (ICP) surgeons restore cranial defects either using natural bones or fabricated custom cranial implants. With the increase in Traumatic Brain Injuries (TBI) and challenges faced by TBI patients to regain normalcy, it is imperative to analyse the mechanical behaviour of skull-implant assemblies under some Head Injury Criteria (HIC). Medical grade materials including Titanium Alloys (Ti-6Al-4V) and Polyether-ether-ketone (PEEK) are used by fabricating Patient-Specific Implants (PSI) manufactured using 3D imaging, modelling and printing techniques. 3D technologies are preferred over conventional manufacturing methods, as they enable fabrication of custom shapes, sizes and properties for these PSI. For an effective attachment of PSI with a defective skull, a stable joint and plate arrangement as fixture plates is necessary at their interface. These fixtures can have variable numbers, design shapes, materials and location arrangements. This paper presents the Finite Element Method/Analysis (FEM/FEA) study of PSI attached to a defected skull for reconstruction, with linear shaped fixture configuration, when subjected to an external dynamic loading at 5 m/s, strain rate of 10s-1 to 243s-1 and ICP of 15mm Hg from three sides of the skull faces. Three different materials as Neoprene (soft), Concrete (medium rigid) and E-Glass (highly rigid) have been used, in the form of a rectangular thin cuboidal wall structure, at an angle of 45° with the skull face. Four linear shaped fixture plates which were simplest to design, were used to attach the PSI-skull assembly, to ensure that weight of the PSI-fixation assembly on the patient remains minimal, overall assembly has symmetrical fixations and efforts required by a surgeon for fitment of these plates remain minimal. Placement of these fixture plates has been optimized to encompass the complete PSI-skull interface section, due to which the stresses within all the assembly components (PSI, fixture plate and skull) reduced by nearly 2.5 times than the initial design and remained within yielding limits, thereby, averting any failure under heavy external dynamic loading.
Collapse
Affiliation(s)
- Prashant Jindal
- University Institute of Engineering & Technology, Panjab University, Chandigarh, 160014, India
| | - Jogendra Bharti
- Department of Mechanical Engineering, Government Polytechnic College Shajapur, Madhya Pradesh, 465001, India
| | - Vipin Gupta
- Department of Neurosurgery, Government Medical College and Hospital, Sector 32, Chandigarh, 160032, India
| | - S S Dhami
- Department of Mechanical Engineering, National Institute of Technical Teachers Training and Research, Chandigarh, 160019, India.
| |
Collapse
|
2
|
Morrison O, Destrade M, Tripathi BB. An atlas of the heterogeneous viscoelastic brain with local power-law attenuation synthesised using Prony-series. Acta Biomater 2023; 169:66-87. [PMID: 37507033 DOI: 10.1016/j.actbio.2023.07.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/16/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
This review addresses the acute need to acknowledge the mechanical heterogeneity of brain matter and to accurately calibrate its local viscoelastic material properties accordingly. Specifically, it is important to compile the existing and disparate literature on attenuation power-laws and dispersion to make progress in wave physics of brain matter, a field of research that has the potential to explain the mechanisms at play in diffuse axonal injury and mild traumatic brain injury in general. Currently, viscous effects in the brain are modelled using Prony-series, i.e., a sum of decaying exponentials at different relaxation times. Here we collect and synthesise the Prony-series coefficients appearing in the literature for twelve regions: brainstem, basal ganglia, cerebellum, corona radiata, corpus callosum, cortex, dentate gyrus, hippocampus, thalamus, grey matter, white matter, homogeneous brain, and for eight different mammals: pig, rat, human, mouse, cow, sheep, monkey and dog. Using this data, we compute the fractional-exponent attenuation power-laws for different tissues of the brain, the corresponding dispersion laws resulting from causality, and the averaged Prony-series coefficients. STATEMENT OF SIGNIFICANCE: Traumatic brain injuries are considered a silent epidemic and finite element methods (FEMs) are used in modelling brain deformation, requiring access to viscoelastic properties of brain. To the best of our knowledge, this work presents 1) the first multi-frequency viscoelastic atlas of the heterogeneous brain, 2) the first review focusing on viscoelastic modelling in both FEMs and experimental works, 3) the first attempt to conglomerate the disparate existing literature on the viscoelastic modelling of the brain and 4) the largest collection of viscoelastic parameters for the brain (212 different Prony-series spanning 12 different tissues and 8 different animal surrogates). Furthermore, this work presents the first brain atlas of attenuation power-laws essential for modelling shear waves in brain.
Collapse
Affiliation(s)
- Oisín Morrison
- School of Mathematical and Statistical Sciences, University of Galway, University Road, Galway, Ireland
| | - Michel Destrade
- School of Mathematical and Statistical Sciences, University of Galway, University Road, Galway, Ireland
| | - Bharat B Tripathi
- School of Mathematical and Statistical Sciences, University of Galway, University Road, Galway, Ireland.
| |
Collapse
|
3
|
Carmo GP, Dymek M, Ptak M, Alves-de-Sousa RJ, Fernandes FAO. Development, validation and a case study: The female finite element head model (FeFEHM). COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 231:107430. [PMID: 36827824 DOI: 10.1016/j.cmpb.2023.107430] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/18/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND AND OBJECTIVE Traumatic brain injuries are one of the leading causes of death and disability in the world. To better understand the interactions and forces applied in different constituents of the human head, several finite element head models have been developed throughout the years, for offering a good cost-effective and ethical approach compared to experimental tests. Once validated, the female finite element head model (FeFEHM) will allow a better understanding of injury mechanisms resulting in neuronal damage, which can later evolve into neurodegenerative diseases. METHODS This work encompasses the approached methodology starting from medical images and finite element modelling until the validation process using novel experimental data of brain displacements conducted on human cadavers. The material modelling of the brain is performed using an age-specific characterization of the brain using microindentation at dynamic rates and under large deformation, with a similar age to the patient used to model the FeFEHM. RESULTS The numerical displacement curves are in good accordance with the experimental data, displaying similar peak times and values, in all three anatomical planes. The case study result shows a similarity between the pressure fields of the FeFEHM compared to another model, highlighting the future potential of the model. CONCLUSIONS The initial objective was met, and a new female finite element head model has been developed with biofidelic brain motion. This model will be used for the assessment of repetitive impact scenarios and its repercussions on the female brain.
Collapse
Affiliation(s)
- Gustavo P Carmo
- Centre for Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, Campus Universitário de Santiago, University of Aveiro, Aveiro 3810-193, Portugal; LASI-Intelligent Systems Associate Laboratory, Portugal.
| | - Mateusz Dymek
- Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Łukasiewicza 5/7, Wrocław 50-370, Poland
| | - Mariusz Ptak
- Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Łukasiewicza 5/7, Wrocław 50-370, Poland
| | - Ricardo J Alves-de-Sousa
- Centre for Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, Campus Universitário de Santiago, University of Aveiro, Aveiro 3810-193, Portugal; LASI-Intelligent Systems Associate Laboratory, Portugal
| | - Fábio A O Fernandes
- Centre for Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, Campus Universitário de Santiago, University of Aveiro, Aveiro 3810-193, Portugal; LASI-Intelligent Systems Associate Laboratory, Portugal
| |
Collapse
|
4
|
Carmo GP, Grigioni J, Fernandes FAO, Alves de Sousa RJ. Biomechanics of Traumatic Head and Neck Injuries on Women: A State-of-the-Art Review and Future Directions. BIOLOGY 2023; 12:biology12010083. [PMID: 36671775 PMCID: PMC9855362 DOI: 10.3390/biology12010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023]
Abstract
The biomechanics of traumatic injuries of the human body as a consequence of road crashes, falling, contact sports, and military environments have been studied for decades. In particular, traumatic brain injury (TBI), the so-called "silent epidemic", is the traumatic insult responsible for the greatest percentage of death and disability, justifying the relevance of this research topic. Despite its great importance, only recently have research groups started to seriously consider the sex differences regarding the morphology and physiology of women, which differs from men and may result in a specific outcome for a given traumatic event. This work aims to provide a summary of the contributions given in this field so far, from clinical reports to numerical models, covering not only the direct injuries from inertial loading scenarios but also the role sex plays in the conditions that precede an accident, and post-traumatic events, with an emphasis on neuroendocrine dysfunctions and chronic traumatic encephalopathy. A review on finite element head models and finite element neck models for the study of specific traumatic events is also performed, discussing whether sex was a factor in validating them. Based on the information collected, improvement perspectives and future directions are discussed.
Collapse
Affiliation(s)
- Gustavo P. Carmo
- Centre for Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Jeroen Grigioni
- Centre for Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Fábio A. O. Fernandes
- Centre for Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
- LASI—Intelligent Systems Associate Laboratory, 4800-058 Guimaraes, Portugal
| | - Ricardo J. Alves de Sousa
- Centre for Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
- LASI—Intelligent Systems Associate Laboratory, 4800-058 Guimaraes, Portugal
- Correspondence: ; Tel.: +351-234-370-200
| |
Collapse
|
5
|
Zhang J, Dong W, Dou X, Wang J, Yin P, Shi H. Etiology Analysis and Diagnosis and Treatment Strategy of Traumatic Brain Injury Complicated With Hyponatremia. Front Surg 2022; 9:848312. [PMID: 35265664 PMCID: PMC8898937 DOI: 10.3389/fsurg.2022.848312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Objective To explore the etiology and diagnosis and treatment strategy of traumatic brain injury complicated with hyponatremia. Methods 90 patients with traumatic brain injury admitted to our hospital from December 2019 to December 2020 were retrospectively analyzed and divided into hyponatremic group (50 patients) and non-hyponatremic group (40 patients) according to the patients' concomitant hyponatremia, and the clinical data of the two groups were collected and compared. In addition, patients in the hyponatremia group were divided into a control group and an experimental group of 25 patients each according to their order of admission, with the control group receiving conventional treatment and the experimental group using continuous renal replacement therapy (CRRT). Hemodynamic indices, mortality and serum neuron-specific enolase (NSE) indices before and after treatment were compared between the control and experimental groups. The Glasgow coma scale (GCS) was used to assess the degree of coma before and after the treatment in the two groups, and the patients' disease status was assessed using the Acute Physiological and Chronic Health Evaluation Scoring System (APACHE II). Results The etiology of traumatic brain injury complicated with hyponatremia is related to the degree of brain injury, ventricular hemorrhage, cerebral edema, and skull base fracture (P < 0.05). After the treatment, the hemodynamic indexes, APACHE II scores, death rate, and NSE levels of the experimental group were significantly lower than those of the control group (P < 0.001); The experimental group yielded remarkably higher GAC scores as compared to the control group (P < 0.001). Conclusion The degree of brain injury, ventricular hemorrhage, cerebral edema, and skull base fracture were considered to be the main factors for traumatic brain injury complicated with hyponatremia. Continuous renal replacement therapy can effectively improve the clinical indicators of the patients with a promising curative effect, which merits promotion and application.
Collapse
Affiliation(s)
- Jianhua Zhang
- Department of Neurosurgery, The Affiliated Lianyungang Second People's Hospital of Bengbu Medical College, Lianyungang, China
| | - Wensheng Dong
- Department of Neurosurgery, The Affiliated Lianyungang Second People's Hospital of Bengbu Medical College, Lianyungang, China
| | - Xianghong Dou
- Department of Neurology, Donghai County People's Hospital, Lianyungang, China
| | - Jinjin Wang
- Department of Neurosurgery, The Affiliated Lianyungang Second People's Hospital of Bengbu Medical College, Lianyungang, China
| | - Peng Yin
- Department of Neurosurgery, The Affiliated Lianyungang Second People's Hospital of Bengbu Medical College, Lianyungang, China
| | - Hui Shi
- Department of Neurosurgery, The Affiliated Lianyungang Second People's Hospital of Bengbu Medical College, Lianyungang, China
- *Correspondence: Hui Shi
| |
Collapse
|
6
|
Zwirner J, Ondruschka B, Pregartner G, Berghold A, Scholze M, Hammer N. On the correlations of biomechanical properties of super-imposed temporal tissue layers and their age-, sex-, side- and post-mortem interval dependence. J Biomech 2021; 130:110847. [PMID: 34753030 DOI: 10.1016/j.jbiomech.2021.110847] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 10/20/2022]
Abstract
Obtaining biomechanical properties of biological tissues for simulation purposes or graft developments is time and resource consuming. The number of samples required for biomechanical tests could be reduced if the load-deformation properties of a given tissue layer could be estimated from adjacent layers or if the biomechanical parameters were unaffected by age, bodyside, sex or post-mortem interval. This study investigates for the first time potential correlations of multiple super-imposed tissue layers using the temporal region of the human head as an area of broad interest in biomechanical modelling. Spearman correlations between biomechanical properties of the scalp, muscle fascia, muscle, bone and dura mater from up to 83 chemically unfixed cadavers were investigated. The association with age, sex and post-mortem interval was assessed. The results revealed sporadic correlations between the corresponding layers, such as the maximum force (r = 0.43) and ultimate tensile strength (r = 0.33) between scalp and muscle. Side- and age-dependence of the biomechanical properties were different between the tissue types. Strain at maximum force of fascia (r = -0.37) and elastic modulus of temporal muscle (r = 0.26) weakly correlated with post-mortem interval. Only strain at maximum force of scalp differed significantly between sexes. Uniaxial biomechanical properties of individual head tissue layers can thus not be estimated solely based on adjacent layers. Therefore, correlations between the tissues' biomechanical properties, anthropometric data and post-mortem interval need to be established independently for each layer. Sex seems not to be a relevant influencing factor for the passive tissue mechanics of the here investigated temporal head tissue layers.
Collapse
Affiliation(s)
- J Zwirner
- Department of Anatomy, University of Otago, Dunedin, New Zealand; Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute of Legal Medicine, University of Leipzig, Leipzig, Germany.
| | - B Ondruschka
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - G Pregartner
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - A Berghold
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - M Scholze
- Institute of Materials Science and Engineering, Chemnitz University of Technology, Chemnitz, Germany; Institute of Macroscopic and Clinical Anatomy, Medical University of Graz, Graz, Austria
| | - N Hammer
- Institute of Macroscopic and Clinical Anatomy, Medical University of Graz, Graz, Austria; Department of Orthopedic and Trauma Surgery, University of Leipzig, Germany; Fraunhofer IWU, Dresden, Germany.
| |
Collapse
|
7
|
Subramaniam DR, Unnikrishnan G, Sundaramurthy A, Rubio JE, Kote VB, Reifman J. The importance of modeling the human cerebral vasculature in blunt trauma. Biomed Eng Online 2021; 20:11. [PMID: 33446217 PMCID: PMC7809851 DOI: 10.1186/s12938-021-00847-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/04/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Multiple studies describing human head finite element (FE) models have established the importance of including the major cerebral vasculature to improve the accuracy of the model predictions. However, a more detailed network of cerebral vasculature, including the major veins and arteries as well as their branch vessels, can further enhance the model-predicted biomechanical responses and help identify correlates to observed blunt-induced brain injury. METHODS We used an anatomically accurate three-dimensional geometry of a 50th percentile U.S. male head that included the skin, eyes, sinuses, spine, skull, brain, meninges, and a detailed network of cerebral vasculature to develop a high-fidelity model. We performed blunt trauma simulations and determined the intracranial pressure (ICP), the relative displacement (RD), the von Mises stress, and the maximum principal strain. We validated our detailed-vasculature model by comparing the model-predicted ICP and RD values with experimental measurements. To quantify the influence of including a more comprehensive network of brain vessels, we compared the biomechanical responses of our detailed-vasculature model with those of a reduced-vasculature model and a no-vasculature model. RESULTS For an inclined frontal impact, the predicted ICP matched well with the experimental results in the fossa, frontal, parietal, and occipital lobes, with peak-pressure differences ranging from 2.4% to 9.4%. For a normal frontal impact, the predicted ICP matched the experimental results in the frontal lobe and lateral ventricle, with peak-pressure discrepancies equivalent to 1.9% and 22.3%, respectively. For an offset parietal impact, the model-predicted RD matched well with the experimental measurements, with peak RD differences of 27% and 24% in the right and left cerebral hemispheres, respectively. Incorporating the detailed cerebral vasculature did not influence the ICP but redistributed the brain-tissue stresses and strains by as much as 30%. In addition, our detailed-vasculature model predicted strain reductions by as much as 28% when compared to current reduced-vasculature FE models that only include the major cerebral vessels. CONCLUSIONS Our study highlights the importance of including a detailed representation of the cerebral vasculature in FE models to more accurately estimate the biomechanical responses of the human brain to blunt impact.
Collapse
Affiliation(s)
- Dhananjay Radhakrishnan Subramaniam
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, FCMR-TT, 504 Scott Street, Fort Detrick, MD 21702-5012 USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Bethesda, MD 20817 USA
| | - Ginu Unnikrishnan
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, FCMR-TT, 504 Scott Street, Fort Detrick, MD 21702-5012 USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Bethesda, MD 20817 USA
| | - Aravind Sundaramurthy
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, FCMR-TT, 504 Scott Street, Fort Detrick, MD 21702-5012 USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Bethesda, MD 20817 USA
| | - Jose E. Rubio
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, FCMR-TT, 504 Scott Street, Fort Detrick, MD 21702-5012 USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Bethesda, MD 20817 USA
| | - Vivek Bhaskar Kote
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, FCMR-TT, 504 Scott Street, Fort Detrick, MD 21702-5012 USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Bethesda, MD 20817 USA
| | - Jaques Reifman
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, FCMR-TT, 504 Scott Street, Fort Detrick, MD 21702-5012 USA
| |
Collapse
|
8
|
A Review of Validation Methods for the Intracranial Response of FEHM to Blunt Impacts. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10207227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The following is a review of the processes currently employed when validating the intracranial response of Finite Element Head Models (FEHM) against blunt impacts. The authors aim to collate existing validation tools, their applications and findings on their effectiveness to aid researchers in the validation of future FEHM and potential efforts in improving procedures. In this vain, publications providing experimental data on the intracranial pressure, relative brain displacement and brain strain responses to impacts in human subjects are surveyed and key data are summarised. This includes cases that have previously been used in FEHM validation and alternatives with similar potential uses. The processes employed to replicate impact conditions and the resulting head motion are reviewed, as are the analytical techniques used to judge the validity of the models. Finally, publications exploring the validation process and factors affecting it are critically discussed. Reviewing FEHM validation in this way highlights the lack of a single best practice, or an obvious solution to create one using the tools currently available. There is clear scope to improve the validation process of FEHM, and the data available to achieve this. By collecting information from existing publications, it is hoped this review can help guide such developments and provide a point of reference for researchers looking to validate or investigate FEHM in the future, enabling them to make informed choices about the simulation of impacts, how they are generated numerically and the factors considered during output assessment, whilst being aware of potential limitations in the process.
Collapse
|
9
|
Certified Motorcycle Helmets: Computational Evaluation of the Efficacy of Standard Requirements with Finite Element Models. MATHEMATICAL AND COMPUTATIONAL APPLICATIONS 2020. [DOI: 10.3390/mca25010012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Every year, thousands of people die in the European Union as a direct result of road accidents. Helmets are one of the most important types of personal safety gear. The ECE R22.05 standard, adopted in 2000, is responsible for the certification of motorcycle helmets in the European Union and in many other countries. Two decades later, it is still being used with the same requirements, without any update. The aim of this work is to evaluate the efficacy of a motorcycle helmet certified by such standard, using computational models as an assessment tool. First, a finite element model of a motorcycle helmet available on the market was developed and validated by simulating the same impacts required by the standard. Then, a finite element model of the human head is used as an injury prediction tool to assess its safety performance. Results indicate a significant risk of brain injury, which is in accordance with previous studies available in the literature. Therefore, this work underlines and emphasizes the need of improving the requirements of ECE R22.05.
Collapse
|