1
|
Elhamshari A, Elkhodary K. Proposing a Caputo-Land System for active tension. Capturing variable viscoelasticity. Heliyon 2024; 10:e26143. [PMID: 38390177 PMCID: PMC10881374 DOI: 10.1016/j.heliyon.2024.e26143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
Accurate cell-level active tension modeling for cardiomyocytes is critical to understanding cardiac functionality on a subject-specific basis. However, cell-level models in the literature fail to account for viscoelasticity and inter-subject variations in active tension, which are relevant to disease diagnostics and drug screening, e.g., for cardiotoxicity. Thus, we propose a fractional order system to model cell-level active tension by extending Land's state-of-the-art model of cardiac contraction. Our approach features the (left) Caputo derivative of six state variables that identify the mechanistic origins of viscoelasticity in a myocardial cell in terms of the thin filament, thick filament, and length-dependent interactions. This proposed CLS is the first of its kind for active tension modeling in cells and demonstrates notable subject-specificity, with smaller mean square errors than the reference model relative to cell-level experiments across subjects, promising greater clinical relevance than its counterparts in the literature by highlighting the contribution of different cellular mechanisms to apparent viscoelastic cell behavior, and how it could vary with disease.
Collapse
Affiliation(s)
- Afnan Elhamshari
- The Robotics, Control, and Smart Systems Program, The American University in Cairo, 11835, New Cairo, Egypt
| | - Khalil Elkhodary
- The Department of Mechanical Engineering, The American University in Cairo, 11835, New Cairo, Egypt
| |
Collapse
|
2
|
Ali AM, Hafez AH, Elkhodary KI, El-Morsi M. A CFD-FFT approach to hemoacoustics that enables degree of stenosis prediction from stethoscopic signals. Heliyon 2023; 9:e17643. [PMID: 37449099 PMCID: PMC10336451 DOI: 10.1016/j.heliyon.2023.e17643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/18/2023] Open
Abstract
In this paper, we identify a new (acoustic) frequency-stenosis relation whose frequencies lie within the recommended auscultation threshold of stethoscopy (< 120 Hz). We show that this relation can be used to extend the application of phonoangiography (quantifying the degree of stenosis from bruits) to widely accessible stethoscopes. The relation is successfully identified from an analysis restricted to the acoustic signature of the von Karman vortex street, which we automatically single out by means of a metric we propose that is based on an area-weighted average of the Q-criterion for the post-stenotic region. Specifically, we perform CFD simulations on internal flow geometries that represent stenotic blood vessels of different severities. We then extract their emitted acoustic signals using the Ffowcs Williams-Hawkings equation, which we subtract from a clean signal (stenosis free) at the same heart rate. Next, we transform this differential signal to the frequency domain and carefully classify its acoustic signatures per six (stenosis-)invariant flow phases of a cardiac cycle that are newly identified in this paper. We then automatically restrict our acoustic analysis to the sounds emitted by the von Karman vortex street (phase 4) by means of our Q-criterion-based metric. Our analysis of its acoustic signature reveals a strong linear relationship between the degree of stenosis and its dominant frequency, which differs considerably from the break frequency and the heart rate (known dominant frequencies in the literature). Applying our new relation to available stethoscopic data, we find that its predictions are consistent with clinical assessment. Our finding of this linear correlation is also unlike prevalent scaling laws in the literature, which feature a small exponent (i.e., low stenosis percentage sensitivity over much of the clinical range). They hence can only distinguish mild, moderate, and severe cases. Conversely, our linear law can identify variations in the degree of stenosis sensitively and accurately for the full clinical range, thus significantly improving the utility of the relevant scaling laws... Future research will investigate incorporating the vibroacoustic role of adjacent organs to expand the clinical applicability of our findings. Extending our approach to more complex 3D stenotic morphologies and including the vibroacoustic role of surrounding organs will be explored in future research to advance the clinical reach of our findings.
Collapse
Affiliation(s)
- Ahmed M. Ali
- Department of Mechanical Engineering, The American University in Cairo, 11835 New Cairo, Egypt
| | - Ahmed H. Hafez
- Department of Mechanical Engineering, The American University in Cairo, 11835 New Cairo, Egypt
- Aerospace Engineering Department, Cairo University, 12511 Giza, Egypt
| | - Khalil I. Elkhodary
- Department of Mechanical Engineering, The American University in Cairo, 11835 New Cairo, Egypt
| | - Mohamed El-Morsi
- Department of Mechanical Engineering, The American University in Cairo, 11835 New Cairo, Egypt
| |
Collapse
|
3
|
Heidari A, Elkhodary KI, Pop C, Badran M, Vali H, Abdel-Raouf YMA, Torbati S, Asgharian M, Steele RJ, Mahmoudzadeh Kani I, Sheibani S, Pouraliakbar H, Sadeghian H, Cecere R, Friedrich MGW, Tafti HA. Patient-specific finite element analysis of heart failure and the impact of surgical intervention in pulmonary hypertension secondary to mitral valve disease. Med Biol Eng Comput 2022; 60:1723-1744. [PMID: 35442004 DOI: 10.1007/s11517-022-02556-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/12/2022] [Indexed: 12/31/2022]
Abstract
Pulmonary hypertension (PH), a chronic and complex medical condition affecting 1% of the global population, requires clinical evaluation of right ventricular maladaptation patterns under various conditions. A particular challenge for clinicians is a proper quantitative assessment of the right ventricle (RV) owing to its intimate coupling to the left ventricle (LV). We, thus, proposed a patient-specific computational approach to simulate PH caused by left heart disease and its main adverse functional and structural effects on the whole heart. Information obtained from both prospective and retrospective studies of two patients with severe PH, a 72-year-old female and a 61-year-old male, is used to present patient-specific versions of the Living Heart Human Model (LHHM) for the pre-operative and post-operative cardiac surgery. Our findings suggest that before mitral and tricuspid valve repair, the patients were at risk of right ventricular dilatation which may progress to right ventricular failure secondary to their mitral valve disease and left ventricular dysfunction. Our analysis provides detailed evidence that mitral valve replacement and subsequent chamber pressure unloading are associated with a significant decrease in failure risk post-operatively in the context of pulmonary hypertension. In particular, right-sided strain markers, such as tricuspid annular plane systolic excursion (TAPSE) and circumferential and longitudinal strains, indicate a transition from a range representative of disease to within typical values after surgery. Furthermore, the wall stresses across the RV and the interventricular septum showed a notable decrease during the systolic phase after surgery, lessening the drive for further RV maladaptation and significantly reducing the risk of RV failure.
Collapse
Affiliation(s)
- Alireza Heidari
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montreal, QC, H3A 0C3, Canada. .,Department of Anatomy & Cell Biology, McGill University, Montreal, QC, Canada.
| | - Khalil I Elkhodary
- Department of Mechanical Engineering, American University in Cairo, New Cairo, 11835, Egypt
| | - Cristina Pop
- Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Mohamed Badran
- Department of Mechanical Engineering, Future University in Egypt, New Cairo, Egypt
| | - Hojatollah Vali
- Department of Anatomy & Cell Biology, McGill University, Montreal, QC, Canada
| | - Yousof M A Abdel-Raouf
- Department of Mechanical Engineering, American University in Cairo, New Cairo, 11835, Egypt
| | - Saeed Torbati
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Masoud Asgharian
- Department of Mathematics and Statistics, McGill University, Montreal, QC, Canada
| | - Russell J Steele
- Department of Mathematics and Statistics, McGill University, Montreal, QC, Canada
| | | | - Sara Sheibani
- Department of Anatomy & Cell Biology, McGill University, Montreal, QC, Canada
| | - Hamidreza Pouraliakbar
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hakimeh Sadeghian
- Faculty of Medicine, Tehran University of Medical Science, Tehran, Iran.,Department of Surgery, Tehran Heart Center, Tehran, Iran
| | - Renzo Cecere
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montreal, QC, H3A 0C3, Canada.,Department of Surgery, Royal Victoria Hospital, McGill University Health Centre, Montreal, QC, Canada
| | - Matthias G W Friedrich
- Departments of Medicine and Diagnostic Radiology, McGill University, Montreal, QC, Canada
| | - Hossein Ahmadi Tafti
- Faculty of Medicine, Tehran University of Medical Science, Tehran, Iran.,Department of Surgery, Tehran Heart Center, Tehran, Iran
| |
Collapse
|