1
|
Apostolopoulos V, Boháč P, Marcián P, Nachtnebl L, Mahdal M, Pazourek L, Tomáš T. Biomechanical comparison of all-polyethylene total knee replacement and its metal-backed equivalent on periprosthetic tibia using the finite element method. J Orthop Surg Res 2024; 19:153. [PMID: 38396020 PMCID: PMC10893603 DOI: 10.1186/s13018-024-04631-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Total knee arthroplasty (TKA) with all-polyethylene tibial (APT) components has shown comparable survivorship and clinical outcomes to that with metal-backed tibial (MBT). Although MBT is more frequently implanted, APT equivalents are considered a low-cost variant for elderly patients. A biomechanical analysis was assumed to be suitable to compare the response of the periprosthetic tibia after implantation of TKA NexGen APT and MBT equivalent. METHODS A standardised load model was used representing the highest load achieved during level walking. The geometry and material models were created using computed tomography data. In the analysis, a material model was created that represents a patient with osteopenia. RESULTS The equivalent strain distribution in the models of cancellous bone with an APT component showed values above 1000 με in the area below the medial tibial section, with MBT component were primarily localised in the stem tip area. For APT variants, the microstrain values in more than 80% of the volume were in the range from 300 to 1500 με, MBT only in less than 64% of the volume. CONCLUSION The effect of APT implantation on the periprosthetic tibia was shown as equal or even superior to that of MBT despite maximum strain values occurring in different locations. On the basis of the strain distribution, the state of the bone tissue was analysed to determine whether bone tissue remodelling or remodelling would occur. Following clinical validation, outcomes could eventually modify the implant selection criteria and lead to more frequent implantation of APT components.
Collapse
Affiliation(s)
- Vasileios Apostolopoulos
- First Department of Orthopaedic Surgery, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Petr Boháč
- Institute of Solid Mechanics, Mechatronics and Biomechanics, Faculty of Mechanical Engineering, University of Technology, Brno, Czech Republic
| | - Petr Marcián
- Institute of Solid Mechanics, Mechatronics and Biomechanics, Faculty of Mechanical Engineering, University of Technology, Brno, Czech Republic
| | - Luboš Nachtnebl
- First Department of Orthopaedic Surgery, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Michal Mahdal
- First Department of Orthopaedic Surgery, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lukáš Pazourek
- First Department of Orthopaedic Surgery, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Tomáš Tomáš
- First Department of Orthopaedic Surgery, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
2
|
Miron RJ, Estrin NE, Sculean A, Zhang Y. Understanding exosomes: Part 2-Emerging leaders in regenerative medicine. Periodontol 2000 2024; 94:257-414. [PMID: 38591622 DOI: 10.1111/prd.12561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 04/10/2024]
Abstract
Exosomes are the smallest subset of extracellular signaling vesicles secreted by most cells with the ability to communicate with other tissues and cell types over long distances. Their use in regenerative medicine has gained tremendous momentum recently due to their ability to be utilized as therapeutic options for a wide array of diseases/conditions. Over 5000 publications are currently being published yearly on this topic, and this number is only expected to dramatically increase as novel therapeutic strategies continue to be developed. Today exosomes have been applied in numerous contexts including neurodegenerative disorders (Alzheimer's disease, central nervous system, depression, multiple sclerosis, Parkinson's disease, post-traumatic stress disorders, traumatic brain injury, peripheral nerve injury), damaged organs (heart, kidney, liver, stroke, myocardial infarctions, myocardial infarctions, ovaries), degenerative processes (atherosclerosis, diabetes, hematology disorders, musculoskeletal degeneration, osteoradionecrosis, respiratory disease), infectious diseases (COVID-19, hepatitis), regenerative procedures (antiaging, bone regeneration, cartilage/joint regeneration, osteoarthritis, cutaneous wounds, dental regeneration, dermatology/skin regeneration, erectile dysfunction, hair regrowth, intervertebral disc repair, spinal cord injury, vascular regeneration), and cancer therapy (breast, colorectal, gastric cancer and osteosarcomas), immune function (allergy, autoimmune disorders, immune regulation, inflammatory diseases, lupus, rheumatoid arthritis). This scoping review is a first of its kind aimed at summarizing the extensive regenerative potential of exosomes over a broad range of diseases and disorders.
Collapse
Affiliation(s)
- Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Nathan E Estrin
- Advanced PRF Education, Venice, Florida, USA
- School of Dental Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Anton Sculean
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Yufeng Zhang
- Department of Oral Implantology, University of Wuhan, Wuhan, China
| |
Collapse
|
3
|
Zhang Q, Li Z, Chen Z, Peng Y, Jin Z, Qin L. Prediction of knee biomechanics with different tibial component malrotations after total knee arthroplasty: conventional machine learning vs. deep learning. Front Bioeng Biotechnol 2024; 11:1255625. [PMID: 38260731 PMCID: PMC10800660 DOI: 10.3389/fbioe.2023.1255625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
The precise alignment of tibiofemoral components in total knee arthroplasty is a crucial factor in enhancing the longevity and functionality of the knee. However, it is a substantial challenge to quickly predict the biomechanical response to malrotation of tibiofemoral components after total knee arthroplasty using musculoskeletal multibody dynamics models. The objective of the present study was to conduct a comparative analysis between a deep learning method and four conventional machine learning methods for predicting knee biomechanics with different tibial component malrotation during a walking gait after total knee arthroplasty. First, the knee contact forces and kinematics with different tibial component malrotation in the range of ±5° in the three directions of anterior/posterior slope, internal/external rotation, and varus/valgus rotation during a walking gait after total knee arthroplasty were calculated based on the developed musculoskeletal multibody dynamics model. Subsequently, deep learning and four conventional machine learning methods were developed using the above 343 sets of biomechanical data as the dataset. Finally, the results predicted by the deep learning method were compared to the results predicted by four conventional machine learning methods. The findings indicated that the deep learning method was more accurate than four conventional machine learning methods in predicting knee contact forces and kinematics with different tibial component malrotation during a walking gait after total knee arthroplasty. The deep learning method developed in this study enabled quickly determine the biomechanical response with different tibial component malrotation during a walking gait after total knee arthroplasty. The proposed method offered surgeons and surgical robots the ability to establish a calibration safety zone, which was essential for achieving precise alignment in both preoperative surgical planning and intraoperative robotic-assisted surgical navigation.
Collapse
Affiliation(s)
- Qida Zhang
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Zhuhuan Li
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Zhenxian Chen
- Key Laboratory of Road Construction Technology and Equipment (Ministry of Education), School of Mechanical Engineering, Chang’an University, Xi’an, China
| | - Yinghu Peng
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences, Shenzhen, China
| | - Zhongmin Jin
- Tribology Research Institute, School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, China
- Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Leeds, United Kingdom
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
4
|
Zhang Q, Chen Z, Peng Y, Jin Z, Qin L. The novel magnesium-titanium hybrid cannulated screws for the treatment of vertical femoral neck fractures: Biomechanical evaluation. J Orthop Translat 2023; 42:127-136. [PMID: 37680903 PMCID: PMC10480783 DOI: 10.1016/j.jot.2023.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/14/2023] [Accepted: 08/02/2023] [Indexed: 09/09/2023] Open
Abstract
Background Conventional cannulated screws are commonly used for internal fixation in the treatment of vertical femoral neck fractures. However, the noticeably high rates of undesirable outcomes such as nonunion, malunion, avascular necrosis, and fixation failure still troubled the patients and surgeons. It is urgent to develop new cannulated screws to improve the above clinical problems. The purpose of this study was to design a novel magnesium-titanium hybrid cannulated screw and to further evaluate its biomechanical performance for the treatment of vertical femoral neck fractures. Methods A novel magnesium-titanium hybrid cannulated screw was designed, and the conventional titanium cannulated screw was also modeled. The finite element models for vertical femoral neck fractures with magnesium-titanium hybrid cannulated screws and conventional cannulated screws were respectively established. The hip joint contact force during walking gait calculated by a subject-specific musculoskeletal multibody dynamics model, was used as loads and boundary conditions for both finite element models. The stress and displacement distributions of the cannulated screws and the femur, the micromotion of the fracture surfaces of the femoral neck, and the overall stiffness were calculated and analyzed using finite element models. The biomechanical performance of the Magnesium-Titanium hybrid cannulated screws was evaluated. Results The maximum stresses of the magnesium-titanium hybrid cannulated screws and the conventional cannulated screws were 451.5 MPa and 476.8 MPa, respectively. The maximum stresses of the femur with the above different cannulated screws were 140.3 MPa and 164.8 MPa, respectively. The maximum displacement of the femur with the hybrid cannulated screws was 6.260 mm, lower than the femur with the conventional cannulated screws, which was 7.125 mm. The tangential micromotions in the two orthogonal directions at the fracture surface of the femoral neck with the magnesium-titanium hybrid cannulated screws were comparable to those with the conventional cannulated screws. The overall stiffness of the magnesium-titanium hybrid cannulated screw system was 490.17 N/mm, higher than that of the conventional cannulated screw system, which was 433.92 N/mm. Conclusion The magnesium-titanium hybrid cannulated screw had superior mechanical strength and fixation stability for the treatment of the vertical femoral neck fractures, compared with those of the conventional cannulated screw, indicating that the magnesium-titanium hybrid cannulated screw has great potential as a new fixation strategy in future clinical applications.The translational potential of this article: This study highlights an innovative design of the magnesium-titanium hybrid cannulated screw for the treatment of vertical femoral neck fractures. The novel magnesium-titanium hybrid cannulated screw not only to provide sufficient mechanical strength and fixation stability but also to contribute to the promotion of fracture healing, which could provide a better treatment for the vertical femoral neck fractures, beneficially reducing the incidence of nonunion and reoperation rates.
Collapse
Affiliation(s)
- Qida Zhang
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong
| | - Zhenxian Chen
- Key Laboratory of Road Construction Technology and Equipment (Ministry of Education), School of Mechanical Engineering, Chang'an University, Xi'an, China
| | - Yinghu Peng
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences, Shenzhen, China
| | - Zhongmin Jin
- Tribology Research Institute, School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, China
- Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Leeds, UK
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
5
|
Zhang Q, Peng Y, Chen Z, Jin Z, Qin L. Conformity design can change the effect of tibial component malrotation on knee biomechanics after total knee arthroplasty. Clin Biomech (Bristol, Avon) 2023; 105:105985. [PMID: 37182435 DOI: 10.1016/j.clinbiomech.2023.105985] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/01/2023] [Accepted: 05/08/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND Component alignment is essential to improve knee function and survival in total knee arthroplasty. However, it is still unclear whether the conformity design of tibiofemoral component can mitigate abnormal knee biomechanics caused by component malrotation. The purpose of this study was to investigate whether the sagittal/coronal conformity design of the tibial component could change the effect of the tibial component malrotation on knee biomechanics in total knee arthroplasty. METHODS A developed patient-specific musculoskeletal multi-body dynamics model of total knee arthroplasty was used to investigate the effects of the sagittal/coronal conformity of the tibial component on knee contact forces and kinematics caused by tibial component malrotation during the walking gait. FINDINGS Medial and lateral contact forces, internal-external rotation, and anterior-posterior translation were significantly affected by tibial component malrotation after total knee arthroplasty during the walking gait. The lower sagittal conformity of the tibial component can mitigate the abnormal internal-external rotation caused by tibial component malrotation in total knee arthroplasty, the higher coronal conformity of the tibial component can mitigate the abnormal medial-lateral translation caused by tibial component malrotation in total knee arthroplasty. INTERPRETATION This study highlights the importance of the tibiofemoral conformity designs on knee biomechanics caused by component malrotation in total knee arthroplasty. The optimization of the tibiofemoral conformity designs should be thoroughly considered in the design of new implants and in the planning of surgical procedures.
Collapse
Affiliation(s)
- Qida Zhang
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Yinghu Peng
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences, Shenzhen, China
| | - Zhenxian Chen
- Key Laboratory of Road Construction Technology and Equipment (Ministry of Education), School of Mechanical Engineering, Chang'an University, Xi'an, China
| | - Zhongmin Jin
- Tribology Research Institute, School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, China; Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Leeds, UK
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
6
|
Wan T, Huang Y, Gao X, Wu W, Guo W. Microglia Polarization: A Novel Target of Exosome for Stroke Treatment. Front Cell Dev Biol 2022; 10:842320. [PMID: 35356292 PMCID: PMC8959940 DOI: 10.3389/fcell.2022.842320] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/14/2022] [Indexed: 12/14/2022] Open
Abstract
The vast majority of cells in the human body are capable of secreting exosomes. Exosomes have become an important vehicle for signaling between cells. Exosomes secreted by different cells have some of the structural and functional properties of that cell and thus have different regulatory functions. A large number of recent experimental studies have shown that exosomes from different sources have different regulatory effects on stroke, and the mechanisms still need to be elucidated. Microglia are core members of central intrinsic immune regulatory cells, which play an important regulatory role in the pathogenesis and progression of stroke. M1 microglia cause neuroinflammation and induce neurotoxic effects, while M2 microglia inhibit neuroinflammation and promote neurogenesis, thus exerting a series of neuroprotective effects. It was found that there is a close link between exosomes and microglia polarization, and that exosome inclusions such as microRNAs play a regulatory role in the M1/M2 polarization of microglia. This research reviews the role of exosomes in the regulation of microglia polarization and reveals their potential value in stroke treatment.
Collapse
Affiliation(s)
- Teng Wan
- Hengyang Medical College, University of South China, Hengyang, China.,Sports Medicine Department, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Yunling Huang
- Hengyang Medical College, University of South China, Hengyang, China
| | - Xiaoyu Gao
- Hengyang Medical College, University of South China, Hengyang, China
| | - Wanpeng Wu
- Shenzhen Futian District Maternity & Child Healthcare Hospital, Shenzhen, China
| | - Weiming Guo
- Sports Medicine Department, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
7
|
Zhang Q, Chen Z, Jin Z, Muratoglu OK, Varadarajan KM. Patient-specific musculoskeletal models as a framework for comparing ACL function in unicompartmental versus bicruciate retaining arthroplasty. Proc Inst Mech Eng H 2021; 235:861-872. [PMID: 33913346 DOI: 10.1177/09544119211011827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Unicompartmental knee arthroplasty has been shown to provide superior functional outcomes compared to total knee arthroplasty and have motivated development of advanced implant designs including bicruciate retaining knee arthroplasty. However, few validated frameworks are available to directly compare the effect of implant design and surgical techniques on ligament function and joint kinematics. In the present study, the subject-specific lower extremity models were developed based on musculoskeletal modeling framework using force-dependent kinematics method, and validated against in vivo telemetric data. The experiment data of two subjects who underwent TKA were obtained from the SimTK "Grand Challenge Competition" repository, and integrated into the subject-specific lower extremity model. Five walking gait trials and three different knee implant models for each subject were used as partial inputs for the model to predict knee biomechanics for unicompartmental, bicruciate retaining, and total knee arthroplasty. The results showed no significant differences in the tibiofemoral contact forces or angular kinematic parameters between three groups. However, unicompartmental knee arthroplasty demonstrated significantly more posterior tibial location between 0% and 40% of the gait cycle (p < 0.017). Significant differences in range of tibiofemoral anterior/posterior translation and medial/lateral translation were also observed between unicompartmental and bicruciate retaining arthroplasty (p < 0.017). Peak values of anterior cruciate ligament forces differed between unicompartmental and bicruciate retaining arthroplasty from 10% to 30% of the gait cycle. Findings of this study indicate that unicompartmental and bicruciate retaining arthroplasty do not have identical biomechanics and point to the complementary role of anterior cruciate ligament and articular geometry in guiding knee function. Further, the patient-specific musculoskeletal model developed provides a reliable framework for assessing new implant designs, and effect of surgical techniques on knee biomechanics following arthroplasty.
Collapse
Affiliation(s)
- Qida Zhang
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China.,Technology Implementation Research Center, Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Zhenxian Chen
- Key Laboratory of Road Construction Technology and Equipment (Ministry of Education), School of Mechanical Engineering, Chang'an University, Xi'an, China
| | - Zhongmin Jin
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China.,Tribology Research Institute, School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, China.,Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Leeds, UK
| | - Orhun K Muratoglu
- Technology Implementation Research Center, Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Kartik M Varadarajan
- Technology Implementation Research Center, Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
8
|
Early results with a bicruciate-retaining total knee arthroplasty: a match-paired study. EUROPEAN JOURNAL OF ORTHOPAEDIC SURGERY AND TRAUMATOLOGY 2020; 31:785-790. [PMID: 33215307 DOI: 10.1007/s00590-020-02834-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/10/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND The aim of this study is to compare 2 groups of total knee arthroplasties (TKAs): the bicruciate-retaining (BCR-group) and cruciate-retaining total knee arthroplasty (CR-group), evaluating the functional results in the short-term follow-up. METHODS 24 BCR were included in the study and were compared with a group of 24 TKAs performed with the same implant, but with sacrifice of the ACL and retention of the posterior cruciate ligament. For preoperative and postoperative clinical evaluation, the visual analogue score (VAS) and the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) were used. Radiological evaluation included weight-bearing long-leg view, a Rosemberg view, lateral view of the knee and tangential view of the patella. Hip-knee-ankle angle (HKA) was recorded pre and postoperatively. Radiolucent lines (RLLs) were evaluated according the Knee Society Roentgenographic Evaluation System (KSRES). RESULTS At last follow-up the mean VAS score was 1.81 for BCR group and 1.43 for CR group (p = 0.61). The mean WOMAC score was 8.68 for BCR group and 12.81 for CR group (p = 0.33). As for the radiological evaluation, preoperative HKA angle was 0.53° varus for BCR group and 3.14° varus for CR group (p = 0.24); postoperative HKA was 0.72° valgus for BCR group and 0.38° valgus for CR group (p = 0.75). The percentage of RLLs was similar between the two groups (12% versus 15%). CONCLUSIONS BCR-TKA has showed to give similar functional and radiographic outcomes compared to conventional CR-TKA in a similar cohort of patients. An higher operative times and higher number of complications respect were found in BCR group. These results can be explained by the early learning curve experiences. Future randomized controlled trials should be performed to support new implant designs such as BCR. LEVEL OF EVIDENCE Level of evidence Case-control study, level III.
Collapse
|