1
|
Liu W, Dai X, Jih J, Chan K, Trang P, Yu X, Balogun R, Mei Y, Liu F, Zhou ZH. Atomic structures and deletion mutant reveal different capsid-binding patterns and functional significance of tegument protein pp150 in murine and human cytomegaloviruses with implications for therapeutic development. PLoS Pathog 2019; 15:e1007615. [PMID: 30779794 PMCID: PMC6396938 DOI: 10.1371/journal.ppat.1007615] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 03/01/2019] [Accepted: 02/01/2019] [Indexed: 12/12/2022] Open
Abstract
Cytomegalovirus (CMV) infection causes birth defects and life-threatening complications in immunosuppressed patients. Lack of vaccine and need for more effective drugs have driven widespread ongoing therapeutic development efforts against human CMV (HCMV), mostly using murine CMV (MCMV) as the model system for preclinical animal tests. The recent publication (Yu et al., 2017, DOI: 10.1126/science.aam6892) of an atomic model for HCMV capsid with associated tegument protein pp150 has infused impetus for rational design of novel vaccines and drugs, but the absence of high-resolution structural data on MCMV remains a significant knowledge gap in such development efforts. Here, by cryoEM with sub-particle reconstruction method, we have obtained the first atomic structure of MCMV capsid with associated pp150. Surprisingly, the capsid-binding patterns of pp150 differ between HCMV and MCMV despite their highly similar capsid structures. In MCMV, pp150 is absent on triplex Tc and exists as a “Λ”-shaped dimer on other triplexes, leading to only 260 groups of two pp150 subunits per capsid in contrast to 320 groups of three pp150 subunits each in a “Δ”-shaped fortifying configuration. Many more amino acids contribute to pp150-pp150 interactions in MCMV than in HCMV, making MCMV pp150 dimer inflexible thus incompatible to instigate triplex Tc-binding as observed in HCMV. While pp150 is essential in HCMV, our pp150-deletion mutant of MCMV remained viable though with attenuated infectivity and exhibiting defects in retaining viral genome. These results thus invalidate targeting pp150, but lend support to targeting capsid proteins, when using MCMV as a model for HCMV pathogenesis and therapeutic studies. Cytomegalovirus (CMV) infection is a leading viral cause of birth defects and could be deadly to AIDS patients and organ transplant recipients. Absence of effective vaccines and potent drugs against human CMV (HCMV) infections has motivated animal-based studies, mostly based on the mouse model with murine CMV (MCMV), both for understanding pathogenesis of CMV infections and for developing therapeutic strategies. Distinct from other medically important herpesviruses (those responsible for cold sores, genital herpes, shingles and several human cancers), CMV contains an abundant phosphoprotein, pp150, which is a structurally, immunogenically, and regulatorily important tegument protein and a potential drug target. Here, we used cryoEM with localized reconstruction method to obtain the first atomic structure of MCMV. The structure reveals that the organization patterns of the capsid-associated tegument protein pp150 are different in MCMV and HCMV, despite their highly similar capsid structures. We also show that deleting pp150 did not eliminate MCMV infection in contrast to pp150’s essential role in HCMV infections. Our results have significant implication to the current practice of using mouse infected with MCMV for HCMV therapeutic development.
Collapse
Affiliation(s)
- Wei Liu
- State Key Laboratory of Precision Spectroscopy, School of Physics and Material Science, East China Normal University, Shanghai, China
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, California, United States of America
- California NanoSystems Institute, UCLA, Los Angeles, California, United States of America
| | - Xinghong Dai
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, California, United States of America
- California NanoSystems Institute, UCLA, Los Angeles, California, United States of America
| | - Jonathan Jih
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, California, United States of America
- California NanoSystems Institute, UCLA, Los Angeles, California, United States of America
| | - Karen Chan
- School of Public Health, University of California at Berkeley, Berkeley, California, United States of America
| | - Phong Trang
- Program in Comparative Biochemistry, University of California at Berkeley, Berkeley, California, United States of America
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Xuekui Yu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, California, United States of America
- California NanoSystems Institute, UCLA, Los Angeles, California, United States of America
| | - Rilwan Balogun
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, California, United States of America
- California NanoSystems Institute, UCLA, Los Angeles, California, United States of America
| | - Ye Mei
- State Key Laboratory of Precision Spectroscopy, School of Physics and Material Science, East China Normal University, Shanghai, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, China
| | - Fenyong Liu
- School of Public Health, University of California at Berkeley, Berkeley, California, United States of America
- Program in Comparative Biochemistry, University of California at Berkeley, Berkeley, California, United States of America
| | - Z. Hong Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, California, United States of America
- California NanoSystems Institute, UCLA, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
2
|
Bolger G, Lapeyre N, Rhéaume M, Kibler P, Bousquet C, Garneau M, Cordingley M. Acute murine cytomegalovirus infection: a model for determining antiviral activity against CMV induced hepatitis. Antiviral Res 1999; 44:155-65. [PMID: 10651067 DOI: 10.1016/s0166-3542(99)00063-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Acute intraperitoneal infection of weanling BALB/c mice with murine cytomegalovirus (MCMV) resulted in an inoculum titer-dependent weight loss, mortality and elevation of plasma transaminases (ALT: alanine transaminase and AST: aspartate transaminase). Three days post infection (p.i.) with 10(4.85) plaque forming units (pfu) there was 90% mortality with a mean death day p.i. of 4.1 +/- 0.2. Plasma levels of ALT and AST were elevated 24- and 15-fold, respectively. Organ titers of virus (log10 pfu/g tissue) were 6.16 in the liver, 6.05 in the spleen, 4.0-4.7 in the lung, heart, kidney and intestine and undetectable in the muscle and brain. Organ concentrations (units/g wet-weight) of ALT were highest in the liver, whilst for AST the highest levels were found in the heart. The concentrations of ALT but not AST were reduced (35-55%) in the infected liver; the concentrations of ALT and AST were not changed in other infected organs. There were excellent correlations (r > 0.95) between viral titers in the liver, increases of plasma ALT and depletion of liver ALT. HPMPC and ganciclovir administered either p.o. or s.c. reduced mortality, increases in plasma transaminases and viral burdens in the liver and prevented depletion of liver ALT. HPMPC was approximately 10-fold more potent than ganciclovir. These results strongly suggest that intraperitoneal infection of the BALB/c mouse with MCMV represents an animal model of CMV hepatitis that can be monitored by measuring plasma ALT.
Collapse
Affiliation(s)
- G Bolger
- Department of Biological Sciences, Boehringer Ingelheim (Canada) Limited, Laval, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|