1
|
Branscheidt M, Hadjiosif AM, Anaya MA, Keller J, Widmer M, Runnalls KD, Luft AR, Bastian AJ, Krakauer JW, Celnik PA. Reinforcement Learning is Impaired in the Sub-acute Post-stroke Period. Neurorehabil Neural Repair 2025:15459683241304352. [PMID: 39849897 DOI: 10.1177/15459683241304352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
BACKGROUND In humans, most spontaneous recovery from motor impairment after stroke occurs in the first 3 months. Studies in animal models show higher responsiveness to training over a similar time-period. Both phenomena are often attributed to a milieu of heightened plasticity, which may share some mechanistic overlap with plasticity associated with normal motor learning. OBJECTIVE Given that neurorehabilitation approaches are frequently predicated on motor learning principles, here we asked if the sensitivity of trial-to-trial learning for 2 kinds of motor learning processes often involved during rehabilitation is also enhanced early post-stroke. In a cross-sectional design, we compared (1) reinforcement and (2) error-based learning in 2 groups: 1 tested within 3 months after stroke (early group, N = 35) another tested more than 6 months after stroke (late group, N = 30). These 2 forms of motor learning were assessed with variations of the same visuomotor rotation task. Critically, motor execution was matched between the 2 groups. RESULTS Reinforcement learning was impaired in the early but not the late group, whereas error-based learning was unimpaired in either group. These findings could not be attributed to differences in baseline execution, cognitive impairment, gender, age, or lesion volume and location. DISCUSSION The presence of a deficit in reinforcement motor learning in the first 3 months after stroke has important implications for rehabilitation. CONCLUSION It might be necessary to either increase reinforcement feedback given early after stroke, increase the dose of rehabilitation to compensate, or delay onset of rehabilitation approaches that may rely on reinforcement, for example, constraint-induced movement therapy, and instead emphasize other forms of motor training in the subacute time period.
Collapse
Affiliation(s)
- Meret Branscheidt
- Cereneo Center for Rehabilitation and Neurology, Weggis, Switzerland
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, MD, USA
| | - Alkis M Hadjiosif
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA, USA
| | - Manuel A Anaya
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, MD, USA
- Shirley Ryan AbilityLab, Chicago, IL, USA
| | - Jennifer Keller
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, MD, USA
- Kennedy Krieger Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Mario Widmer
- Cereneo Center for Rehabilitation and Neurology, Weggis, Switzerland
- Neuro-Musculoskeletal Functioning and Mobility, Swiss Paraplegic Research, Nottwil, Switzerland
| | - Keith D Runnalls
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, MD, USA
- Jefferson Moss Rehabilitation Research Institute, Philadelphia, PA, USA
| | - Andreas R Luft
- Cereneo Center for Rehabilitation and Neurology, Weggis, Switzerland
- University Hospital Zurich, Zurich, Switzerland
| | - Amy J Bastian
- Kennedy Krieger Institute, Johns Hopkins University, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - John W Krakauer
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
- Santa Fe Institute, Santa Fe, New Mexico
| | - Pablo A Celnik
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
- Shirley Ryan AbilityLab, Chicago, IL, USA
| |
Collapse
|
2
|
Oliver GW, Lee VG. The generality of the attentional boost effect for famous, unfamiliar, and inverted faces. Psychon Bull Rev 2024; 31:234-241. [PMID: 37537318 DOI: 10.3758/s13423-023-02346-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2023] [Indexed: 08/05/2023]
Abstract
Familiarity and face inversion not only affect face recognition and memory but also influence attention. Face processing is less attention-demanding for familiar than for unfamiliar faces and for upright than for inverted faces. The automaticity raises the question of how face processing interacts with an increase in attention. Using a dual-task paradigm, we tested the interaction between attention and face familiarity and orientation. Participants encoded a series of faces to memory while simultaneously monitoring a stream of colored squares, pressing the space bar for target-colored squares and making no response to distractor-colored squares. Replicating previous findings of the attentional boost effect (ABE), we found that faces encoded with target squares were better remembered than faces encoded with distractor squares. If the automatic nature of familiar (or upright) face processing makes attention unnecessary, then the attentional boost should be attenuated for familiar relative to unfamiliar faces and for upright relative to inverted faces. Data from three experiments showed, however, that the ABE was the same for all types of faces. These results suggest that target detection did not simply elevate attention in an early encoding phase. Rather, selecting targets and rejecting distractors in the color task may have led to yoked temporal selection of target-concurrent faces for entry into memory.
Collapse
Affiliation(s)
- Gavin W Oliver
- Department of Psychology, University of Minnesota, S419 Elliott Hall, 75 East River Road, Minneapolis, MN, 55455, USA.
| | - Vanessa G Lee
- Department of Psychology, University of Minnesota, S419 Elliott Hall, 75 East River Road, Minneapolis, MN, 55455, USA
| |
Collapse
|
3
|
Houborg C, Pascucci D, Tanrikulu ÖD, Kristjánsson Á. The effects of visual distractors on serial dependence. J Vis 2023; 23:1. [PMID: 37792362 PMCID: PMC10565705 DOI: 10.1167/jov.23.12.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 08/21/2023] [Indexed: 10/05/2023] Open
Abstract
Attractive serial dependence occurs when perceptual decisions are attracted toward previous stimuli. This effect is mediated by spatial attention and is most likely to occur when similar stimuli are attended at nearby locations. Attention, however, also involves the suppression of distracting information and of spatial locations where distracting stimuli have frequently appeared. Although distractors form an integral part of our visual experience, how they affect the processing of subsequent stimuli is unknown. Here, in two experiments, we tested serial dependence from distractor stimuli during an orientation adjustment task. We interleaved adjustment trials with a discrimination task requiring observers to ignore a peripheral distractor randomly appearing on half of the trials. Distractors were either similar to the adjustment probe (Experiment 1) or differed in spatial frequency and contrast (Experiment 2) and were shown at predictable or random locations in separate blocks. The results showed that the distractor caused considerable attentional capture in the discrimination task, with observers likely using proactive strategies to anticipate distractors at predictable locations. However, there was no evidence that the distractors affected the perceptual stream leading to positive serial dependence. Instead, they left a weak repulsive trace in Experiment 1 and more generally interfered with the effect of the previous adjustment probe in the serial dependence task. We suggest that this repulsive bias may reflect the operation of mechanisms involved in attentional suppression.
Collapse
Affiliation(s)
- Christian Houborg
- Vision Sciences Laboratory, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - David Pascucci
- Laboratory of Psychophysics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ömer Daglar Tanrikulu
- Vision Sciences Laboratory, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Psychology, University of New Hampshire, Durham, NH, USA
| | - Árni Kristjánsson
- Vision Sciences Laboratory, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
4
|
Learned value modulates the access to visual awareness during continuous flash suppression. Sci Rep 2023; 13:756. [PMID: 36641499 PMCID: PMC9840604 DOI: 10.1038/s41598-023-28004-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/11/2023] [Indexed: 01/16/2023] Open
Abstract
Monetary value enhances visual perception and attention and boosts activity in the primary visual cortex, however, it is still unclear whether monetary value can modulate the conscious access to rewarding stimuli. Here we investigate this issue by employing a breaking continuous flash suppression (b-CFS) paradigm. We measured suppression durations of sinusoidal gratings having orthogonal orientations under CFS in adult volunteers before and after a short session of Pavlovian associative learning in which each orientation was arbitrarily associated either with high or low monetary reward. We found that monetary value accelerated the access to visual awareness during CFS. Specifically, after the associative learning, suppression durations of the visual stimulus associated with high monetary value were shorter compared to the visual stimulus associated with low monetary value. Critically, the effect was replicated in a second experiment using a detection task for b-CFS that was orthogonal to the reward associative learning. These results indicate that monetary reward facilitates the access to awareness of visual stimuli associated with monetary value probably by boosting their representation at the early stages of visual processing in the brain.
Collapse
|
5
|
Swallow KM, Broitman AW, Riley E, Turker HB. Grounding the Attentional Boost Effect in Events and the Efficient Brain. Front Psychol 2022; 13:892416. [PMID: 35936250 PMCID: PMC9355572 DOI: 10.3389/fpsyg.2022.892416] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/10/2022] [Indexed: 12/22/2022] Open
Abstract
Attention and memory for everyday experiences vary over time, wherein some moments are better attended and subsequently better remembered than others. These effects have been demonstrated in naturalistic viewing tasks with complex and relatively uncontrolled stimuli, as well as in more controlled laboratory tasks with simpler stimuli. For example, in the attentional boost effect (ABE), participants perform two tasks at once: memorizing a series of briefly presented stimuli (e.g., pictures of outdoor scenes) for a later memory test, and responding to other concurrently presented cues that meet pre-defined criteria (e.g., participants press a button for a blue target square and do nothing for a red distractor square). However, rather than increasing dual-task interference, attending to a target cue boosts, rather than impairs, subsequent memory for concurrently presented information. In this review we describe current data on the extent and limitations of the attentional boost effect and whether it may be related to activity in the locus coeruleus neuromodulatory system. We suggest that insight into the mechanisms that produce the attentional boost effect may be found in recent advances in the locus coeruleus literature and from understanding of how the neurocognitive system handles stability and change in everyday events. We consequently propose updates to an early account of the attentional boost effect, the dual-task interaction model, to better ground it in what is currently known about event cognition and the role that the LC plays in regulating brain states.
Collapse
Affiliation(s)
- Khena M. Swallow
- Department of Psychology, Cornell University, Ithaca, NY, United States
- Cognitive Science Program, Cornell University, Ithaca, NY, United States
| | - Adam W. Broitman
- Department of Psychology, Cornell University, Ithaca, NY, United States
- Cognitive Science Program, Cornell University, Ithaca, NY, United States
| | - Elizabeth Riley
- Department of Psychology, Cornell University, Ithaca, NY, United States
| | - Hamid B. Turker
- Department of Psychology, Cornell University, Ithaca, NY, United States
- Cognitive Science Program, Cornell University, Ithaca, NY, United States
| |
Collapse
|
6
|
Moyal R, Turker HB, Luh WM, Swallow KM. Auditory Target Detection Enhances Visual Processing and Hippocampal Functional Connectivity. Front Psychol 2022; 13:891682. [PMID: 35769754 PMCID: PMC9234495 DOI: 10.3389/fpsyg.2022.891682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/18/2022] [Indexed: 11/20/2022] Open
Abstract
Though dividing one's attention between two input streams typically impairs performance, detecting a behaviorally relevant stimulus can sometimes enhance the encoding of unrelated information presented at the same time. Previous research has shown that selection of this kind boosts visual cortical activity and memory for concurrent items. An important unanswered question is whether such effects are reflected in processing quality and functional connectivity in visual regions and in the hippocampus. In this fMRI study, participants were asked to memorize a stream of naturalistic images and press a button only when they heard a predefined target tone (400 or 1,200 Hz, counterbalanced). Images could be presented with a target tone, with a distractor tone, or without a tone. Auditory target detection increased activity throughout the ventral visual cortex but lowered it in the hippocampus. Enhancements in functional connectivity between the ventral visual cortex and the hippocampus were also observed following auditory targets. Multi-voxel pattern classification of image category was more accurate on target tone trials than on distractor and no tone trials in the fusiform gyrus and parahippocampal gyrus. This effect was stronger in visual cortical clusters whose activity was more correlated with the hippocampus on target tone than on distractor tone trials. In agreement with accounts suggesting that subcortical noradrenergic influences play a role in the attentional boost effect, auditory target detection also caused an increase in locus coeruleus activity and phasic pupil responses. These findings outline a network of cortical and subcortical regions that are involved in the selection and processing of information presented at behaviorally relevant moments.
Collapse
Affiliation(s)
- Roy Moyal
- Cognitive Science Program, Department of Psychology, Cornell University, Ithaca, NY, United States
| | - Hamid B. Turker
- Cognitive Science Program, Department of Psychology, Cornell University, Ithaca, NY, United States
| | - Wen-Ming Luh
- National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Khena M. Swallow
- Cognitive Science Program, Department of Psychology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
7
|
Concurrent target detection is associated with better memory for object exemplars. Psychon Bull Rev 2021; 29:159-168. [PMID: 34287766 DOI: 10.3758/s13423-021-01983-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2021] [Indexed: 11/08/2022]
Abstract
Under continuous dual-task conditions, participants show better memory for background information appearing at the same time as a response target in a concurrent task than for information appearing with a nontarget (the attentional boost effect, or ABE). While this effect has been demonstrated across a wide range of stimuli, few studies have examined the perceptual specificity of the memory difference. Here, we explored whether the ABE affects general category memory or perceptually specific exemplar memory. In an encoding phase, participants memorized images of objects presented in a continuous stream. At the same time, they pressed the space bar when a square appearing in the center of each image appeared in a target color, ignoring distractor-colored squares. The following four-alternative forced-choice memory test included the previously seen image, a perceptually distinct exemplar from the same category as the previously seen image, and two images from a new category. Regardless of whether images appeared during encoding three times (Experiment 1) or once (Experiment 2), participants recognized the correct exemplar more often during testing for images that had appeared with a target in encoding than for images that had appeared with a distractor. The difference in exemplar memory was not associated with a difference in false memories for within-category foils. This suggests that the ABE reflects modulation of perceptually detailed exemplar memory, which may be related to facilitation of pattern separation by detection-induced changes in cortical-hippocampal connectivity.
Collapse
|
8
|
Qin N, Xue J, Chen C, Zhang M. The Bright and Dark Sides of Performance-Dependent Monetary Rewards: Evidence From Visual Perception Tasks. Cogn Sci 2020; 44:e12825. [PMID: 32180260 DOI: 10.1111/cogs.12825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 12/17/2019] [Accepted: 02/10/2020] [Indexed: 11/30/2022]
Abstract
Studies have shown that performance-dependent monetary rewards facilitate visual perception. However, no study has examined whether such a positive effect is limited to the rewarded task or may be generalized to other tasks. In the current study, two groups of people were asked to perform two visual perception tasks, one being a reward-relevant task and the other being a reward-irrelevant task. For the reward-relevant task, the experimental group received performance-dependent monetary rewards, whereas the control group did not. For the reward-irrelevant task, both groups were not rewarded. The two tasks were randomly intermixed trial by trial (Experiment 1) or presented block by block (Experiment 2) or session by session (Experiments 3a, 3b, and 3c). Results showed that performance-dependent monetary rewards improved participants' performance on the relevant task in all experiments and impaired their performance on the irrelevant task in Experiments 2, 3a, 3b, and 3c. These results suggested that monetary rewards might incur a cost on reward-irrelevant tasks. Finally, the benefit of monetary rewards disappeared when they were no longer provided during the final session. This is the first study that reveals both the bright and dark sides of the performance-dependent monetary rewards in visual perception.
Collapse
Affiliation(s)
- Nan Qin
- CAS Key Laboratory of Behavioral Science, Institute of Psychology.,Department of Psychology, University of Chinese Academy of Sciences
| | - Jingming Xue
- Faculty of Psychology, Beijing Normal University
| | - Chuansheng Chen
- Department of Psychological Science, University of California
| | - Mingxia Zhang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology
| |
Collapse
|
9
|
Zhang F, de Ridder H, Pont SC. Asymmetric perceptual confounds between canonical lightings and materials. J Vis 2019; 18:11. [PMID: 30347097 DOI: 10.1167/18.11.11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
To better understand the interactions between material perception and light perception, we further developed our material probe MatMix 1.0 into MixIM 1.0, which allows optical mixing of canonical lighting modes. We selected three canonical lighting modes (ambient, focus, and brilliance) and created scenes to represent the three illuminations. Together with four canonical material modes (matte, velvety, specular, glittery), this resulted in 12 basis images (the "bird set"). These images were optically mixed in our probing method. Three experiments were conducted with different groups of observers. In Experiment 1, observers were instructed to manipulate MixIM 1.0 and match optically mixed lighting modes while discounting the materials. In Experiment 2, observers were shown a pair of stimuli and instructed to simultaneously judge whether the materials and lightings were the same or different in a four-category discrimination task. In Experiment 3, observers performed both the matching and discrimination tasks in which only the ambient and focus light were implemented. Overall, the matching and discrimination results were comparable as (a) robust asymmetric perceptual confounds were found and confirmed in both types of tasks, (b) performances were consistent and all above chance levels, and (c) observers had higher sensitivities to our canonical materials than to our canonical lightings. The latter result may be explained in terms of a generic insensitivity for naturally occurring variations in light conditions. Our findings suggest that midlevel image features are more robust across different materials than across different lightings and, thus, more diagnostic for materials than for lightings, causing the asymmetric perceptual confounds.
Collapse
Affiliation(s)
- Fan Zhang
- Perceptual Intelligence Laboratory, Industrial Design Engineering, Delft University of Technology, The Netherlands
| | - Huib de Ridder
- Perceptual Intelligence Laboratory, Industrial Design Engineering, Delft University of Technology, The Netherlands
| | - Sylvia C Pont
- Perceptual Intelligence Laboratory, Industrial Design Engineering, Delft University of Technology, The Netherlands
| |
Collapse
|
10
|
Pascucci D, Mancuso G, Santandrea E, Della Libera C, Plomp G, Chelazzi L. Laws of concatenated perception: Vision goes for novelty, decisions for perseverance. PLoS Biol 2019; 17:e3000144. [PMID: 30835720 PMCID: PMC6400421 DOI: 10.1371/journal.pbio.3000144] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/28/2019] [Indexed: 12/04/2022] Open
Abstract
Every instant of perception depends on a cascade of brain processes calibrated to the history of sensory and decisional events. In the present work, we show that human visual perception is constantly shaped by two contrasting forces exerted by sensory adaptation and past decisions. In a series of experiments, we used multilevel modeling and cross-validation approaches to investigate the impact of previous stimuli and decisions on behavioral reports during adjustment and forced-choice tasks. Our results revealed that each perceptual report is permeated by opposite biases from a hierarchy of serially dependent processes: Low-level adaptation repels perception away from previous stimuli, whereas decisional traces attract perceptual reports toward the recent past. In this hierarchy of serial dependence, "continuity fields" arise from the inertia of decisional templates and not from low-level sensory processes. This finding is consistent with a Two-process model of serial dependence in which the persistence of readout weights in a decision unit compensates for sensory adaptation, leading to attractive biases in sequential perception. We propose a unified account of serial dependence in which functionally distinct mechanisms, operating at different stages, promote the differentiation and integration of visual information over time.
Collapse
Affiliation(s)
- David Pascucci
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- Department of Psychology, University of Fribourg, Fribourg, Switzerland
| | - Giovanni Mancuso
- Department of Psychology, University of Fribourg, Fribourg, Switzerland
| | - Elisa Santandrea
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Chiara Della Libera
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- National Institute of Neuroscience, Verona, Italy
| | - Gijs Plomp
- Department of Psychology, University of Fribourg, Fribourg, Switzerland
| | - Leonardo Chelazzi
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- National Institute of Neuroscience, Verona, Italy
| |
Collapse
|
11
|
Does the body give the brain an attentional boost? Examining the relationship between attentional and cardiac gating. Biol Psychol 2018; 139:124-130. [PMID: 30355518 DOI: 10.1016/j.biopsycho.2018.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 10/02/2018] [Accepted: 10/07/2018] [Indexed: 11/20/2022]
Abstract
Studies on mind-body interactions have largely focused on how mental states modulate bodily physiological responses. Increasing evidence suggests that bodily states also modulate mental states. Here we investigated how both may be integrated in the brain at the resolution of a heartbeat, examining how phasic fluctuations of peripheral blood pressure and central attentional resources combine to influence cognition. We examined the effects of cardiac phase on the performance of two simultaneous tasks: a go/no-go letter detection task where targets were concurrently presented on background faces and a short-term memory face discrimination task. Short-term memory for the background face was better when the initial face was encoded during the systole rather than diastole phase and when it was paired with a target rather than a distractor. There was no significant interaction between cardiac phase and letter detection. These data suggest that peripheral blood pressure and central attention independently regulate cognitive performance.
Collapse
|
12
|
Abstract
Memory for the items one has recently encountered is sometimes enhanced in divided attention tasks: Attending to behaviorally relevant items, such as a target in a detection task, boosts memory for unrelated background items (e.g., scenes or words). However, a central feature of episodic memory is memory for the spatiotemporal relationship between items and other elements of an event (relational memory), not just the item itself. Three experiments examined whether attending to a behaviorally relevant target-item boosts memory for the relationship between that item, its features, and a background scene. Participants memorized briefly presented scenes. At the same time, they pressed a button if a second unrelated item (a figure or face) was a particular target color (Experiments 1 and 2) or target gender (Experiment 3) rather than a distractor color or gender. Target and distractor items also varied in task-irrelevant features (shape, location, or facial identity). If attending to behaviorally relevant events influences relational memory, then participants should be better able to report both target-defining and irrelevant features of items that appeared with target-paired scenes rather than distractor-paired scenes. This was the case in all experiments: memory was enhanced for the target-paired scenes as well as the association between a scene and features of the paired target-item. Attending to behaviorally relevant moments therefore has broader effects on memory encoding than previously thought. In addition to boosting memory for unrelated background items, attending to targets facilitates relational memory in these tasks.
Collapse
|
13
|
Zhang P, Hou F, Yan FF, Xi J, Lin BR, Zhao J, Yang J, Chen G, Zhang MY, He Q, Dosher BA, Lu ZL, Huang CB. High reward enhances perceptual learning. J Vis 2018; 18:11. [PMID: 30372760 PMCID: PMC6108453 DOI: 10.1167/18.8.11] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 05/12/2018] [Indexed: 02/01/2023] Open
Abstract
Studies of perceptual learning have revealed a great deal of plasticity in adult humans. In this study, we systematically investigated the effects and mechanisms of several forms (trial-by-trial, block, and session rewards) and levels (no, low, high, subliminal) of monetary reward on the rate, magnitude, and generalizability of perceptual learning. We found that high monetary reward can greatly promote the rate and boost the magnitude of learning and enhance performance in untrained spatial frequencies and eye without changing interocular, interlocation, and interdirection transfer indices. High reward per se made unique contributions to the enhanced learning through improved internal noise reduction. Furthermore, the effects of high reward on perceptual learning occurred in a range of perceptual tasks. The results may have major implications for the understanding of the nature of the learning rule in perceptual learning and for the use of reward to enhance perceptual learning in practical applications.
Collapse
Affiliation(s)
- Pan Zhang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- Laboratory of Brain Processes (LOBES), Center for Cognitive and Brain Sciences, Center for Cognitive and Behavioral Brain Imaging, and Departments of Psychology, The Ohio State University, Columbus, OH, USA
| | - Fang Hou
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fang-Fang Yan
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Jie Xi
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Bo-Rong Lin
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Jin Zhao
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Jia Yang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Ge Chen
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- School of Arts and Design, Zhengzhou University of Light Industry, Zhengzhou, Henan, China
| | - Meng-Yuan Zhang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Qing He
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Barbara Anne Dosher
- Department of Cognitive Sciences and Institute of Mathematical Behavioral Sciences, University of California, Irvine, CA, USA
| | - Zhong-Lin Lu
- Laboratory of Brain Processes (LOBES), Center for Cognitive and Brain Sciences, Center for Cognitive and Behavioral Brain Imaging, and Departments of Psychology, The Ohio State University, Columbus, OH, USA
| | - Chang-Bing Huang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Zitron-Emanuel N, Ganel T. Food deprivation disrupts normal holistic processing of domain-specific stimuli. PSYCHOLOGICAL RESEARCH 2018; 84:302-312. [PMID: 30039248 DOI: 10.1007/s00426-018-1062-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 07/18/2018] [Indexed: 10/28/2022]
Abstract
Food deprivation has been shown to lead to a set of biological and psychological responses, including a decrease in perceptual thresholds, and an increase in attentional allocation for domain-specific, food-related stimuli. Here, we tested whether food deprivation could lead to a qualitative change in the way food is perceived. To this purpose, we tested the effect of food deprivation on a basic feature of human perception, the holistic processing of object shape. In three experiments, we examined the effect of food deprivation on participants' susceptibility to the height-width illusion, which served as a maker for holistic processing. In all experiments, food deprivation led to an abnormal, non-holistic processing of shape, which resulted in a total reduction of the illusion for food-related, but not for control stimuli. These results show that food deprivation alters the way food is perceived, and propose that motivational factors modulate people's resistance to perceptual distortions for domain-specific stimuli.
Collapse
Affiliation(s)
- Noa Zitron-Emanuel
- Department of Psychology, Ben-Gurion University of the Negev, Beersheba, 8410501, Israel
| | - Tzvi Ganel
- Department of Psychology, Ben-Gurion University of the Negev, Beersheba, 8410501, Israel.
| |
Collapse
|
15
|
Abstract
Focusing attention on one item typically interferes with the ability to process other information. Yet, target detection can both facilitate memory for items paired with the target (the attentional boost effect) and increase the perceived value of those items (cued approach). Because long-term memory is better for valuable items than for neutral items, we asked whether the attentional boost effect is due to changes in the perceived value of items that are paired with targets. In three experiments, participants memorised a series of briefly presented images that depicted valuable (e.g., food) or neutral (e.g., children's toys) items. Whenever an item appeared, a square flashed in its centre. Participants pressed a button if the square was a target colour but not if it was a distractor colour. Consistent with previous research, target-paired items were remembered better than distractor-paired items and were rated as more valuable. Importantly, if memory for target-paired items is enhanced because they increased in perceived value, then valuable items should have been better remembered than neutral items. However, we found no evidence that value enhanced memory for the items in this task. Thus, it is unlikely that the attentional boost effect is due to changes in perceived value.
Collapse
Affiliation(s)
- Khena M Swallow
- Department of Psychology, Cornell University, Ithaca, NY, USA
| | - Stav Atir
- Department of Psychology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
16
|
Reward priming eliminates color-driven affect in perception. PSYCHOLOGICAL RESEARCH 2018; 83:321-331. [PMID: 29299671 DOI: 10.1007/s00426-017-0966-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 12/18/2017] [Indexed: 10/18/2022]
Abstract
Brain and behavior evidence suggests that colors have distinct affective properties. Here, we investigated how reward influences color-driven affect in perception. In Experiment 1, we assessed competition between blue and red patches during a temporal-order judgment (TOJ) across a range of stimulus onset asynchronies (SOAs). During the value reinforcement, reward was linked to either blue (version 1) or red (version 2) in the experiment. The same stimuli then served as test ones in the following unrewarded, unspeeded TOJ task. Our analysis showed that blue patches were consistently seen as occurring first, even when objectively appearing 2nd at short SOAs. This accelerated perception of blue over red was disrupted by prior primes related to reward (vs. neutral) but not perceptional (blue vs. red) priming. Experiment 2 replicated the findings of Experiment 1 while uncoupling action and stimulus values. These results are consistent with the blue-approach and red-avoidance motivation hypothesis and highlight an active nature of the association of reward priming and color processing. Together, the present study implies a link between reward and color affect and contributes to the understanding of how reward influences color affect in visual processing.
Collapse
|
17
|
Pascucci D, Hickey C, Jovicich J, Turatto M. Independent circuits in basal ganglia and cortex for the processing of reward and precision feedback. Neuroimage 2017; 162:56-64. [DOI: 10.1016/j.neuroimage.2017.08.067] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 08/19/2017] [Accepted: 08/29/2017] [Indexed: 11/29/2022] Open
|
18
|
Abstract
The current study investigated monetary and social reward processing in children, adolescents and adults with adapted incentive-delay tasks and self-report questionnaires. Both tasks had three levels of reward magnitudes (no, low, and high). Qualified participants received 15 Chinese Yuan and an honor certificate as monetary and social rewards, respectively. The results indicated that both monetary and social rewards effectively speeded up responses for all three age groups as reward magnitude increased in the choice reaction time task. Among adolescents and adults, males exhibited faster responses in high reward than in low reward condition, while females responded equally fast in both conditions. Among children, girls responded faster to high reward than low reward condition. However, boys committed more errors than girls in low and high reward conditions, and they had exhibited more errors in high reward than that in no reward condition for social reward. Regarding the subjective ratings, both children and adolescents reported higher motivation for social reward than for monetary reward. These findings indicated that the males in the adolescent and adult groups were more sensitive to reward than were the females. Moreover, tangible and quantitative social reward had stronger incentive power than monetary reward among children and adolescents.
Collapse
|
19
|
Abstract
AbstractWhat determines what we see? In contrast to the traditional “modular” understanding of perception, according to which visual processing is encapsulated from higher-level cognition, a tidal wave of recent research alleges that states such as beliefs, desires, emotions, motivations, intentions, and linguistic representations exert direct, top-down influences on what we see. There is a growing consensus that such effects are ubiquitous, and that the distinction between perception and cognition may itself be unsustainable. We argue otherwise: None of these hundreds of studies – either individually or collectively – provides compelling evidence for true top-down effects on perception, or “cognitive penetrability.” In particular, and despite their variety, we suggest that these studies all fall prey to only a handful of pitfalls. And whereas abstract theoretical challenges have failed to resolve this debate in the past, our presentation of these pitfalls is empirically anchored: In each case, we show not only how certain studies could be susceptible to the pitfall (in principle), but also how several alleged top-down effects actually are explained by the pitfall (in practice). Moreover, these pitfalls are perfectly general, with each applying to dozens of other top-down effects. We conclude by extracting the lessons provided by these pitfalls into a checklist that future work could use to convincingly demonstrate top-down effects on visual perception. The discovery of substantive top-down effects of cognition on perception would revolutionize our understanding of how the mind is organized; but without addressing these pitfalls, no such empirical report will license such exciting conclusions.
Collapse
|
20
|
Monetary reward modulates task-irrelevant perceptual learning for invisible stimuli. PLoS One 2015; 10:e0124009. [PMID: 25942318 PMCID: PMC4420259 DOI: 10.1371/journal.pone.0124009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 03/09/2015] [Indexed: 11/19/2022] Open
Abstract
Task Irrelevant Perceptual Learning (TIPL) shows that the brain's discriminative capacity can improve also for invisible and unattended visual stimuli. It has been hypothesized that this form of "unconscious" neural plasticity is mediated by an endogenous reward mechanism triggered by the correct task performance. Although this result has challenged the mandatory role of attention in perceptual learning, no direct evidence exists of the hypothesized link between target recognition, reward and TIPL. Here, we manipulated the reward value associated with a target to demonstrate the involvement of reinforcement mechanisms in sensory plasticity for invisible inputs. Participants were trained in a central task associated with either high or low monetary incentives, provided only at the end of the experiment, while subliminal stimuli were presented peripherally. Our results showed that high incentive-value targets induced a greater degree of perceptual improvement for the subliminal stimuli, supporting the role of reinforcement mechanisms in TIPL.
Collapse
|
21
|
|
22
|
The attentional boost effect really is a boost: evidence from a new baseline. Atten Percept Psychophys 2014; 76:1298-307. [PMID: 24806406 DOI: 10.3758/s13414-014-0677-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the attentional boost effect, participants encode images into memory as they perform an unrelated target-detection task. Later memory is better for images that coincided with a target rather than a distractor. This advantage could reflect a broad processing enhancement triggered by target detection, but it could also reflect inhibitory processes triggered by distractor rejection. To test these possibilities, in four experiments we acquired a baseline measure of image memory when neither a target nor a distractor was presented. Participants memorized faces presented in a continuous series (500- or 100-ms duration). At the same time, participants monitored a stream of squares. Some faces appeared on their own, and others coincided with squares in either a target or a nontarget color. Because the processes associated with both target detection and distractor rejection were minimized when faces appeared on their own, this condition served as a baseline measure of face encoding. The data showed that long-term memory for faces coinciding with a target square was enhanced relative to faces in both the baseline and distractor conditions. We concluded that detecting a behaviorally relevant event boosts memory for concurrently presented images in dual-task situations.
Collapse
|
23
|
Dux PE, Roseboom W, Olivers CNL. Attentional tuning resets after failures of perceptual awareness. PLoS One 2013; 8:e60623. [PMID: 23565262 PMCID: PMC3614964 DOI: 10.1371/journal.pone.0060623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 02/28/2013] [Indexed: 11/18/2022] Open
Abstract
Key to successfully negotiating our environment is our ability to adapt to current settings based on recent experiences and behaviour. Response conflict paradigms (e.g., the Stroop task) have provided evidence for increases in executive control after errors, leading to slowed responses that are more likely to be correct, and less susceptible to response congruency effects. Here we investigate whether failures of perceptual awareness, rather than failures at decisional or response stages of information processing, lead to similar adjustments in visual attention. We employed an attentional blink task in which subjects often fail to consciously register the second of two targets embedded in a rapid serial visual presentation stream of distractors, and examined how target errors influence performance on subsequent trials. Performance was inferior after Target 2 errors and these inter-trial effects were independent of the temporal lag between the targets and were not due to more global changes in attention across runs of trials. These results shed light on the nature of attentional calibration in response to failures of perceptual consciousness.
Collapse
Affiliation(s)
- Paul E Dux
- School of Psychology, The University of Queensland, St Lucia, Queensland, Australia.
| | | | | |
Collapse
|