1
|
Cracco E, Papeo L, Wiersema JR. Evidence for a role of synchrony but not common fate in the perception of biological group movements. Eur J Neurosci 2024; 60:3557-3571. [PMID: 38706370 DOI: 10.1111/ejn.16356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/16/2024] [Accepted: 04/05/2024] [Indexed: 05/07/2024]
Abstract
Extensive research has shown that observers are able to efficiently extract summary information from groups of people. However, little is known about the cues that determine whether multiple people are represented as a social group or as independent individuals. Initial research on this topic has primarily focused on the role of static cues. Here, we instead investigate the role of dynamic cues. In two experiments with male and female human participants, we use EEG frequency tagging to investigate the influence of two fundamental Gestalt principles - synchrony and common fate - on the grouping of biological movements. In Experiment 1, we find that brain responses coupled to four point-light figures walking together are enhanced when they move in sync vs. out of sync, but only when they are presented upright. In contrast, we found no effect of movement direction (i.e., common fate). In Experiment 2, we rule out that synchrony takes precedence over common fate by replicating the null effect of movement direction while keeping synchrony constant. These results suggest that synchrony plays an important role in the processing of biological group movements. In contrast, the role of common fate is less clear and will require further research.
Collapse
Affiliation(s)
- Emiel Cracco
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Liuba Papeo
- Institut des Sciences Cognitives-Marc Jeannerod, UMR5229, Centre National de la Recherche Scientifique (CNRS) & Université Claude Bernard Lyon 1, Bron, France
| | - Jan R Wiersema
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| |
Collapse
|
2
|
Chen C, Boyce WP, Palmer CJ, Clifford CWG. Effect of spatial context on perceived walking direction. J Vis 2024; 24:11. [PMID: 38787570 PMCID: PMC11129716 DOI: 10.1167/jov.24.5.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 04/02/2024] [Indexed: 05/25/2024] Open
Abstract
Contextual modulation occurs for many aspects of high-level vision but is relatively unexplored for the perception of walking direction. In a recent study, we observed an effect of the temporal context on perceived walking direction. Here, we examined the spatial contextual modulation by measuring the perceived direction of a target point-light walker in the presence of two flanker walkers, one on each side. Experiment 1 followed a within-subjects design. Participants (n = 30) completed a spatial context task by judging the walking direction of the target in 13 different conditions: a walker alone in the center or with two flanking walkers either intact or scrambled at a flanker deviation of ±15°, ±30°, or ±45°. For comparison, participants completed an adaptation task where they reported the walking direction of a target after adaptation to ±30° walking direction. We found the expected repulsive effects in the adaptation task but attractive effects in the spatial context task. In Experiment 2 (n = 40), we measured the tuning of spatial contextual modulation across a wide range of flanker deviation magnitudes ranging from 15° to 165° in 15° intervals. Our results showed significant attractive effects across a wide range of flanker walking directions with the peak effect at around 30°. The assimilative versus repulsive effects of spatial contextual modulation and temporal adaptation suggest dissociable neural mechanisms, but they may operate on the same population of sensory channels coding for walking direction, as evidenced by similarity in the peak tuning across the walking direction of the inducers.
Collapse
Affiliation(s)
- Chang Chen
- School of Psychology, University of New South Wales, Sydney, NSW, Australia
| | - W Paul Boyce
- School of Psychology, University of New South Wales, Sydney, NSW, Australia
| | - Colin J Palmer
- School of Psychology, University of New South Wales, Sydney, NSW, Australia
- Department of Psychology, National University of Singapore, Singapore, Singapore
| | - Colin W G Clifford
- School of Psychology, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
3
|
Huang S, Ge Y, Wang L, Jiang Y. Life motion signals modulate visual working memory. Psychon Bull Rev 2024; 31:380-388. [PMID: 37620631 DOI: 10.3758/s13423-023-02362-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2023] [Indexed: 08/26/2023]
Abstract
Previous research has demonstrated that biological motion (BM) cues can induce a reflexive attentional orienting effect, a phenomenon referred to as social attention. However, it remains undetermined whether BM cues can further affect higher-order cognitive processes, such as visual working memory (WM). By combining a modified central pre-cueing paradigm with a traditional WM change detection task, the current study investigated whether the walking direction of BM, as a non-predictive central cue, could modulate the encoding process of WM. Results revealed a significant improvement in WM performance for the items appearing at the location cued by the walking direction of BM. The observed effect disappeared when the BM cues were shown inverted, or when the critical biological characteristics of the cues were removed. Crucially, this effect could be extended to upright feet motion cues without global configuration, reflecting the key role of local BM signals in modulating WM. More importantly, such a BM-induced modulation effect was not observed with inanimate motion cues, although these cues can also elicit attentional effects. Our findings suggest that the attentional effect induced by life motion signals can penetrate to higher-order cognitive processes, and provide compelling evidence for the existence of "life motion detector" in the human brain from a high-level cognitive function perspective.
Collapse
Affiliation(s)
- Suqi Huang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
- Chinese Institute for Brain Research, 26 Science Park Road, Beijing, 102206, China
| | - Yiping Ge
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
- Chinese Institute for Brain Research, 26 Science Park Road, Beijing, 102206, China
| | - Li Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing, 100101, China.
- Department of Psychology, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China.
- Chinese Institute for Brain Research, 26 Science Park Road, Beijing, 102206, China.
| | - Yi Jiang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
- Chinese Institute for Brain Research, 26 Science Park Road, Beijing, 102206, China
| |
Collapse
|
4
|
Liu W, Cheng Y, Yuan X, Jiang Y. Looking more masculine among females: Spatial context modulates gender perception of face and biological motion. Br J Psychol 2023; 114:194-208. [PMID: 36302701 DOI: 10.1111/bjop.12605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 09/12/2022] [Accepted: 10/11/2022] [Indexed: 01/11/2023]
Abstract
Perception of visual information highly depends on spatial context. For instance, perception of a low-level visual feature, such as orientation, can be shifted away from its surrounding context, exhibiting a simultaneous contrast effect. Although previous studies have demonstrated the adaptation aftereffect of gender, a high-level visual feature, it remains largely unknown whether gender perception can also be shaped by a simultaneously presented context. In the present study, we found that the gender perception of a central face or a point-light walker was repelled away from the gender of its surrounding faces or walkers. A norm-based opponent model of lateral inhibition, which accounts for the adaptation aftereffect of high-level features, can also excellently fit the simultaneous contrast effect. But different from the reported contextual effect of low-level features, the simultaneous contrast effect of gender cannot be observed when the centre and the surrounding stimuli are from different categories, or when the surrounding stimuli are suppressed from awareness. These findings on one hand reveal a resemblance between the simultaneous contrast effect and the adaptation aftereffect of high-level features, on the other hand highlight different biological mechanisms underlying the contextual effects of low- and high-level visual features.
Collapse
Affiliation(s)
- Wenjie Liu
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.,Chinese Institute for Brain Research, Beijing, China
| | - Yuhui Cheng
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.,Chinese Institute for Brain Research, Beijing, China
| | - Xiangyong Yuan
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.,Chinese Institute for Brain Research, Beijing, China
| | - Yi Jiang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.,Chinese Institute for Brain Research, Beijing, China
| |
Collapse
|