1
|
Volianskis R, Lundbye CJ, Petroff GN, Jane DE, Georgiou J, Collingridge GL. Cage effects on synaptic plasticity and its modulation in a mouse model of fragile X syndrome. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230484. [PMID: 38853552 PMCID: PMC11343313 DOI: 10.1098/rstb.2023.0484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 06/11/2024] Open
Abstract
Fragile X syndrome (FXS) is characterized by impairments in executive function including different types of learning and memory. Long-term potentiation (LTP), thought to underlie the formation of memories, has been studied in the Fmr1 mouse model of FXS. However, there have been many discrepancies in the literature with inconsistent use of littermate and non-littermate Fmr1 knockout (KO) and wild-type (WT) control mice. Here, the influence of the breeding strategy (cage effect) on short-term potentiation (STP), LTP, contextual fear conditioning (CFC), expression of N-methyl-d-aspartate receptor (NMDAR) subunits and the modulation of NMDARs, were examined. The largest deficits in STP, LTP and CFC were found in KO mice compared with non-littermate WT. However, the expression of NMDAR subunits was unchanged in this comparison. Rather, NMDAR subunit (GluN1, 2A, 2B) expression was sensitive to the cage effect, with decreased expression in both WT and KO littermates compared with non-littermates. Interestingly, an NMDAR-positive allosteric modulator, UBP714, was only effective in potentiating the induction of LTP in non-littermate KO mice and not the littermate KO mice. These results suggest that commonly studied phenotypes in Fmr1 KOs are sensitive to the cage effect and therefore the breeding strategy may contribute to discrepancies in the literature.This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.
Collapse
Affiliation(s)
- Rasa Volianskis
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, OntarioM5G 1X5, Canada
- Department of Physiology, University of Toronto, Toronto, OntarioM5S 1A8, Canada
| | - Camilla J. Lundbye
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, OntarioM5G 1X5, Canada
- Department of Physiology, University of Toronto, Toronto, OntarioM5S 1A8, Canada
| | - Gillian N. Petroff
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, OntarioM5G 1X5, Canada
- Department of Physiology, University of Toronto, Toronto, OntarioM5S 1A8, Canada
| | - David. E. Jane
- Hello Bio Limited, Cabot Park, Avonmouth, BristolBS11 0QL, UK
| | - John Georgiou
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, OntarioM5G 1X5, Canada
- TANZ Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, OntarioM5S 1A8, Canada
| | - Graham L. Collingridge
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, OntarioM5G 1X5, Canada
- Department of Physiology, University of Toronto, Toronto, OntarioM5S 1A8, Canada
- TANZ Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, OntarioM5S 1A8, Canada
| |
Collapse
|
2
|
Wang W, Gao W, Gong P, Song W, Bu X, Hou J, Zhang L, Zhao B. Neuronal-specific TNFAIP1 ablation attenuates postoperative cognitive dysfunction via targeting SNAP25 for K48-linked ubiquitination. Cell Commun Signal 2023; 21:356. [PMID: 38102610 PMCID: PMC10722859 DOI: 10.1186/s12964-023-01390-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/08/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Synaptosomal-associated protein 25 (SNAP25) exerts protective effects against postoperative cognitive dysfunction (POCD) by promoting PTEN-induced kinase 1 (PINK1)/Parkin-mediated mitophagy and repressing caspase-3/gasdermin E (GSDME)-mediated pyroptosis. However, the regulatory mechanisms of SNAP25 protein remain unclear. METHODS We employed recombinant adeno-associated virus 9 (AAV9)-hSyn to knockdown tumor necrosis factor α-induced protein 1 (TNFAIP1) or SNAP25 and investigate the role of TNFAIP1 in POCD. Cognitive performance, hippocampal injury, mitophagy, and pyroptosis were assessed. Co-immunoprecipitation (co-IP) and ubiquitination assays were conducted to elucidate the mechanisms by which TNFAIP1 stabilizes SNAP25. RESULTS Our results demonstrated that the ubiquitin ligase TNFAIP1 was upregulated in the hippocampus of mice following isoflurane (Iso) anesthesia and laparotomy. The N-terminal region (residues 1-96) of TNFAIP1 formed a conjugate with SNAP25, leading to lysine (K) 48-linked polyubiquitination of SNAP25 at K69. Silencing TNFAIP1 enhanced SH-SY5Y cell viability and conferred antioxidant, pro-mitophagy, and anti-pyroptosis properties in response to Iso and lipopolysaccharide (LPS) challenges. Conversely, TNFAIP1 overexpression reduced HT22 cell viability, increased reactive oxygen species (ROS) accumulation, impaired PINK1/Parkin-dependent mitophagy, and induced caspase-3/GSDME-dependent pyroptosis by suppressing SNAP25 expression. Neuron-specific knockdown of TNFAIP1 ameliorated POCD, restored mitophagy, and reduced pyroptosis, which was reversed by SNAP25 depletion. CONCLUSIONS In summary, our findings demonstrated that inhibiting TNFAIP1-mediated degradation of SNAP25 might be a promising therapeutic approach for mitigating postoperative cognitive decline. Video Abstract.
Collapse
Affiliation(s)
- Wei Wang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuhan, 430060, China
| | - Wenwei Gao
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ping Gong
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuhan, 430060, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, Department of Anesthesiology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Wenqin Song
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuhan, 430060, China
| | - Xueshan Bu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuhan, 430060, China
| | - Jiabao Hou
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuhan, 430060, China
| | - Lei Zhang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuhan, 430060, China.
| | - Bo Zhao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuhan, 430060, China.
| |
Collapse
|