1
|
AboZaid OAR, Abdel-Maksoud MA, Saleh IA, El-Tayeb MA, El-Sonbaty SM, Shoker FE, Salem MA, Emad AM, Mani S, Deva Magendhra Rao AK, Mamdouh MA, Kotob MH, Aufy M, Kodous AS. Targeting the NF-κB p65/Bcl-2 signaling pathway in hepatic cellular carcinoma using radiation assisted synthesis of zinc nanoparticles coated with naturally isolated gallic acid. Biomed Pharmacother 2024; 172:116274. [PMID: 38364738 DOI: 10.1016/j.biopha.2024.116274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/01/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024] Open
Abstract
PURPOSE Oral diethylnitrosamine (DEN) is a known hepatocarcinogen that damages the liver and causes cancer. DEN damages the liver through reactive oxygen species-mediated inflammation and biological process regulation. MATERIALS AND METHODS Gallic acid-coated zinc oxide nanoparticles (Zn-GANPs) were made from zinc oxide (ZnO) synthesized by irradiation dose of 50 kGy utilizing a Co-60 γ-ray source chamber with a dose rate of 0.83 kGy/h and gallic acid from pomegranate peel. UV-visible (UV) spectrophotometry verified Zn-GANP synthesis. TEM, DLS, and FTIR were utilized to investigate ZnO-NPs' characteristics. Rats were orally exposed to DEN for 8 weeks at 20 mg/kg five times per week, followed by intraperitoneal injection of Zn-GANPs at 20 mg/kg for 5 weeks. Using oxidative stress, anti-inflammatory, liver function, histologic, apoptotic, and cell cycle parameters for evaluating Zn-GANPs treatment. RESULTS DEN exposure elevated inflammatory markers (AFP and NF-κB p65), transaminases (AST, ALT), γ-GT, globulin, and total bilirubin, with reduced protein and albumin levels. It also increased MDA levels, oxidative liver cell damage, and Bcl-2, while decreasing caspase-3 and antioxidants like GSH, and CAT. Zn-GANPs significantly mitigated these effects and lowered lipid peroxidation, AST, ALT, and γ-GT levels, significantly increased CAT and GSH levels (p<0.05). Zn-GANPs caused S and G2/M cell cycle arrest and G0/G1 apoptosis. These results were associated with higher caspase-3 levels and lower Bcl-2 and TGF-β1 levels. Zn-GANPs enhance and restore the histology and ultrastructure of the liver in DEN-induced rats. CONCLUSION The data imply that Zn-GANPs may prevent and treat DEN-induced liver damage and carcinogenesis.
Collapse
Affiliation(s)
- Omayma A R AboZaid
- Department of Biochemistry, Faculty of Veterinary Medicine, Moshtohor, Benha University, Egypt
| | | | | | - Mohamed A El-Tayeb
- Botany and Microbiology department- College of Science- King Saud University, Saudi Arabia
| | - Sawsan M El-Sonbaty
- Radiation Microbiology Department, National Center for Radiation Research & Technology (NCRRT), Egyptian Atomic-Energy Authority (EAEA), Egypt
| | - Faten E Shoker
- Department of Biochemistry, Faculty of Veterinary Medicine, Moshtohor, Benha University, Egypt
| | - Maha A Salem
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Modern University for Technology and Information, Egypt
| | - Ayat M Emad
- Pharmacognosy Department, Faculty of Pharmacy, October 6 University, Sixth of October City, Giza 12585, Egypt
| | - Samson Mani
- Department of Research, Rajiv Gandhi Cancer Institute, and Research Centre, Sector 5, Rohini, Delhi 110085, India; Department of Molecular Oncology, Cancer Institute (WIA), 38, Sardar Patel Road, P.O. Box 600036, Chennai, Tamilnadu, India
| | | | - Mohamed A Mamdouh
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, 6th of October City, Giza 12585, Egypt
| | - Mohamed H Kotob
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Vienna, Austria; Department of Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Mohammed Aufy
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Vienna, Austria.
| | - Ahmad S Kodous
- Department of Molecular Oncology, Cancer Institute (WIA), 38, Sardar Patel Road, P.O. Box 600036, Chennai, Tamilnadu, India; Radiation Biology department, National Center for Radiation Research & Technology (NCRRT), Egyptian Atomic-Energy Authority (EAEA), Egypt.
| |
Collapse
|
2
|
Sheng X, Wang L, Zhan P, He W, Tian H, Liu J. Thyme ( Thymus quinquecostatus Celak) Polyphenol-Rich Extract (TPE) Alleviates HFD-Induced Liver Injury in Mice by Inactivating the TLR4/NF-κB Signaling Pathway through the Gut-Liver Axis. Foods 2023; 12:3074. [PMID: 37628072 PMCID: PMC10453248 DOI: 10.3390/foods12163074] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/05/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents a significant and urgent global health concern. Thyme (Thymus quinquecostatus Celak) is a plant commonly used in cuisine and traditional medicine in Asian countries and possesses potential liver-protective properties. This study aimed to assess the hepatoprotective effects of thyme polyphenol-rich extract (TPE) on high-fat diet (HFD)-induced NAFLD and further explore possible mechanisms based on the gut-liver axis. HFD-induced liver injury in C57 mice is markedly ameliorated by TPE supplementation in a dose-dependent manner. TPE also regulates the expression of liver lipid metabolic genes (i.e., Hmgcr, Srebp-1, Fasn, and Cyp7a1), enhancing the production of SCFAs and regulating serum metabolites by modulating gut microbial dysbiosis. Furthermore, TPE enhances the intestinal barrier function and alleviates intestinal inflammation by upregulating tight junction protein expression (i.e., ZO-1 and occluding) and inactivating the intestinal TLR4/NF-κB pathway in HFD-fed mice. Consequently, gut-derived LPS translocation to the circulation was blocked, the liver TLR4/NF-κB signaling pathway was repressed, and subsequent pro-inflammatory cytokine production was restrained. Conclusively, TPE might exert anti-NAFLD effects through the gut-liver axis and has the potential to be used as a dietary supplement for the management of NAFLD.
Collapse
Affiliation(s)
- Xialu Sheng
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (X.S.); (P.Z.); (H.T.)
| | - Lixia Wang
- College of Life Sciences and Food Engineering, Shaanxi Xueqian Normal University, Xi’an 710061, China;
| | - Ping Zhan
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (X.S.); (P.Z.); (H.T.)
| | - Wanying He
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (X.S.); (P.Z.); (H.T.)
| | - Honglei Tian
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (X.S.); (P.Z.); (H.T.)
| | - Jianshu Liu
- Shaanxi Provincial Research Center of Functional Food Engineering Technology, Xi’an 710100, China;
| |
Collapse
|
3
|
Bahri S, Mlika M, Nahdi A, Ben Ali R, Jameleddine S. Thymus Vulgaris Inhibit Lung Fibrosis Progression and Oxidative Stress Induced by Bleomycin in Wistar Rats. Nutr Cancer 2021; 74:1420-1430. [PMID: 34278915 DOI: 10.1080/01635581.2021.1952451] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, devastating and fatal disease characterized by aberrant fibroblasts proliferation, oxidative stress and collagen accumulation in the interstitial tissue. We aimed to evaluate in the present study the efficacy of Thymus vulagris extract (TVE) on an experimental model of pulmonary fibrosis induced by bleomycin (BLM). Wistar rats were given a single dose of BLM (4 mg/kg, intratracheal), while TVE (50, 100 and 200 mg/kg, intraperitoneal) was administered 3 days later and continued for 4 weeks. We reveled by HPLC analysis an important amount of phenolic bioactive compounds such as rosmarinic and vanillic acids. Our results showed a significant decrease of catalase and superoxide dismutase activities and an increase in lipid peroxidation compared to control group after BLM injection. Treatment with TVE (200 mg/kg) was able to normalize the level of these oxidative markers and to decrease collagen accumulation compared to BLM group. Moreover, this high dose of TVE have no renal or hepatic cytotoxic effects. This study allowed us to conclude that thyme extract has a strong antioxidant and antifibrotic activities due to its high content of polyphenols.
Collapse
Affiliation(s)
- Sana Bahri
- Laboratory of Physiology, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia.,Laboratory of Physiopathology, Food and Biomolecules (LR-17-ES-03), Technology Center of Sidi Thabet, University of Manouba, Tunis, Tunisia
| | - Mona Mlika
- Laboratory of Anatomy and Pathology, Abderhaman Mami Hospital, Ariana, Tunisia
| | - Afef Nahdi
- Research Unit n° 17/ES/13, Faculty of Medicine, University of Tunis El Manar, Tunis, Tunisia
| | - Ridha Ben Ali
- Laboratory of Experimental Medicine, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Saloua Jameleddine
- Laboratory of Physiology, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia.,Laboratory of Physiopathology, Food and Biomolecules (LR-17-ES-03), Technology Center of Sidi Thabet, University of Manouba, Tunis, Tunisia
| |
Collapse
|
4
|
Hegazy AM, Abdel-Azeem AS, Zeidan HM, Ibrahim KS, Sayed EME. Hypolipidemic and hepatoprotective activities of rosemary and thyme in gentamicin-treated rats. Hum Exp Toxicol 2017; 37:420-430. [DOI: 10.1177/0960327117710534] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- AM Hegazy
- Department of Nutrition and Food Sciences, National Research Centre, Dokki, Giza, Egypt
| | - AS Abdel-Azeem
- Department of Nutrition and Food Sciences, National Research Centre, Dokki, Giza, Egypt
| | - HM Zeidan
- Departement of Research on Children with Special Needs-, National Research Centre, Dokki, Giza, Egypt
| | - KS Ibrahim
- Department of Environmental & Occupational Medicine -National Research Centre, Dokki, Giza, Egypt
| | - EM El Sayed
- Department of Nutrition and Food Sciences, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
5
|
Abdel-Azeem AS, Hegazy AM, Zeidan HM, Ibrahim KS, El-Sayed EM. Potential Renoprotective Effects of Rosemary and Thyme Against Gentamicin Toxicity in Rats. J Diet Suppl 2016; 14:380-394. [DOI: 10.1080/19390211.2016.1253632] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Amal S. Abdel-Azeem
- Department of Nutrition and Food Sciences, National Research Centre, Dokki, Giza, Egypt
| | - Amany M. Hegazy
- Department of Nutrition and Food Sciences, National Research Centre, Dokki, Giza, Egypt
| | - Hala M. Zeidan
- Department of Research on Children with Special Needs, National Research Centre, Dokki, Giza, Egypt
| | - Khadiga S. Ibrahim
- Department of Environmental and Occupational Medicine, National Research Centre, Dokki, Giza, Egypt
| | - Eman M. El-Sayed
- Department of Nutrition and Food Sciences, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
6
|
Tayebi SM, Hasannezhad P, Saeidi A, Fadaei MR. Intense Circuit Resistance Training along with Zataria multiflora Supplementation Reduced Plasma Retinol Binding Protein-4 and Tumor Necrosis Factor-α in Postmenopausal Females. Jundishapur J Nat Pharm Prod 2016. [DOI: 10.17795/jjnpp.38578] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
7
|
Zhu X, Liu W, Yuan S, Chen H. The Effect of Different Dietary Levels of Thyme Essential Oil on Serum Biochemical Indices in Mahua Broiler Chickens. ITALIAN JOURNAL OF ANIMAL SCIENCE 2016. [DOI: 10.4081/ijas.2014.3238] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Rašković A, Pavlović N, Kvrgić M, Sudji J, Mitić G, Čapo I, Mikov M. Effects of pharmaceutical formulations containing thyme on carbon tetrachloride-induced liver injury in rats. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 15:442. [PMID: 26683486 PMCID: PMC4683745 DOI: 10.1186/s12906-015-0966-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 12/09/2015] [Indexed: 11/10/2022]
Abstract
BACKGROUND Herbal supplements are widely used in the treatment of various liver disases, but some of them may also induce liver injuries. Regarding the infuence of thyme and its constituents on the liver, conflicting results have been reported in the literature. The objective of this study was to examine the influence of two commonly used pharmaceutical formulations containing thyme (Thymus vulgaris L.), tincture and syrup, on carbon tetrachloride-induced acute liver injury in rats. METHODS Chemical composition of investigated formulations of thyme was determined by gas chromatography and mass spectrometry. Activities of enzyme markers of hepatocellular damage in serum and antioxidant enzymes in the liver homogenates were measured using the kinetic spectrophotometric methods. Liver morphology was characterized by light microscopy using routine hematoxylin and eosin staining. RESULTS Thymol was found to be predominant active constituent in both tincture and syrup. Investigated thyme preparations exerted antioxidant effects in liver by preventing carbon tetrachloride-induced increase of lipid peroxidation. Furthermore, co-treatment with thyme preparations reversed the activities of oxidative stress-related enzymes xanthine oxidase, catalase, peroxidase, glutathione peroxidase and glutathione reductase, towards normal values in the liver. Hepatotoxicity induced by carbon tetrachloride was reflected by a marked elevation of AST and ALT activities, and histopathologic alterations. Co-administration of thyme tincture resulted in unexpected exacerbation of AST and ALT values in serum, while thyme syrup managed to reduce activites of aminotransferases, in comparison to carbon tetrachloride-treated animals. CONCLUSIONS Despite demonstrated antioxidant activity, mediated through both direct free radical scavenging and activation of antioxidant defense mechanisms, thyme preparations could not ameliorate liver injury in rats. Molecular mechanisms of diverse effects of thyme preparations on chemical-induced hepatotoxicity should be more in-depth investigated.
Collapse
Affiliation(s)
- Aleksandar Rašković
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, Novi Sad, 21000, Serbia.
| | - Nebojša Pavlović
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, Novi Sad, 21000, Serbia.
| | - Maja Kvrgić
- Pharmacy "Novi Sad", Rumenačka 1, Novi Sad, 21000, Serbia.
| | - Jan Sudji
- Institute of Occupational Health, Futoška 121, Novi Sad, 21000, Serbia.
| | - Gorana Mitić
- Institute of Laboratory Diagnostics, Clinical Center of Vojvodina, Hajduk Veljkova 1, Novi Sad, 21000, Serbia.
| | - Ivan Čapo
- Department of Histology and Embryology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, Novi Sad, 21000, Serbia.
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, Novi Sad, 21000, Serbia.
| |
Collapse
|
9
|
Horváthová E, Srančíková A, Regendová-Sedláčková E, Melušová M, Meluš V, Netriová J, Krajčovičová Z, Slameňová D, Pastorek M, Kozics K. Enriching the drinking water of rats with extracts of Salvia officinalis and Thymus vulgaris increases their resistance to oxidative stress. Mutagenesis 2015; 31:51-9. [PMID: 26297740 DOI: 10.1093/mutage/gev056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Nature is an attractive source of therapeutic compounds. In comparison to the artificial drugs, natural compounds cause less adverse side effects and are suitable for current molecularly oriented approaches to drug development and their mutual combining. Medicinal plants represent one of the most available remedy against various diseases. Proper examples are Salvia officinalis L. and Thymus vulgaris L. which are known aromatic medicinal plants. They are very popular and frequently used in many countries. The molecular mechanism of their biological activity has not yet been fully understood. The aim of this study was to ascertain if liver cells of experimental animals drinking extracts of sage or thyme will manifest increased resistance against oxidative stress. Adult Sprague-Dawley rats were divided into seven groups. They drank sage or thyme extracts for 2 weeks. At the end of the drinking period, blood samples were collected for determination of liver biochemical parameters and hepatocytes were isolated to analyze (i) oxidatively generated DNA damage (conventional and modified comet assay), (ii) activities of antioxidant enzymes [superoxide dismutase (SOD), glutathione peroxidase (GPx)] and (iii) content of glutathione. Intake of sage and thyme had no effect either on the basal level of DNA damage or on the activity of SOD in rat hepatocytes and did not change the biochemical parameters of blood plasma. Simultaneously, the activity of GPx was significantly increased and the level of DNA damage induced by oxidants was decreased. Moreover, sage extract was able to start up the antioxidant protection expressed by increased content of glutathione. Our results indicate that the consumption of S.officinalis and T.vulgaris extracts positively affects resistency of rat liver cells against oxidative stress and may have hepatoprotective potential.
Collapse
Affiliation(s)
- Eva Horváthová
- Department of Genetics, Cancer Research Institute, Slovak Academy of Sciences, Vlárska 7, 833 91 Bratislava, Slovak Republic,
| | - Annamária Srančíková
- Department of Genetics, Cancer Research Institute, Slovak Academy of Sciences, Vlárska 7, 833 91 Bratislava, Slovak Republic
| | - Eva Regendová-Sedláčková
- Department of Genetics, Cancer Research Institute, Slovak Academy of Sciences, Vlárska 7, 833 91 Bratislava, Slovak Republic
| | - Martina Melušová
- Department of Genetics, Cancer Research Institute, Slovak Academy of Sciences, Vlárska 7, 833 91 Bratislava, Slovak Republic, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovak Republic
| | - Vladimír Meluš
- Department of Laboratory Medicine, Faculty of Healthcare, Alexander Dubček University of Trenčín, Trenčín, Slovak Republic
| | - Jana Netriová
- Department of Laboratory Medicine, Faculty of Healthcare, Alexander Dubček University of Trenčín, Trenčín, Slovak Republic, St. MichaeĹs Hospital, Inc., Cesta na Červený most 1, 811 05 Bratislava, Slovak Republic and
| | - Zdenka Krajčovičová
- Department of Laboratory Medicine, Faculty of Healthcare, Alexander Dubček University of Trenčín, Trenčín, Slovak Republic
| | - Darina Slameňová
- Department of Genetics, Cancer Research Institute, Slovak Academy of Sciences, Vlárska 7, 833 91 Bratislava, Slovak Republic
| | - Michal Pastorek
- Department of Genetics, Cancer Research Institute, Slovak Academy of Sciences, Vlárska 7, 833 91 Bratislava, Slovak Republic, Center for Molecular Medicine, Slovak Academy of Sciences, Vlárska 7, 831 01 Bratislava, Slovak Republic
| | - Katarína Kozics
- Department of Genetics, Cancer Research Institute, Slovak Academy of Sciences, Vlárska 7, 833 91 Bratislava, Slovak Republic
| |
Collapse
|
10
|
Rubió L, Serra A, Chen CYO, Macià A, Romero MP, Covas MI, Solà R, Motilva MJ. Effect of the co-occurring components from olive oil and thyme extracts on the antioxidant status and its bioavailability in an acute ingestion in rats. Food Funct 2014; 5:740-7. [DOI: 10.1039/c3fo60446b] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
11
|
El-Nekeety AA, Mohamed SR, Hathout AS, Hassan NS, Aly SE, Abdel-Wahhab MA. Antioxidant properties of Thymus vulgaris oil against aflatoxin-induce oxidative stress in male rats. Toxicon 2011; 57:984-91. [PMID: 21477612 DOI: 10.1016/j.toxicon.2011.03.021] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 03/04/2011] [Accepted: 03/29/2011] [Indexed: 11/18/2022]
Abstract
The leafy parts of thyme and its essential oil have been used in foods for the flavor, aroma and preservation and also in folk medicines. The aim of the current study was to determine the components of Thymus vulgaris L essential oil and to evaluate the protective effects of this oil against aflatoxin-induce oxidative stress in rats. Thirty six mature male Sprague-Dawley were divided into six treatment groups and treated for 2 weeks as follows: control group; the groups treated orally with low and high doses of T. vulgaris oil (5 and 7.5 mg/kg b.w.); the group fed AFs-contaminated diet (2.5 mg/kg diet) and the groups fed AFs-contaminated diet and treated orally with the oil at the two tested doses. Blood and tissue samples were collected at the end of treatment period for biochemical study and histological examination. The results indicated that the oil contains Carvarcrol (45 mg/g), Thymol (24.7 mg/g), β-Phellandrene (9.7 mg/g), Linalool (4.1 mg/g), Humuline (3.1 mg/g), α-Phellandrene (2.3 mg/g) and Myrcene (2.1 mg/g). However, α and β-pinene, Myrcene, α-thyjone, Tricyclene, 1, 8-cineole, and β-sabinene were found in lower concentrations. Treatment with AFs alone disturbs lipid profile in serum, decreases Total antioxidant capacity, increase creatinine, uric acid and nitric oxide in serum and lipid peroxidation in liver and kidney accompanied with a sever histological changes in the liver tissues. The oil alone at the two tested doses did not induce any significant changes in the biochemical parameters or the histological picture. The combined treatment showed significant improvements in all tested parameters and histological pictures in the liver tissues. Moreover, this improvement was more pronounced in the group received the high dose of the oil. It could be concluded that the essential oil of T. vulgaris has a potential antioxidant activity and a protective effect against AFs toxicity and this protection was dose dependent.
Collapse
Affiliation(s)
- Aziza A El-Nekeety
- Food Toxicology & Contaminants Department, National Research Center, Dokki, Cairo, Egypt
| | | | | | | | | | | |
Collapse
|