1
|
Liang C, Zhou XH, Jiao YH, Guo MJ, Meng L, Gong PM, Lyu LZ, Niu HY, Wu YF, Chen SW, Han X, Zhang LW. Ligilactobacillus Salivarius LCK11 Prevents Obesity by Promoting PYY Secretion to Inhibit Appetite and Regulating Gut Microbiota in C57BL/6J Mice. Mol Nutr Food Res 2021; 65:e2100136. [PMID: 34272917 DOI: 10.1002/mnfr.202100136] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/26/2021] [Indexed: 12/17/2022]
Abstract
SCOPE Obesity is a common disease worldwide and there is an urgent need for strategies to preventing obesity. METHODS AND RESULTS The anti-obesity effect and mechanism of Ligilactobacillus salivarius LCK11 (LCK11) is studied using a C57BL/6J male mouse model in which obesity is induced by a high-fat diet (HFD). Results show that LCK11 can prevent HFD-induced obesity, reflected as inhibited body weight gain, abdominal and liver fat accumulation and dyslipidemia. Analysis of its mechanism shows that on the one hand, LCK11 can inhibit food intake through significantly improving the transcriptional and translational levels of peptide YY (PYY) in the rectum, in addition to the eventual serum PYY level; this is attributed to the activation of the toll-like receptor 2/nuclear factor-κB signaling pathway in enteroendocrine L cells by the peptidoglycan of LCK11. On the other hand, LCK11 supplementation effectively reduces the Firmicutes/Bacteroidetes ratio and shifts the overall structure of the HFD-disrupted gut microbiota toward that of mice fed on a low-fat diet; this also contributes to preventing obesity. CONCLUSION LCK11 shows the potential to be used as a novel probiotic for preventing obesity by both promoting PYY secretion to inhibit food intake and regulating gut microbiota.
Collapse
Affiliation(s)
- Cong Liang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150010, China
| | | | - Yue-Hua Jiao
- Drug safety evaluation center, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China
| | - Mei-Jie Guo
- Department of Adolescent Medical Clinic, Harbin Children's Hospital, Harbin, 150010, China
| | - Li Meng
- Engineering Research Center of Agricultural Microbiology Technology, Heilongjiang University, Harbin, 150500, China
| | - Pi-Min Gong
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Lin-Zheng Lyu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150010, China
| | - Hai-Yue Niu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150010, China
| | - Yi-Fan Wu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150010, China
| | - Shi-Wei Chen
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150010, China
| | - Xue Han
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150010, China
| | - Lan-Wei Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| |
Collapse
|
2
|
Alyu F, Olgar Y, Degirmenci S, Turan B, Ozturk Y. Interrelated In Vitro Mechanisms of Sibutramine-Induced Cardiotoxicity. Cardiovasc Toxicol 2021; 21:322-335. [PMID: 33389602 DOI: 10.1007/s12012-020-09622-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 11/24/2020] [Indexed: 11/26/2022]
Abstract
Consumption of illicit pharmaceutical products containing sibutramine has been reported to cause cardiovascular toxicity problems. This study aimed to demonstrate the toxicity profile of sibutramine, and thereby provide important implications for the development of more effective strategies in both clinical approaches and drug design studies. Action potentials (APs) were determined from freshly isolated ventricular cardiomyocytes with whole-cell configuration of current clamp as online. The maximum amplitude of APs (MAPs), the resting membrane potential (RMP), and AP duration from the repolarization phases were calculated from original records. The voltage-dependent K+-channel currents (IK) were recorded in the presence of external Cd2+ and both inward and outward parts of the current were calculated, while their expression levels were determined with qPCR. The levels of intracellular free Ca2+ and H+ (pHi) as well as reactive oxygen species (ROS) were measured using either a ratiometric micro-spectrofluorometer or confocal microscope. The mechanical activity of isolated hearts was observed with Langendorff-perfusion system. Acute sibutramine applications (10-8-10-5 M) induced significant alterations in both MAPs and RMP as well as the repolarization phases of APs and IK in a concentration-dependent manner. Sibutramine (10 μM) induced Ca2+-release from the sarcoplasmic reticulum under either electrical or caffeine stimulation, whereas it depressed left ventricular developed pressure with a marked decrease in the end-diastolic pressure. pHi inhibition by sibutramine supports the observed negative alterations in contractility. Changes in mRNA levels of different IK subunits are consistent with the acute inhibition of the repolarizing IK, affecting AP parameters, and provoke the cardiotoxicity.
Collapse
Affiliation(s)
- Feyza Alyu
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, Yunus Emre Campus, 26470, Eskisehir, Turkey
| | - Yusuf Olgar
- Department of Biophysics, Faculty of Medicine, Ankara University, 06230, Ankara, Turkey
| | - Sinan Degirmenci
- Department of Biophysics, Faculty of Medicine, Ankara University, 06230, Ankara, Turkey
| | - Belma Turan
- Department of Biophysics, Faculty of Medicine, Ankara University, 06230, Ankara, Turkey
- Department of Biophysics, Faculty of Medicine, Lokman Hekim University, 06230, Ankara, Turkey
| | - Yusuf Ozturk
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, Yunus Emre Campus, 26470, Eskisehir, Turkey.
| |
Collapse
|
3
|
Clements M, Millar V, Williams AS, Kalinka S. Bridging Functional and Structural Cardiotoxicity Assays Using Human Embryonic Stem Cell-Derived Cardiomyocytes for a More Comprehensive Risk Assessment. Toxicol Sci 2015; 148:241-60. [DOI: 10.1093/toxsci/kfv180] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
4
|
Yun J, Chung E, Choi KH, Cho DH, Song YJ, Han KM, Cha HJ, Shin JS, Seong WK, Kim YH, Kim HS. Cardiovascular Safety Pharmacology of Sibutramine. Biomol Ther (Seoul) 2015; 23:386-9. [PMID: 26157557 PMCID: PMC4489835 DOI: 10.4062/biomolther.2015.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 04/22/2015] [Accepted: 04/27/2015] [Indexed: 11/23/2022] Open
Abstract
Sibutramine is an anorectic that has been banned since 2010 due to cardiovascular safety issues. However, counterfeit drugs or slimming products that include sibutramine are still available in the market. It has been reported that illegal sibutramine-contained pharmaceutical products induce cardiovascular crisis. However, the mechanism underlying sibutramine-induced cardiovascular adverse effect has not been fully evaluated yet. In this study, we performed cardiovascular safety pharmacology studies of sibutramine systemically using by hERG channel inhibition, action potential duration, and telemetry assays. Sibutramine inhibited hERG channel current of HEK293 cells with an IC50 of 3.92 μM in patch clamp assay and increased the heart rate and blood pressure (76 Δbpm in heart rate and 51 ΔmmHg in blood pressure) in beagle dogs at a dose of 30 mg/kg (per oral), while it shortened action potential duration (at 10 μM and 30 μM, resulted in 15% and 29% decreases in APD50, and 9% and 17% decreases in APD90, respectively) in the Purkinje fibers of rabbits and had no effects on the QTc interval in beagle dogs. These results suggest that sibutramine has a considerable adverse effect on the cardiovascular system and may contribute to accurate drug safety regulation.
Collapse
Affiliation(s)
- Jaesuk Yun
- National Institute of Drug and Safety Evaluation, Ministry of Food and Drug Safety, Osong 363-700, Republic of Korea
| | - Eunyong Chung
- National Institute of Drug and Safety Evaluation, Ministry of Food and Drug Safety, Osong 363-700, Republic of Korea
| | - Ki Hwan Choi
- National Institute of Drug and Safety Evaluation, Ministry of Food and Drug Safety, Osong 363-700, Republic of Korea
| | - Dae Hyun Cho
- National Institute of Drug and Safety Evaluation, Ministry of Food and Drug Safety, Osong 363-700, Republic of Korea
| | - Yun Jeong Song
- National Institute of Drug and Safety Evaluation, Ministry of Food and Drug Safety, Osong 363-700, Republic of Korea
| | - Kyoung Moon Han
- National Institute of Drug and Safety Evaluation, Ministry of Food and Drug Safety, Osong 363-700, Republic of Korea
| | - Hey Jin Cha
- National Institute of Drug and Safety Evaluation, Ministry of Food and Drug Safety, Osong 363-700, Republic of Korea
| | - Ji Soon Shin
- National Institute of Drug and Safety Evaluation, Ministry of Food and Drug Safety, Osong 363-700, Republic of Korea
| | - Won-Keun Seong
- National Institute of Drug and Safety Evaluation, Ministry of Food and Drug Safety, Osong 363-700, Republic of Korea
| | - Young-Hoon Kim
- National Institute of Drug and Safety Evaluation, Ministry of Food and Drug Safety, Osong 363-700, Republic of Korea
| | - Hyung Soo Kim
- National Institute of Drug and Safety Evaluation, Ministry of Food and Drug Safety, Osong 363-700, Republic of Korea
| |
Collapse
|