1
|
Yin M, Wang Y. The role of PIP5K1A in cancer development and progression. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:151. [PMID: 35852640 DOI: 10.1007/s12032-022-01753-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023]
Abstract
Malignant tumors are formed via a pathological process of uncontrolled cell division that seriously endangers human physical and mental health. The PI3K/AKT signaling pathway plays an important role in the occurrence and development of various cancers. As a lipid kinase, PIP5K1A acts on the upstream of the PI3K/AKT signaling pathway and has a variety of biological functions, including cell differentiation, cell migration, and sperm development. An increasing number of studies have shown that the overexpression of PIP5K1A promotes the growth, invasion, and migration of cancer cells, and the inhibition of PIP5K1A can effectively hinder tumor progression. These findings imply that PIP5K1A are potential markers and targets for cancers. The aim of this study was to systemically review the structure and function of PIP5K1A, the relationship between PIP5K1A and tumors and the potential therapeutic value of PIP5K1A inhibitors in cancer. PIP5K1A affects the occurrence and progression of many tumors and will provide new strategies for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Man Yin
- Department of Clinical Medicine, Jining Medical University, Jining, 272000, Shandong, China
| | - Yunfei Wang
- Department of Gynecology, Affiliated Hospital of Jining Medical University, Gu Huai Road, No.89, Jining, 272029, Shandong, China.
| |
Collapse
|
2
|
Inhibition of TAZ contributes radiation-induced senescence and growth arrest in glioma cells. Oncogene 2018; 38:2788-2799. [PMID: 30542117 PMCID: PMC6461515 DOI: 10.1038/s41388-018-0626-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/27/2018] [Accepted: 11/21/2018] [Indexed: 11/09/2022]
Abstract
Glioblastoma (GBM) is the most aggressive brain tumor and resistant to current available therapeutics, such as radiation. To improve the clinical efficacy, it is important to understand the cellular mechanisms underlying tumor responses to radiation. Here, we investigated long-term cellular responses of human GBM cells to ionizing radiation. Comparing to the initial response within 12 hours, gene expression modulation at 7 days after radiation is markedly different. While genes related to cell cycle arrest and DNA damage responses are mostly modulated at the initial stage; immune-related genes are specifically affected as the long-term effect. This later response is associated with increased cellular senescence and inhibition of transcriptional coactivator with PDZ-binding motif (TAZ). Mechanistically, TAZ inhibition does not depend on the canonical Hippo pathway, but relies on enhanced degradation mediated by the β-catenin destruction complex in the Wnt pathway. We further showed that depletion of TAZ by RNAi promotes radiation-induced senescence and growth arrest. Pharmacological activation of the β-catenin destruction complex is able to promote radiation-induced TAZ inhibition and growth arrest in these tumor cells. The correlation between senescence and reduced expression of TAZ as well as β-catenin also occurs in human gliomas treated by radiation. Collectively, these findings suggested that inhibition of TAZ is involved in radiation-induced senescence and might benefit GBM radiotherapy.
Collapse
|
3
|
Murad H, Alghamian Y, Aljapawe A, Madania A. Effects of ionizing radiation on the viability and proliferative behavior of the human glioblastoma T98G cell line. BMC Res Notes 2018; 11:330. [PMID: 29784026 PMCID: PMC5963135 DOI: 10.1186/s13104-018-3438-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/11/2018] [Indexed: 01/30/2023] Open
Abstract
Objective Radiotherapy is the traditional therapy for glioma patients. Glioma has poor response to ionizing radiation (IR). Studying radiation-induced cell death can help in understanding the cellular mechanisms underlying its radioresistance. T98G cell line was irradiated with Co60 source by 2 or 10 Gy. MTT assay was used to calculate the surviving fraction. Cell viability, cell cycle distribution and apoptosis assays were conducted by flow cytometry for irradiated and control cells for the 10 Gy dose.
Results The SF2 value for irradiated cells was 0.8. Cell viability was decreased from 93.29 to 73.61%, while, the Sub G0/G1 phase fraction was significantly increased at 10 Gy after 48 h. On the other hand, there was an increase in the percentage of apoptotic cells which reached 40.16% after 72 h at the same dose, while, it did not exceeds 2% for non-irradiated cells. Our results showed that, the T98G cells is radioresistant to IR up to 10 Gy. Effects of irradiation on the viability of T98G cells were relatively mild, since entering apoptosis was delayed for about 3 days after irradiation.
Collapse
Affiliation(s)
- Hossam Murad
- Human Genetics Division, Department of Molecular Biology & Biotechnology, Atomic Energy Commission of Syria (AECS), P.O. Box 6091, Damascus, Syria.
| | - Yaman Alghamian
- Department of Animal Biology, Faculty of Sciences, Damascus University, Damascus, Syria
| | - Abdulmunim Aljapawe
- Human Genetics Division, Department of Molecular Biology & Biotechnology, Atomic Energy Commission of Syria (AECS), P.O. Box 6091, Damascus, Syria
| | - Ammar Madania
- Department of Radiation Medicine, Atomic Energy Commission of Syria (AECS), Damascus, Syria
| |
Collapse
|
4
|
Hohmann T, Grabiec U, Vogel C, Ghadban C, Ensminger S, Bache M, Vordermark D, Dehghani F. The Impact of Non-Lethal Single-Dose Radiation on Tumor Invasion and Cytoskeletal Properties. Int J Mol Sci 2017; 18:E2001. [PMID: 28926987 PMCID: PMC5618650 DOI: 10.3390/ijms18092001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/05/2017] [Accepted: 09/15/2017] [Indexed: 12/27/2022] Open
Abstract
Irradiation is the standard therapy for glioblastoma multiforme. Glioblastoma are highly resistant to radiotherapy and the underlying mechanisms remain unclear. To better understand the biological effects of irradiation on glioblastoma cells, we tested whether nonlethal irradiation influences the invasiveness, cell stiffness, and actin cytoskeleton properties. Two different glioblastoma cell lines were irradiated with 2 Gy and changes in mechanical and migratory properties and alterations in the actin structure were measured. The invasiveness of cell lines was determined using a co-culture model with organotypic hippocampal slice cultures. Irradiation led to changes in motility and a less invasive phenotype in both investigated cell lines that were associated with an increase in a "generalized stiffness" and changes in the actin structure. In this study we demonstrate that irradiation can induce changes in the actin cytoskeleton and motility, which probably results in reduced invasiveness of glioblastoma cell lines. Furthermore, "generalized stiffness" was shown to be a profound marker of the invasiveness of a tumor cell population in our model.
Collapse
Affiliation(s)
- Tim Hohmann
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108 Halle, Germany.
| | - Urszula Grabiec
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108 Halle, Germany.
| | - Carolin Vogel
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108 Halle, Germany.
| | - Chalid Ghadban
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108 Halle, Germany.
| | - Stephan Ensminger
- Department of Radiation Oncology, Martin Luther University Halle-Wittenberg, Ernst-Grube-Strasse 40, 06120 Halle, Germany.
| | - Matthias Bache
- Department of Radiation Oncology, Martin Luther University Halle-Wittenberg, Ernst-Grube-Strasse 40, 06120 Halle, Germany.
| | - Dirk Vordermark
- Department of Radiation Oncology, Martin Luther University Halle-Wittenberg, Ernst-Grube-Strasse 40, 06120 Halle, Germany.
| | - Faramarz Dehghani
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108 Halle, Germany.
| |
Collapse
|
5
|
Alghamian Y, Abou Alchamat G, Murad H, Madania A. Effects of γ-radiation on cell growth, cell cycle and promoter methylation of 22 cell cycle genes in the 1321NI astrocytoma cell line. Adv Med Sci 2017; 62:330-337. [PMID: 28511071 DOI: 10.1016/j.advms.2017.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 03/02/2017] [Accepted: 03/09/2017] [Indexed: 12/11/2022]
Abstract
PURPOSE DNA damage caused by radiation initiates biological responses affecting cell fate. DNA methylation regulates gene expression and modulates DNA damage pathways. Alterations in the methylation profiles of cell cycle regulating genes may control cell response to radiation. In this study we investigated the effect of ionizing radiation on the methylation levels of 22 cell cycle regulating genes in correlation with gene expression in 1321NI astrocytoma cell line. METHODS 1321NI cells were irradiated with 2, 5 or 10Gy doses then analyzed after 24, 48 and 72h for cell viability using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliu bromide) assay. Flow cytometry were used to study the effect of 10Gy irradiation on cell cycle. EpiTect Methyl II PCR Array was used to identify differentially methylated genes in irradiated cells. Changes in gene expression was determined by qPCR. Azacytidine treatment was used to determine whether DNA methylation affectes gene expression. RESULTS Our results showed that irradiation decreased cell viability and caused cell cycle arrest at G2/M. Out of 22 genes tested, only CCNF and RAD9A showed some increase in DNA methylation (3.59% and 3.62%, respectively) after 10Gy irradiation, and this increase coincided with downregulation of both genes (by 4 and 2 fold, respectively). TREATMENT with azacytidine confirmed that expression of CCNF and RAD9A genes was regulated by methylation. CONCLUSIONS 1321NI cell line is highly radioresistant and that irradiation of these cells with a 10Gy dose increases DNA methylation of CCNF and RAD9A genes. This dose down-regulates these genes, favoring G2/M arrest.
Collapse
|
6
|
Gehring MP, Kipper F, Nicoletti NF, Sperotto ND, Zanin R, Tamajusuku ASK, Flores DG, Meurer L, Roesler R, Filho AB, Lenz G, Campos MM, Morrone FB. P2X7 receptor as predictor gene for glioma radiosensitivity and median survival. Int J Biochem Cell Biol 2015; 68:92-100. [PMID: 26358881 DOI: 10.1016/j.biocel.2015.09.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 08/31/2015] [Accepted: 09/03/2015] [Indexed: 10/23/2022]
Abstract
Glioblastoma multiforme (GBM) is considered the most lethal intracranial tumor and the median survival time is approximately 14 months. Although some glioma cells present radioresistance, radiotherapy has been the mainstay of therapy for patients with malignant glioma. The activation of P2X7 receptor (P2X7R) is responsible for ATP-induced death in various cell types. In this study, we analyzed the importance of ATP-P2X7R pathway in the radiotherapy response P2X7R silenced cell lines, in vivo and human tumor samples. Both glioma cell lines used in this study present a functional P2X7R and the P2X7R silencing reduced P2X7R pore activity by ethidium bromide uptake. Gamma radiation (2Gy) treatment reduced cell number in a P2X7R-dependent way, since both P2X7R antagonist and P2X7R silencing blocked the cell cytotoxicity caused by irradiation after 24h. The activation of P2X7R is time-dependent, as EtBr uptake significantly increased after 24h of irradiation. The radiotherapy plus ATP incubation significantly increased annexin V incorporation, compared with radiotherapy alone, suggesting that ATP acts synergistically with radiotherapy. Of note, GL261 P2X7R silenced-bearing mice failed in respond to radiotherapy (8Gy) and GL261 WT-bearing mice, that constitutively express P2X7R, presented a significant reduction in tumor volume after radiotherapy, showing in vivo that functional P2X7R expression is essential for an efficient radiotherapy response in gliomas. We also showed that a high P2X7R expression is a good prognostic factor for glioma radiosensitivity and survival probability in humans. Our data revealed the relevance of P2X7R expression in glioma cells to a successful radiotherapy response, and shed new light on this receptor as a useful predictor of the sensitivity of cancer patients to radiotherapy and median survival.
Collapse
Affiliation(s)
- Marina P Gehring
- PUCRS, Programa de Pós-Graduação em Biologia Celular e Molecular, Laboratório de Farmacologia Aplicada, Av. Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil.
| | - Franciele Kipper
- Laboratório de Sinalização e Plasticidade Celular, UFRGS, Av. Bento Gonçalves, 9500, 91501-970 Porto Alegre, RS, Brazil.
| | - Natália F Nicoletti
- PUCRS, Programa de Pós-Graduação em Biologia Celular e Molecular, Laboratório de Farmacologia Aplicada, Av. Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil.
| | - Nathalia D Sperotto
- PUCRS, Programa de Pós-Graduação em Biologia Celular e Molecular, Laboratório de Farmacologia Aplicada, Av. Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil.
| | - Rafael Zanin
- PUCRS, Programa de Pós-Graduação em Biologia Celular e Molecular, Laboratório de Farmacologia Aplicada, Av. Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil.
| | - Alessandra S K Tamajusuku
- Laboratório de Sinalização e Plasticidade Celular, UFRGS, Av. Bento Gonçalves, 9500, 91501-970 Porto Alegre, RS, Brazil.
| | - Debora G Flores
- Cancer Research Laboratory, University Hospital Research Center (CPE-HCPA), Porto Alegre, RS, Brazil.
| | - Luise Meurer
- Departamento de Patologia, HCPA, UFRGS, Rua Ramiro Barcelos, 2350, 90420-010 Porto Alegre, RS, Brazil.
| | - Rafael Roesler
- Laboratory of Neuropharmacology and Neural Tumor Biology, Department of Pharmacology, Institute for Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil; Cancer Research Laboratory, University Hospital Research Center (CPE-HCPA), UFRGS, Porto Alegre, RS, Brazil; National Institute for Translational Medicine, Rua Sarmento Leite, 500, Sala 202, 90050-170 Porto Alegre, RS, Brazil.
| | - Aroldo B Filho
- Serviço de Radioterapia, Hospital São Lucas da PUCRS, Av. Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil.
| | - Guido Lenz
- Laboratório de Sinalização e Plasticidade Celular, UFRGS, Av. Bento Gonçalves, 9500, 91501-970 Porto Alegre, RS, Brazil.
| | - Maria M Campos
- PUCRS, Instituto de Toxicologia e Farmacologia e Faculdade de Odontologia, Av. Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil.
| | - Fernanda B Morrone
- PUCRS, Programa de Pós-Graduação em Biologia Celular e Molecular, Laboratório de Farmacologia Aplicada, Av. Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil.
| |
Collapse
|
7
|
Waugh MG. Chromosomal Instability and Phosphoinositide Pathway Gene Signatures in Glioblastoma Multiforme. Mol Neurobiol 2014; 53:621-630. [PMID: 25502460 PMCID: PMC4703635 DOI: 10.1007/s12035-014-9034-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 11/30/2014] [Indexed: 12/29/2022]
Abstract
Structural rearrangements of chromosome 10 are frequently observed in glioblastoma multiforme and over 80 % of tumour samples archived in the catalogue of somatic mutations in cancer database had gene copy number loss for PI4K2A which encodes phosphatidylinositol 4-kinase type IIalpha. PI4K2A loss of heterozygosity mirrored that of PTEN, another enzyme that regulates phosphoinositide levels and also PIK3AP1, MINPP1, INPP5A and INPP5F. These results indicated a reduction in copy number for a set of phosphoinositide signalling genes that co-localise to chromosome 10q. This analysis was extended to a panel of phosphoinositide pathway genes on other chromosomes and revealed a number of previously unreported associations with glioblastoma multiforme. Of particular note were highly penetrant copy number losses for a group of X-linked phosphoinositide phosphatase genes OCRL, MTM1 and MTMR8; copy number amplifications for the chromosome 19 genes PIP5K1C, AKT2 and PIK3R2, and also for the phospholipase C genes PLCB1, PLCB4 and PLCG1 on chromosome 20. These mutations are likely to affect signalling and trafficking functions dependent on the PI(4,5)P2, PI(3,4,5)P3 and PI(3,5)P2 lipids as well as the inositol phosphates IP3, IP5 and IP6. Analysis of flanking genes with functionally unrelated products indicated that chromosomal instability as opposed to a phosphoinositide-specific process underlay this pattern of copy number variation. This in silico study suggests that in glioblastoma multiforme, karyotypic changes have the potential to cause multiple abnormalities in sets of genes involved in phosphoinositide metabolism and this may be important for understanding drug resistance and phosphoinositide pathway redundancy in the advanced disease state.
Collapse
Affiliation(s)
- Mark G Waugh
- Lipid and Membrane Biology Group, Institute for Liver and Digestive Health, UCL, Royal Free Campus, Rowland Hill Street, London, NW3 2PF, UK.
| |
Collapse
|
8
|
Ma H, Rao L, Wang HL, Mao ZW, Lei RH, Yang ZY, Qing H, Deng YL. Transcriptome analysis of glioma cells for the dynamic response to γ-irradiation and dual regulation of apoptosis genes: a new insight into radiotherapy for glioblastomas. Cell Death Dis 2013; 4:e895. [PMID: 24176853 PMCID: PMC3920930 DOI: 10.1038/cddis.2013.412] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 08/09/2013] [Accepted: 09/06/2013] [Indexed: 11/11/2022]
Abstract
Ionizing radiation (IR) is of clinical importance for glioblastoma therapy; however, the recurrence of glioma characterized by radiation resistance remains a therapeutic challenge. Research on irradiation-induced transcription in glioblastomas can contribute to the understanding of radioresistance mechanisms. In this study, by using the total mRNA sequencing (RNA-seq) analysis, we assayed the global gene expression in a human glioma cell line U251 MG at various time points after exposure to a growth arrest dose of γ-rays. We identified 1656 genes with obvious changes at the transcriptional level in response to irradiation, and these genes were dynamically enriched in various biological processes or pathways, including cell cycle arrest, DNA replication, DNA repair and apoptosis. Interestingly, the results showed that cell death was not induced even many proapoptotic molecules, including death receptor 5 (DR5) and caspases were activated after radiation. The RNA-seq data analysis further revealed that both proapoptosis and antiapoptosis genes were affected by irradiation. Namely, most proapoptosis genes were early continually responsive, whereas antiapoptosis genes were responsive at later stages. Moreover, HMGB1, HMGB2 and TOP2A involved in the positive regulation of DNA fragmentation during apoptosis showed early continual downregulation due to irradiation. Furthermore, targeting of the TRAIL/DR5 pathway after irradiation led to significant apoptotic cell death, accompanied by the recovered gene expression of HMGB1, HMGB2 and TOP2A. Taken together, these results revealed that inactivation of proapoptotic signaling molecules in the nucleus and late activation of antiapoptotic genes may contribute to the radioresistance of gliomas. Overall, this study provided novel insights into not only the underlying mechanisms of radioresistance in glioblastomas but also the screening of multiple targets for radiotherapy.
Collapse
Affiliation(s)
- H Ma
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Godoy P, Mello S, Magalhães D, Donaires F, Nicolucci P, Donadi E, Passos G, Sakamoto-Hojo E. Ionizing radiation-induced gene expression changes in TP53 proficient and deficient glioblastoma cell lines. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2013; 756:46-55. [DOI: 10.1016/j.mrgentox.2013.06.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 06/18/2013] [Indexed: 01/12/2023]
|
10
|
Usukura K, Kasamatsu A, Okamoto A, Kouzu Y, Higo M, Koike H, Sakamoto Y, Ogawara K, Shiiba M, Tanzawa H, Uzawa K. Tripeptidyl peptidase II in human oral squamous cell carcinoma. J Cancer Res Clin Oncol 2012; 139:123-30. [PMID: 22986808 DOI: 10.1007/s00432-012-1307-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 09/03/2012] [Indexed: 01/08/2023]
Abstract
PURPOSE Tripeptidyl peptidase II (TPP2), a member of the family of eukaryotic serine peptidase, has been implicated in DNA repair, cellular division, and apoptosis. The aim of this study was to examine TPP2 expression and its functional mechanisms in oral squamous cell carcinoma (OSCC). METHODS TPP2 mRNA and protein expression in seven OSCC-derived cells (Ca9-22, HSC-2, HSC-3, HSC-4, HO-1-N-1, H1, and Sa3) was analyzed by quantitative reverse transcriptase-polymerase chain reaction and immunoblotting analyses. Since previous studies indicated that TPP2 might control chromosomal division, we investigated cellular proliferation and spindle assembly checkpoint (SAC) molecules, MAD2 and CCNB1. In addition, we evaluated the correlation between TPP2 expression levels in primary OSCCs (n = 108 specimens) and the clinicopathologic status by immunohistochemistry (IHC). RESULTS TPP2 mRNA and protein were significantly (P < 0.05) up-regulated in OSCC-derived cells compared with human normal oral keratinocytes. Suppression of TPP2 expression with shRNA significantly (P < 0.05) inhibited cellular proliferation compared with the control cells. In addition, appropriate localization of MAD2 and up-regulation of CCNB1 were observed in TPP2 knockdown OSCC cells. IHC showed that TPP2 expression in primary OSCCs was significantly (P < 0.001) greater than that in the normal oral counterparts, and the TPP2-positive cases were significantly (P < 0.05) correlated with tumor size. CONCLUSION The current study showed that overexpression of TPP2 occurs frequently during oral carcinogenesis and might be associated with OSCC progression via SAC activation.
Collapse
Affiliation(s)
- Katsuya Usukura
- Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Bache M, Zschornak MP, Passin S, Kessler J, Wichmann H, Kappler M, Paschke R, Kaluđerović GN, Kommera H, Taubert H, Vordermark D. Increased betulinic acid induced cytotoxicity and radiosensitivity in glioma cells under hypoxic conditions. Radiat Oncol 2011; 6:111. [PMID: 21906280 PMCID: PMC3182903 DOI: 10.1186/1748-717x-6-111] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 09/09/2011] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Betulinic acid (BA) is a novel antineoplastic agent under evaluation for tumor therapy. Because of the selective cytotoxic effects of BA in tumor cells (including gliomas), the combination of this agent with conservative therapies (such as radiotherapy and chemotherapy) may be useful. Previously, the combination of BA with irradiation under hypoxic conditions had never been studied. METHODS In this study, the effects of 3 to 30 μM BA on cytotoxicity, migration, the protein expression of PARP, survivin and HIF-1α, as well as radiosensitivity under normoxic and hypoxic conditions were analyzed in the human malignant glioma cell lines U251MG and U343MG. Cytotoxicity and radiosensitivity were analyzed with clonogenic survival assays, migration was analyzed with Boyden chamber assays (or scratch assays) and protein expression was examined with Western blot analyses. RESULTS Under normoxic conditions, a half maximal inhibitory concentration (IC50) of 23 μM was observed in U251MG cells and 24 μM was observed in U343MG cells. Under hypoxic conditions, 10 μM or 15 μM of BA showed a significantly increased cytotoxicity in U251MG cells (p = 0.004 and p = 0.01, respectively) and U343MG cells (p < 0.05 and p = 0.01, respectively). The combination of BA with radiotherapy resulted in an additive effect in the U343MG cell line under normoxic and hypoxic conditions. Weak radiation enhancement was observed in U251MG cell line after treatment with BA under normoxic conditions. Furthermore, under hypoxic conditions, the incubation with BA resulted in increased radiation enhancement. The enhancement factor, at an irradiation dose of 15 Gy after treatment with 10 or 15 μM BA, was 2.20 (p = 0.02) and 4.50 (p = 0.03), respectively. Incubation with BA led to decreased cell migration, cleavage of PARP and decreased expression levels of survivin in both cell lines. Additionally, BA treatment resulted in a reduction of HIF-1α protein under hypoxic conditions. CONCLUSION Our results suggest that BA is capable of improving the effects of tumor therapy in human malignant glioma cells, particularly under hypoxic conditions. Further investigations are necessary to characterize its potential as a radiosensitizer.
Collapse
Affiliation(s)
- Matthias Bache
- Department of Radiotherapy, Martin-Luther-University Halle-Wittenberg, Dryanderstr, 4, 06110 Halle, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Sokolov MV, Panyutin IV, Panyutin IG, Neumann RD. Dynamics of the transcriptome response of cultured human embryonic stem cells to ionizing radiation exposure. Mutat Res 2011; 709-710:40-8. [PMID: 21376742 DOI: 10.1016/j.mrfmmm.2011.02.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 01/25/2011] [Accepted: 02/21/2011] [Indexed: 01/07/2023]
Abstract
One of the key consequences of exposure of human cells to genotoxic agents is the activation of DNA damage responses (DDR). While the mechanisms underpinning DDR in fully differentiated somatic human cells have been studied extensively, molecular signaling events and pathways involved in DDR in pluripotent human embryonic stem cells (hESC) remain largely unexplored. We studied changes in the human genome-wide transcriptome of H9 hESC line following exposures to 1Gy of gamma-radiation at 2h and 16h post-irradiation. Quantitative real-time PCR was performed to verify the expression data for a subset of genes. In parallel, the cell growth, DDR kinetics, and expression of pluripotency markers in irradiated hESC were monitored. The changes in gene expression in hESC after exposure to ionizing radiation (IR) are substantially different from those observed in somatic human cell lines. Gene expression patterns at 2h post-IR showed almost an exclusively p53-dependent, predominantly pro-apoptotic, signature with a total of only 30 up-regulated genes. In contrast, the gene expression patterns at 16h post-IR showed 354 differentially expressed genes, mostly involved in pro-survival pathways, such as increased expression of metallothioneins, ubiquitin cycle, and general metabolism signaling. Cell growth data paralleled trends in gene expression changes. DDR in hESC followed the kinetics reported for human somatic differentiated cells. The expression of pluripotency markers characteristic of undifferentiated hESC was not affected by exposure to IR during the time course of our analysis. Our data on dynamics of transcriptome response of irradiated hESCs may provide a valuable tool to screen for markers of IR exposure of human cells in their most naive state; thus unmasking the key elements of DDR; at the same time, avoiding the complexity of interpreting distinct cell type-dependent genotoxic stress responses of terminally differentiated cells.
Collapse
Affiliation(s)
- Mykyta V Sokolov
- Nuclear Medicine Division, Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, United States
| | | | | | | |
Collapse
|
13
|
Tordera RM, Garcia-García AL, Elizalde N, Segura V, Aso E, Venzala E, Ramírez MJ, Del Rio J. Chronic stress and impaired glutamate function elicit a depressive-like phenotype and common changes in gene expression in the mouse frontal cortex. Eur Neuropsychopharmacol 2011; 21:23-32. [PMID: 20937555 DOI: 10.1016/j.euroneuro.2010.06.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 06/23/2010] [Accepted: 06/25/2010] [Indexed: 12/24/2022]
Abstract
Major depression might originate from both environmental and genetic risk factors. The environmental chronic mild stress (CMS) model mimics some environmental factors contributing to human depression and induces anhedonia and helplessness. Mice heterozygous for the synaptic vesicle protein (SVP) vesicular glutamate transporter 1 (VGLUT1) have been proposed as a genetic model of deficient glutamate function linked to depressive-like behaviour. Here, we aimed to identify, in these two experimental models, gene expression changes in the frontal cortex, common to stress and impaired glutamate function. Both VGLUT1(+/-) and CMS mice showed helpless and anhedonic-like behavior. Microarray studies in VGLUT1(+/-) mice revealed regulation of genes involved in apoptosis, neurogenesis, synaptic transmission, protein metabolic process or learning and memory. In addition, RT-PCR studies confirmed gene expression changes in several glutamate, GABA, dopamine and serotonin neurotransmitter receptors. On the other hand, CMS affected the regulation of 147 transcripts, some of them involved in response to stress and oxidoreductase activity. Interestingly, 52 genes were similarly regulated in both models. Specifically, a dowregulation in genes that promote cell proliferation (Anapc7), cell growth (CsnK1g1), cell survival (Hdac3), and inhibition of apoptosis (Dido1) was observed. Genes linked to cytoskeleton (Hspg2, Invs), psychiatric disorders (Grin1, MapK12) or an antioxidant enzyme (Gpx2) were also downregulated. Moreover, genes that inhibit the MAPK pathways (Dusp14), stimulate oxidative metabolism (Eif4a2) and enhance glutamate transmission (Rab8b) were upregulated. We suggest that these genes could form part of the altered "molecular context" underlying depressive-like behaviour in animal models. The clinical relevance of these findings is discussed.
Collapse
Affiliation(s)
- R M Tordera
- Department of Pharmacology, University of Navarra, 31080 Pamplona, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Carminati PO, Mello SS, Fachin AL, Junta CM, Sandrin-Garcia P, Carlotti CG, Donadi EA, Passos GAS, Sakamoto-Hojo ET. Alterations in gene expression profiles correlated with cisplatin cytotoxicity in the glioma U343 cell line. Genet Mol Biol 2010; 33:159-68. [PMID: 21637621 PMCID: PMC3036095 DOI: 10.1590/s1415-47572010005000013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Accepted: 08/24/2009] [Indexed: 01/03/2023] Open
Abstract
Gliomas are the most common tumors in the central nervous system, the average survival time of patients with glioblastoma multiforme being about 1 year from diagnosis, in spite of harsh therapy. Aiming to study the transcriptional profiles displayed by glioma cells undergoing cisplatin treatment, gene expression analysis was performed by the cDNA microarray method. Cell survival and apoptosis induction following treatment were also evaluated. Drug concentrations of 12.5 to 300 μM caused a pronounced reduction in cell survival rates five days after treatment, whereas concentrations higher than 25 μM were effective in reducing the survival rates to ~1%. However, the maximum apoptosis frequency was 20.4% for 25 μM cisplatin in cells analyzed at 72 h, indicating that apoptosis is not the only kind of cell death induced by cisplatin. An analysis of gene expression revealed 67 significantly (FDR < 0.05) modulated genes: 29 of which down- and 38 up-regulated. These genes belong to several classes (metabolism, protein localization, cell proliferation, apoptosis, adhesion, stress response, cell cycle and DNA repair) that may represent several affected cell processes under the influence of cisplatin treatment. The expression pattern of three genes (RHOA, LIMK2 and TIMP2) was confirmed by the real time PCR method.
Collapse
|
15
|
Sridhar K, Ross DT, Tibshirani R, Butte AJ, Greenberg PL. Relationship of differential gene expression profiles in CD34+ myelodysplastic syndrome marrow cells to disease subtype and progression. Blood 2009; 114:4847-58. [PMID: 19801443 PMCID: PMC2786292 DOI: 10.1182/blood-2009-08-236422] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Accepted: 09/13/2009] [Indexed: 01/12/2023] Open
Abstract
Microarray analysis with 40 000 cDNA gene chip arrays determined differential gene expression profiles (GEPs) in CD34(+) marrow cells from myelodysplastic syndrome (MDS) patients compared with healthy persons. Using focused bioinformatics analyses, we found 1175 genes significantly differentially expressed by MDS versus normal, requiring a minimum of 39 genes to separately classify these patients. Major GEP differences were demonstrated between healthy and MDS patients and between several MDS subgroups: (1) those whose disease remained stable and those who subsequently transformed (tMDS) to acute myeloid leukemia; (2) between del(5q) and other MDS patients. A 6-gene "poor risk" signature was defined, which was associated with acute myeloid leukemia transformation and provided additive prognostic information for International Prognostic Scoring System Intermediate-1 patients. Overexpression of genes generating ribosomal proteins and for other signaling pathways was demonstrated in the tMDS patients. Comparison of del(5q) with the remaining MDS patients showed 1924 differentially expressed genes, with underexpression of 1014 genes, 11 of which were within the 5q31-32 commonly deleted region. These data demonstrated (1) GEPs distinguishing MDS patients from healthy and between those with differing clinical outcomes (tMDS vs those whose disease remained stable) and cytogenetics [eg, del(5q)]; and (2) molecular criteria refining prognostic categorization and associated biologic processes in MDS.
Collapse
Affiliation(s)
- Kunju Sridhar
- Hematology Division,Stanford University Medical Center, 875 Blake Wilbur Drive, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|