1
|
Yang X, Xu G, Liu X, Zhou G, Zhang B, Wang F, Wang L, Li B, Li L. Carbon nanomaterial-involved EMT and CSC in cancer. REVIEWS ON ENVIRONMENTAL HEALTH 2023; 38:1-13. [PMID: 34619029 DOI: 10.1515/reveh-2021-0082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Carbon nanomaterials (CNMs) are ubiquitous in our daily lives because of the outstanding physicochemical properties. CNMs play curial parts in industrial and medical fields, however, the risks of CNMs exposure to human health are still not fully understood. In view of, it is becoming extremely difficult to ignore the existence of the toxicity of CNMs. With the increasing exploitation of CNMs, it's necessary to evaluate the potential impact of these materials on human health. In recent years, more and more researches have shown that CNMs are contributed to the cancer formation and metastasis after long-term exposure through epithelial-mesenchymal transition (EMT) and cancer stem cells (CSCs) which is associated with cancer progression and invasion. This review discusses CNMs properties and applications in industrial and medical fields, adverse effects on human health, especially the induction of tumor initiation and metastasis through EMT and CSCs procedure.
Collapse
Affiliation(s)
- Xiaotong Yang
- Tianjin Medical University General Hospital, Tianjin, China
| | - Gongquan Xu
- Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaolong Liu
- Tianjin Medical University General Hospital, Tianjin, China
| | - Guiming Zhou
- Tianjin Medical University General Hospital, Tianjin, China
| | - Bing Zhang
- Rushan Hospital of Traditional Chinese Medicine, Weihai, China
| | - Fan Wang
- Tianjin Medical University General Hospital, Tianjin, China
| | - Lingjuan Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Bin Li
- Tianjin Medical University General Hospital, Tianjin, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Liming Li
- Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
2
|
Histone acetyltransferase 1 (HAT1) acetylates hypoxia-inducible factor 2 alpha (HIF2A) to execute hypoxia response. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194900. [PMID: 36410688 DOI: 10.1016/j.bbagrm.2022.194900] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 11/20/2022]
Abstract
Hypoxic response to low oxygen levels is characteristic of most solid cancers. Hypoxia-inducible factors (HIFs) regulate cellular metabolism, survival, proliferation, and cancer stem cell growth during hypoxia. The genome-wide analysis identified HAT1, a type B histone acetyltransferase, as an upregulated and essential gene in glioblastoma (GBM). GSEA analysis of differentially regulated genes in HAT1 silenced cells identified significant depletion of "hypoxia" gene sets. Hypoxia conditions induced HIF2A, not HIF1A protein levels in glioma cells in a HAT1-dependent manner. HAT1 and HIF2A interacted with each other and occupied the promoter of VEGFA, a bonafide HIF1A/HIF2A target. Acetylation of K512 and K596 residues by HAT1 is essential for HIF2A stabilization under normoxia and hypoxia as HIF2A carrying acetylation mimic mutations at either of these residues (H512Q or K596Q) showed stable expression in HAT1 silenced cells under normoxia and hypoxia conditions. Finally, we demonstrate that the HAT1-HIF2A axis is essential for hypoxia-promoted cancer stem cell maintenance and reprogramming. Thus, our study identifies that the HAT1-dependent acetylation of HIF2A is vital to executing the hypoxia-induced cell survival and cancer stem cell growth, therefore proposing the HAT1-HIF2A axis as a potential therapeutic target.
Collapse
|
3
|
Assessment of Pristine Carbon Nanotubes Toxicity in Rodent Models. Int J Mol Sci 2022; 23:ijms232315343. [PMID: 36499665 PMCID: PMC9739793 DOI: 10.3390/ijms232315343] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/24/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Carbon nanotubes are increasingly used in nanomedicine and material chemistry research, mostly because of their small size over a large surface area. Due to their properties, they are very attractive candidates for use in medicine and as drug carriers, contrast agents, biological platforms, and so forth. Carbon nanotubes (CNTs) may affect many organs, directly or indirectly, so there is a need for toxic effects evaluation. The main mechanisms of toxicity include oxidative stress, inflammation, the ability to damage DNA and cell membrane, as well as necrosis and apoptosis. The research concerning CNTs focuses on different animal models, functionalization, ways of administration, concentrations, times of exposure, and a variety of properties, which have a significant effect on toxicity. The impact of pristine CNTs on toxicity in rodent models is being increasingly studied. However, it is immensely difficult to compare obtained results since there are no standardized tests. This review summarizes the toxicity issues of pristine CNTs in rodent models, as they are often the preferred model for human disease studies, in different organ systems, while considering the various factors that affect them. Regardless, the results showed that the majority of toxicological studies using rodent models revealed some toxic effects. Even with different properties, carbon nanotubes were able to generate inflammation, fibrosis, or biochemical changes in different organs. The problem is that there are only a small amount of long-term toxicity studies, which makes it impossible to obtain a good understanding of later effects. This article will give a greater overview of the situation on toxicity in many organs. It will allow researchers to look at the toxicity of carbon nanotubes in a broader context and help to identify studies that are missing to properly assess toxicity.
Collapse
|
4
|
Occupational Exposure to Carbon Nanotubes and Carbon Nanofibres: More Than a Cobweb. NANOMATERIALS 2021; 11:nano11030745. [PMID: 33809629 PMCID: PMC8002294 DOI: 10.3390/nano11030745] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/11/2021] [Accepted: 03/13/2021] [Indexed: 01/20/2023]
Abstract
Carbon nanotubes (CNTs) and carbon nanofibers (CNFs) are erroneously considered as singular material entities. Instead, they should be regarded as a heterogeneous class of materials bearing different properties eliciting particular biological outcomes both in vitro and in vivo. Given the pace at which the industrial production of CNTs/CNFs is increasing, it is becoming of utmost importance to acquire comprehensive knowledge regarding their biological activity and their hazardous effects in humans. Animal studies carried out by inhalation showed that some CNTs/CNFs species can cause deleterious effects such as inflammation and lung tissue remodeling. Their physico-chemical properties, biological behavior and biopersistence make them similar to asbestos fibers. Human studies suggest some mild effects in workers handling CNTs/CNFs. However, owing to their cross-sectional design, researchers have been as yet unable to firmly demonstrate a causal relationship between such an exposure and the observed effects. Estimation of acceptable exposure levels should warrant a proper risk management. The aim of this review is to challenge the conception of CNTs/CNFs as a single, unified material entity and prompt the establishment of standardized hazard and exposure assessment methodologies able to properly feed risk assessment and management frameworks.
Collapse
|
5
|
Martin BL, Thompson LC, Kim YH, King C, Snow S, Schladweiler M, Haykal-Coates N, George I, Gilmour MI, Kodavanti UP, Hazari MS, Farraj AK. Peat smoke inhalation alters blood pressure, baroreflex sensitivity, and cardiac arrhythmia risk in rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 83:748-763. [PMID: 33016233 PMCID: PMC7682804 DOI: 10.1080/15287394.2020.1826375] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Wildland fires (WF) are linked to adverse health impacts related to poor air quality. The cardiovascular impacts of emissions from specific biomass sources are however unknown. The purpose of this study was to assess the cardiovascular impacts of a single exposure to peat smoke, a key regional WF air pollution source, and relate these to baroreceptor sensitivity and inflammation. Three-month-old male Wistar-Kyoto rats, implanted with radiotelemeters for continuous monitoring of heart rate (HR), blood pressure (BP), and spontaneous baroreflex sensitivity (BRS), were exposed once, for 1-hr, to filtered air or low (0.38 mg/m3 PM) or high (4.04 mg/m3) concentrations of peat smoke. Systemic markers of inflammation and sensitivity to aconitine-induced cardiac arrhythmias, a measure of latent myocardial vulnerability, were assessed in separate cohorts of rats 24 hr after exposure. PM size (low peat = 0.4-0.5 microns vs. high peat = 0.8-1.2 microns) and proportion of organic carbon (low peat = 77% vs. high peat = 65%) varied with exposure level. Exposure to high peat and to a lesser extent low peat increased systolic and diastolic BP relative to filtered air. In contrast, only exposure to low peat elevated BRS and aconitine-induced arrhythmogenesis relative to filtered air and increased circulating levels of low-density lipoprotein cholesterol, complement components C3 and C4, angiotensin-converting enzyme (ACE), and white blood cells. Taken together, exposure to peat smoke produced overt and latent cardiovascular consequences that were likely influenced by physicochemical characteristics of the smoke and associated adaptive homeostatic mechanisms.
Collapse
Affiliation(s)
| | | | - Yong Ho Kim
- Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, University of North Carolina, Chapel Hill, NC
| | - Charly King
- Public Health and Integrated Toxicology Division, US EPA, RTP, NC
| | - Samantha Snow
- Public Health and Integrated Toxicology Division, US EPA, RTP, NC
- ICF International, Durham, NC
| | | | | | - Ingrid George
- Air Methods & Characterization Division, US EPA, RTP, NC
| | - M. Ian Gilmour
- Public Health and Integrated Toxicology Division, US EPA, RTP, NC
| | | | - Mehdi S. Hazari
- Public Health and Integrated Toxicology Division, US EPA, RTP, NC
| | - Aimen K. Farraj
- Public Health and Integrated Toxicology Division, US EPA, RTP, NC
| |
Collapse
|
6
|
Al-Ahmady ZS, Ali-Boucetta H. Nanomedicine & Nanotoxicology Future Could Be Reshaped Post-COVID-19 Pandemic. FRONTIERS IN NANOTECHNOLOGY 2020. [DOI: 10.3389/fnano.2020.610465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Since its first emergence in December 2019, the coronavirus-2 infection has quickly spread around the world and the severity of the pandemic has already re-shaped our lives. This review highlights the role of nanotechnology in the fight against this pandemic with a focus on the design of effective nano-based prevention and treatment options that overcome the limitations associated with conventional vaccines and other therapies. How nanotechnology could be utilized to understand the pathology of the ongoing pandemic is also discussed as well as how our knowledge about SARS-CoV-2 cellular uptake and toxicity could influence future nanotoxicological considerations and nanomedicine design of safe yet effective nanomaterials.
Collapse
|
7
|
Guo NL, Poh TY, Pirela S, Farcas MT, Chotirmall SH, Tham WK, Adav SS, Ye Q, Wei Y, Shen S, Christiani DC, Ng KW, Thomas T, Qian Y, Demokritou P. Integrated Transcriptomics, Metabolomics, and Lipidomics Profiling in Rat Lung, Blood, and Serum for Assessment of Laser Printer-Emitted Nanoparticle Inhalation Exposure-Induced Disease Risks. Int J Mol Sci 2019; 20:E6348. [PMID: 31888290 PMCID: PMC6940784 DOI: 10.3390/ijms20246348] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 12/13/2022] Open
Abstract
Laser printer-emitted nanoparticles (PEPs) generated from toners during printing represent one of the most common types of life cycle released particulate matter from nano-enabled products. Toxicological assessment of PEPs is therefore important for occupational and consumer health protection. Our group recently reported exposure to PEPs induces adverse cardiovascular responses including hypertension and arrythmia via monitoring left ventricular pressure and electrocardiogram in rats. This study employed genome-wide mRNA and miRNA profiling in rat lung and blood integrated with metabolomics and lipidomics profiling in rat serum to identify biomarkers for assessing PEPs-induced disease risks. Whole-body inhalation of PEPs perturbed transcriptional activities associated with cardiovascular dysfunction, metabolic syndrome, and neural disorders at every observed time point in both rat lung and blood during the 21 days of exposure. Furthermore, the systematic analysis revealed PEPs-induced transcriptomic changes linking to other disease risks in rats, including diabetes, congenital defects, auto-recessive disorders, physical deformation, and carcinogenesis. The results were also confirmed with global metabolomics profiling in rat serum. Among the validated metabolites and lipids, linoleic acid, arachidonic acid, docosahexanoic acid, and histidine showed significant variation in PEPs-exposed rat serum. Overall, the identified PEPs-induced dysregulated genes, molecular pathways and functions, and miRNA-mediated transcriptional activities provide important insights into the disease mechanisms. The discovered important mRNAs, miRNAs, lipids and metabolites may serve as candidate biomarkers for future occupational and medical surveillance studies. To the best of our knowledge, this is the first study systematically integrating in vivo, transcriptomics, metabolomics, and lipidomics to assess PEPs inhalation exposure-induced disease risks using a rat model.
Collapse
Affiliation(s)
- Nancy Lan Guo
- West Virginia University Cancer Institute/School of Public Health, West Virginia University, Morgantown, WV 26506, USA;
| | - Tuang Yeow Poh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (T.Y.P.); (S.H.C.); (S.S.); (D.C.C.)
| | - Sandra Pirela
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T. H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA; (S.P.); (K.W.N.); (P.D.)
| | - Mariana T. Farcas
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA; (M.T.F.); (Y.Q.)
| | - Sanjay H. Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (T.Y.P.); (S.H.C.); (S.S.); (D.C.C.)
| | - Wai Kin Tham
- Singapore Phenome Centre, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore; (W.K.T.); (S.S.A.)
| | - Sunil S. Adav
- Singapore Phenome Centre, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore; (W.K.T.); (S.S.A.)
| | - Qing Ye
- West Virginia University Cancer Institute/School of Public Health, West Virginia University, Morgantown, WV 26506, USA;
| | - Yongyue Wei
- Key Lab for Modern Toxicology, Department of Epidemiology and Biostatistics and Ministry of Education (MOE), School of Public Health, Nanjing Medical University, Nanjing 210029, China;
| | - Sipeng Shen
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (T.Y.P.); (S.H.C.); (S.S.); (D.C.C.)
| | - David C. Christiani
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (T.Y.P.); (S.H.C.); (S.S.); (D.C.C.)
| | - Kee Woei Ng
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T. H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA; (S.P.); (K.W.N.); (P.D.)
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Environmental Chemistry and Materials Centre, Nanyang Environment & Water Research Institute, Singapore 637141, Singapore
| | - Treye Thomas
- Office of Hazard Identification and Reduction, U.S. Consumer Product Safety Commission, Rockville, MD 20814, USA;
| | - Yong Qian
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA; (M.T.F.); (Y.Q.)
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T. H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA; (S.P.); (K.W.N.); (P.D.)
| |
Collapse
|
8
|
Kan H, Pan D, Castranova V. Engineered nanoparticle exposure and cardiovascular effects: the role of a neuronal-regulated pathway. Inhal Toxicol 2019; 30:335-342. [PMID: 30604639 DOI: 10.1080/08958378.2018.1535634] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Human and animal studies have confirmed that inhalation of particles from ambient air or occupational settings not only causes pathophysiological changes in the respiratory system, but causes cardiovascular effects as well. At an equal mass lung burden, nanoparticles are more potent in causing systemic microvascular dysfunction than fine particles of similar composition. Thus, accumulated evidence from animal studies has led to heightened concerns about the potential short- and long-term deleterious effects of inhalation of engineered nanoparticles on the cardiovascular system. This review highlights the new observations from animal studies, which document the adverse effects of pulmonary exposure to engineered nanoparticles on the cardiovascular system and elucidate the potential mechanisms involved in regulation of cardiovascular function, in particular, how the neuronal system plays a role and reacts to pulmonary nanoparticle exposure based on both in vivo and in vitro studies. In addition, this review also discusses the possible influence of altered autonomic nervous activity on preexisting cardiovascular conditions. Whether engineered nanoparticle exposure serves as a risk factor in the development of cardiovascular diseases warrants further investigation.
Collapse
Affiliation(s)
- H Kan
- a Health Effects Laboratory Division , National Institute for Occupational Safety and Health , Morgantown , WV , USA.,b Department of Pharmaceutical Sciences , West Virginia University , Morgantown , WV , USA
| | - D Pan
- a Health Effects Laboratory Division , National Institute for Occupational Safety and Health , Morgantown , WV , USA
| | - V Castranova
- b Department of Pharmaceutical Sciences , West Virginia University , Morgantown , WV , USA
| |
Collapse
|
9
|
Zheng W, McKinney W, Kashon ML, Pan D, Castranova V, Kan H. The effects of inhaled multi-walled carbon nanotubes on blood pressure and cardiac function. NANOSCALE RESEARCH LETTERS 2018; 13:189. [PMID: 29971611 PMCID: PMC6029995 DOI: 10.1186/s11671-018-2603-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/14/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Heart rate variability (HRV) as a marker reflects the activity of the autonomic nervous system. The prognostic significance of HRV for cardiovascular disease has been reported in clinical and epidemiological studies. Our laboratory has reported alterations in rat heart rate variability (HRV) due to increasing activity of both sympathetic and parasympathetic nervous system after pulmonary exposure to multi-walled carbon nanotubes (MWCNTs). This suggests that pulmonary inhalation of engineered nanoparticles (ENs) may lead to functional changes in the cardiovascular system. The present study further investigated the effects of inhaled MWCNTs on the cardiovascular system and evaluated the correlation between the alterations in HRV and changes in cardiovascular function. METHODS Male Sprague-Dawley rats were pre-implanted with a telemetry device and exposed by inhalation to MWCNTs for 5 h at a concentration of 5 mg/m3. The electrocardiogram (EKG) and blood pressure were recorded in real time by the telemetry system at pre-exposure, during exposure, and 1 and 7 days post-exposure. In vivo cardiac functional performance in response to dobutamine was determined by a computerized pressure-volume loop system. RESULTS Inhalation of MWCNTs significantly increased both systolic and diastolic blood pressure and decreased heart rate in awake freely moving rat. Additionally, inhalation of MWCNTs also reduced cardiac stroke work, stroke volume, and output in response to dobutamine in anesthetized rats. CONCLUSIONS Inhalation of MWCNTs altered cardiovascular performance, which was associated with MWCNT exposure-induced alterations in the sympathetic and parasympathetic nervous system. These findings suggest the need to further investigate the cardiovascular effects of inhaled MWCNTs.
Collapse
Affiliation(s)
- Wen Zheng
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 USA
| | - Walter McKinney
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 USA
| | - Michael L. Kashon
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 USA
| | - Daniel Pan
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 USA
| | - Vincent Castranova
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506 USA
| | - Hong Kan
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 USA
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506 USA
- Health Effects Laboratory Division, Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV 26505 USA
| |
Collapse
|
10
|
Argacha JF, Bourdrel T, van de Borne P. Ecology of the cardiovascular system: A focus on air-related environmental factors. Trends Cardiovasc Med 2018; 28:112-126. [DOI: 10.1016/j.tcm.2017.07.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 07/09/2017] [Accepted: 07/29/2017] [Indexed: 12/18/2022]
|
11
|
Jain A, Ranjan S, Dasgupta N, Ramalingam C. Nanomaterials in food and agriculture: An overview on their safety concerns and regulatory issues. Crit Rev Food Sci Nutr 2017; 58:297-317. [DOI: 10.1080/10408398.2016.1160363] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Aditi Jain
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India
| | - Shivendu Ranjan
- Nano-Food Research Group, Instrumental and Food Analysis Laboratory, Division of Industrial Biotechnology, School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, India
- Research Wing, Veer Kunwar Singh Memorial Trust, Chapra, Bihar, India
- Xpert Arena Technological Services Pvt. Ltd., Chapra, Bihar, India
| | - Nandita Dasgupta
- Nano-Food Research Group, Instrumental and Food Analysis Laboratory, Division of Industrial Biotechnology, School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, India
| | - Chidambaram Ramalingam
- Nano-Food Research Group, Instrumental and Food Analysis Laboratory, Division of Industrial Biotechnology, School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, India
| |
Collapse
|
12
|
Cheah HY, Kiew LV, Lee HB, Japundžić-Žigon N, Vicent MJ, Hoe SZ, Chung LY. Preclinical safety assessments of nano-sized constructs on cardiovascular system toxicity: A case for telemetry. J Appl Toxicol 2017; 37:1268-1285. [DOI: 10.1002/jat.3437] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/14/2016] [Accepted: 12/14/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Hoay Yan Cheah
- Department of Pharmacology, Faculty of Medicine; University of Malaya; 50603 Kuala Lumpur Malaysia
| | - Lik Voon Kiew
- Department of Pharmacology, Faculty of Medicine; University of Malaya; 50603 Kuala Lumpur Malaysia
| | - Hong Boon Lee
- Department of Pharmacy, Faculty of Medicine; University of Malaya; 50603 Kuala Lumpur Malaysia
| | - Nina Japundžić-Žigon
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, School of Medicine; University of Belgrade; Republic of Serbia
| | - Marίa J. Vicent
- Polymer Therapeutics Lab; Centro de Investigación Príncipe Felipe; Av. Eduardo Primo Yúfera 3 E-46012 Valencia Spain
| | - See Ziau Hoe
- Department of Physiology, Faculty of Medicine; University of Malaya; 50603 Kuala Lumpur Malaysia
| | - Lip Yong Chung
- Department of Pharmacy, Faculty of Medicine; University of Malaya; 50603 Kuala Lumpur Malaysia
| |
Collapse
|
13
|
Valentini F, Ciambella E, Boaretto A, Rizzitelli G, Carbone M, Conte V, Cataldo F, Russo V, Casari CS, Chillura-Martino DF, Caponetti E, Bonchio M, Giacalone F, Syrgiannis Z, Prato M. Sensor Properties of Pristine and Functionalized Carbon Nanohorns. ELECTROANAL 2016. [DOI: 10.1002/elan.201501171] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Federica Valentini
- Chemistry Department; Tor Vergata University; via della Ricerca Scientifica 1 00133 Roma
- Graphene Nanotechnology Hub; Parco Scientifico Edificio PP1 Via della Ricerca Scientifica, 1 00133- Roma
| | - Elena Ciambella
- Chemistry Department; Tor Vergata University; via della Ricerca Scientifica 1 00133 Roma
| | - Aldrei Boaretto
- Chemistry Department; Tor Vergata University; via della Ricerca Scientifica 1 00133 Roma
| | - Giuseppe Rizzitelli
- Graphene Nanotechnology Hub; Parco Scientifico Edificio PP1 Via della Ricerca Scientifica, 1 00133- Roma
| | - Marilena Carbone
- Chemistry Department; Tor Vergata University; via della Ricerca Scientifica 1 00133 Roma
| | - Valeria Conte
- Chemistry Department; Tor Vergata University; via della Ricerca Scientifica 1 00133 Roma
| | - Franco Cataldo
- Chemistry Department; Tor Vergata University; via della Ricerca Scientifica 1 00133 Roma
- Actinium Chemical Research srl; Via Casilina 1626A 00133 Rome
| | - Valeria Russo
- Dep. of Energy and NEMAS for NanoEngin. Materials and Surface, Politecnico di Milano; Via Ponzio 34/3 I-20133
| | - Carlo Spartaco Casari
- Dep. of Energy and NEMAS for NanoEngin. Materials and Surface, Politecnico di Milano; Via Ponzio 34/3 I-20133
| | | | - Eugenio Caponetti
- STEBICEF; Università degli Studi di Palermo; Via delle Scienze s/n Parco d'Orleans 90128
- Centro Grandi Apparecchiature-UniNetLab; Università degli Studi di Palermo; Via F. Marini 14 90128
| | - Marcella Bonchio
- ITM-CNR, Dipartimento di Scienze Chimiche; Università di Padova; via Marzolo 1 I-35131
| | - Francesco Giacalone
- STEBICEF; Università degli Studi di Palermo; Via delle Scienze s/n Parco d'Orleans 90128
| | - Zois Syrgiannis
- Dipartimento Scienze Chimiche e Farmaceutiche; Piazzale Europa 1 34127 Trieste
| | - Maurizio Prato
- Dipartimento Scienze Chimiche e Farmaceutiche; Piazzale Europa 1 34127 Trieste
| |
Collapse
|
14
|
Yu X, Hong F, Zhang YQ. Bio-effect of nanoparticles in the cardiovascular system. J Biomed Mater Res A 2016; 104:2881-97. [PMID: 27301683 DOI: 10.1002/jbm.a.35804] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/07/2016] [Indexed: 12/21/2022]
Abstract
Nanoparticles (NPs; < 100 nm) are increasingly being applied in various fields due to their unique physicochemical properties. The increase in human exposure to NPs has raised concerns regarding their health and safety profiles. The potential correlation between NP exposure and several cardiovascular (CV) events has been demonstrated. The aim of this review is to provide a comprehensive evaluation of the current knowledge regarding the bio-toxic impacts of titanium oxide, silver, silica, carbon black, carbon nanotube, and zinc oxide NPs exposure on the CV system in terms of in vivo and in vitro experiments, which is not fully understood presently. Moreover, the potential toxic mechanisms of NPs in the CV system that are still being questioned are elaborately discussed, and the underlying capacity of NPs used in medicine for CV events are summarized. It will be an important instrument to extrapolate relevant data for human CV risk evaluation and management. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2881-2897, 2016.
Collapse
Affiliation(s)
- Xiaohong Yu
- Department of Applied Biology, School of Basic Medical and Biological Sciences, Soochow University, RM702-2303, Renai Road No. 199, Dushuhu Higher Edu. Town, Suzhou, 215123, People's Republic of China
| | - Fashui Hong
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, 223300, China. .,Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, 223300, China.
| | - Yu-Qing Zhang
- Department of Applied Biology, School of Basic Medical and Biological Sciences, Soochow University, RM702-2303, Renai Road No. 199, Dushuhu Higher Edu. Town, Suzhou, 215123, People's Republic of China
| |
Collapse
|
15
|
Zheng W, McKinney W, Kashon M, Salmen R, Castranova V, Kan H. The influence of inhaled multi-walled carbon nanotubes on the autonomic nervous system. Part Fibre Toxicol 2016; 13:8. [PMID: 26864021 PMCID: PMC4750189 DOI: 10.1186/s12989-016-0119-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/02/2016] [Indexed: 11/10/2022] Open
Abstract
Background Heart rate and cardiovascular function are regulated by the autonomic nervous system. Heart rate variability (HRV) as a marker reflects the activity of autonomic nervous system. The prognostic significance of HRV in cardiovascular disease has been reported in clinical and epidemiological studies. The present study focused on the influence of inhaled multi-walled carbon nanotubes (MWCNTs) on autonomic nervous system by HRV analysis. Methods Male Sprague–Dawley rats were pre-implanted with a telemetry device and kept in the individual cages for recovery. At week four after device implantation, rats were exposed to MWCNTs for 5 h at a concentration of 5 mg/m3. The real-time EKGs were recorded by a telemetry system at pre-exposure, during exposure, 1 day and 7 days post-exposure. HRV was measured by root mean square of successive differences (RMSSD); the standard deviation of inter-beat (RR) interval (SDNN); the percentage of successive RR interval differences greater than 5 ms (pNN5) and 10 ms (pNN10); low frequency (LF) and high frequency (HF). Results Exposure to MWCNTs increased the percentage of differences between adjacent R-R intervals over 10 ms (pNN10) (p < 0.01), RMSSD (p < 0.01), LF (p < 0.05) and HF (p < 0.01). Conclusions Inhalation of MWCNTs significantly alters the balance between sympathetic and parasympathetic nervous system. Whether such transient alterations in autonomic nervous performance would alter cardiovascular function and raise the risk of cardiovascular events in people with pre-existing cardiovascular conditions warrants further study.
Collapse
Affiliation(s)
- W Zheng
- Health Effects Laboratory Division, Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV, 26505, USA.
| | - W McKinney
- Health Effects Laboratory Division, Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV, 26505, USA.
| | - M Kashon
- Health Effects Laboratory Division, Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV, 26505, USA.
| | - R Salmen
- Health Effects Laboratory Division, Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV, 26505, USA.
| | - V Castranova
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV, 26505, USA.
| | - H Kan
- Health Effects Laboratory Division, Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV, 26505, USA. .,Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, 26505, USA.
| |
Collapse
|
16
|
Ema M, Gamo M, Honda K. A review of toxicity studies of single-walled carbon nanotubes in laboratory animals. Regul Toxicol Pharmacol 2016; 74:42-63. [DOI: 10.1016/j.yrtph.2015.11.015] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 11/19/2015] [Accepted: 11/20/2015] [Indexed: 12/26/2022]
|
17
|
Abstract
The body responds to environmental stressors by triggering autonomic reflexes in the pulmonary receptors, baroreceptors, and chemoreceptors to maintain homeostasis. Numerous studies have shown that exposure to various gases and airborne particles can alter the functional outcome of these reflexes, particularly with respect to the cardiovascular system. Modulation of autonomic neural input to the heart and vasculature following direct activation of sensory nerves in the respiratory system, elicitation of oxidative stress and inflammation, or through other mechanisms is one of the primary ways that exposure to air pollution affects normal cardiovascular function. Any homeostatic process that utilizes the autonomic nervous system to regulate organ function might be affected. Thus, air pollution and other inhaled environmental irritants have the potential to alter both local airway function and baro- and chemoreflex responses, which modulate autonomic control of blood pressure and detect concentrations of key gases in the body. While each of these reflex pathways causes distinct responses, the systems are heavily integrated and communicate through overlapping regions of the brainstem to cause global effects. This short review summarizes the function of major pulmonary sensory receptors, baroreceptors, and carotid body chemoreceptors and discusses the impacts of air pollution exposure on these systems.
Collapse
|
18
|
Stapleton PA, Abukabda AB, Hardy SL, Nurkiewicz TR. Xenobiotic pulmonary exposure and systemic cardiovascular response via neurological links. Am J Physiol Heart Circ Physiol 2015; 309:H1609-20. [PMID: 26386111 DOI: 10.1152/ajpheart.00546.2015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/14/2015] [Indexed: 11/22/2022]
Abstract
The cardiovascular response to xenobiotic particle exposure has been increasingly studied over the last two decades, producing an extraordinary scope and depth of research findings. With the flourishing of nanotechnology, the term "xenobiotic particles" has expanded to encompass not only air pollution particulate matter (PM) but also anthropogenic particles, such as engineered nanomaterials (ENMs). Historically, the majority of research in these fields has focused on pulmonary exposure and the adverse physiological effects associated with a host inflammatory response or direct particle-tissue interactions. Because these hypotheses can neither account entirely for the deleterious cardiovascular effects of xenobiotic particle exposure nor their time course, the case for substantial neurological involvement is apparent. Indeed, considerable evidence suggests that not only is neural involvement a significant contributor but also a reality that needs to be investigated more thoroughly when assessing xenobiotic particle toxicities. Therefore, the scope of this review is several-fold. First, we provide a brief overview of the major anatomical components of the central and peripheral nervous systems, giving consideration to the potential biologic targets affected by inhaled particles. Second, the autonomic arcs and mechanisms that may be involved are reviewed. Third, the cardiovascular outcomes following neurological responses are discussed. Lastly, unique problems, future risks, and hurdles associated with xenobiotic particle exposure are discussed. A better understanding of these neural issues may facilitate research that in conjunction with existing research, will ultimately prevent the untoward cardiovascular outcomes associated with PM exposures and/or identify safe ENMs for the advancement of human health.
Collapse
Affiliation(s)
- Phoebe A Stapleton
- Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, West Virginia; and Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Alaeddin B Abukabda
- Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, West Virginia; and Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Steven L Hardy
- Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, West Virginia; and
| | - Timothy R Nurkiewicz
- Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, West Virginia; and Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia
| |
Collapse
|
19
|
Oberdörster G, Castranova V, Asgharian B, Sayre P. Inhalation Exposure to Carbon Nanotubes (CNT) and Carbon Nanofibers (CNF): Methodology and Dosimetry. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2015; 18:121-212. [PMID: 26361791 PMCID: PMC4706753 DOI: 10.1080/10937404.2015.1051611] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Carbon nanotubes (CNT) and nanofibers (CNF) are used increasingly in a broad array of commercial products. Given current understandings, the most significant life-cycle exposures to CNT/CNF occur from inhalation when they become airborne at different stages of their life cycle, including workplace, use, and disposal. Increasing awareness of the importance of physicochemical properties as determinants of toxicity of CNT/CNF and existing difficulties in interpreting results of mostly acute rodent inhalation studies to date necessitate a reexamination of standardized inhalation testing guidelines. The current literature on pulmonary exposure to CNT/CNF and associated effects is summarized; recommendations and conclusions are provided that address test guideline modifications for rodent inhalation studies that will improve dosimetric extrapolation modeling for hazard and risk characterization based on the analysis of exposure-dose-response relationships. Several physicochemical parameters for CNT/CNF, including shape, state of agglomeration/aggregation, surface properties, impurities, and density, influence toxicity. This requires an evaluation of the correlation between structure and pulmonary responses. Inhalation, using whole-body exposures of rodents, is recommended for acute to chronic pulmonary exposure studies. Dry powder generator methods for producing CNT/CNF aerosols are preferred, and specific instrumentation to measure mass, particle size and number distribution, and morphology in the exposure chambers are identified. Methods are discussed for establishing experimental exposure concentrations that correlate with realistic human exposures, such that unrealistically high experimental concentrations need to be identified that induce effects under mechanisms that are not relevant for workplace exposures. Recommendations for anchoring data to results seen for positive and negative benchmark materials are included, as well as periods for postexposure observation. A minimum data set of specific bronchoalveolar lavage parameters is recommended. Retained lung burden data need to be gathered such that exposure-dose-response correlations may be analyzed and potency comparisons between materials and mammalian species are obtained considering dose metric parameters for interpretation of results. Finally, a list of research needs is presented to fill data gaps for further improving design, analysis, and interpretation and extrapolation of results of rodent inhalation studies to refine meaningful risk assessments for humans.
Collapse
Affiliation(s)
- Günter Oberdörster
- Department of Environmental Medicine, University of Rochester, Rochester, New York, USA
| | - Vincent Castranova
- Formerly with the National Institute for Occupational Safety and Health, West Virginia University School of Pharmacy, Morgantown, West Virginia, USA
| | | | - Phil Sayre
- Formerly with the U.S. Environmental Protection Agency, Washington, DC, USA
| |
Collapse
|
20
|
Abstract
Carbon nanotubes (CNTs) are an important class of nanomaterials, which have numerous novel properties that make them useful in technology and industry. Generally, there are two types of CNTs: single-walled nanotubes (SWNTs) and multi-walled nanotubes. SWNTs, in particular, possess unique electrical, mechanical, and thermal properties, allowing for a wide range of applications in various fields, including the electronic, computer, aerospace, and biomedical industries. However, the use of SWNTs has come under scrutiny, not only due to their peculiar nanotoxicological profile, but also due to the forecasted increase in SWNT production in the near future. As such, the risk of human exposure is likely to be increased substantially. Yet, our understanding of the toxicological risk of SWNTs in human biology remains limited. This review seeks to examine representative data on the nanotoxicity of SWNTs by first considering how SWNTs are absorbed, distributed, accumulated and excreted in a biological system, and how SWNTs induce organ-specific toxicity in the body. The contradictory findings of numerous studies with regards to the potential hazards of SWNT exposure are discussed in this review. The possible mechanisms and molecular pathways associated with SWNT nanotoxicity in target organs and specific cell types are presented. We hope that this review will stimulate further research into the fundamental aspects of CNTs, especially the biological interactions which arise due to the unique intrinsic characteristics of CNTs.
Collapse
|
21
|
Møller P, Christophersen DV, Jensen DM, Kermanizadeh A, Roursgaard M, Jacobsen NR, Hemmingsen JG, Danielsen PH, Cao Y, Jantzen K, Klingberg H, Hersoug LG, Loft S. Role of oxidative stress in carbon nanotube-generated health effects. Arch Toxicol 2014; 88:1939-64. [DOI: 10.1007/s00204-014-1356-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 08/28/2014] [Indexed: 01/19/2023]
|
22
|
Shvedova AA, Kisin ER, Murray AR, Mouithys-Mickalad A, Stadler K, Mason RP, Kadiiska M. ESR evidence for in vivo formation of free radicals in tissue of mice exposed to single-walled carbon nanotubes. Free Radic Biol Med 2014; 73:154-65. [PMID: 24863695 DOI: 10.1016/j.freeradbiomed.2014.05.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 04/28/2014] [Accepted: 05/16/2014] [Indexed: 11/28/2022]
Abstract
Nanomaterials are being utilized in an increasing variety of manufactured goods. Because of their unique physicochemical, electrical, mechanical, and thermal properties, single-walled carbon nanotubes (SWCNTs) have found numerous applications in the electronics, aerospace, chemical, polymer, and pharmaceutical industries. Previously, we have reported that pharyngeal exposure of C57BL/6 mice to SWCNTs caused dose-dependent formation of granulomatous bronchial interstitial pneumonia, fibrosis, oxidative stress, acute inflammatory/cytokine responses, and a decrease in pulmonary function. In the current study, we used electron spin resonance (ESR) to directly assess whether exposure to respirable SWCNTs caused formation of free radicals in the lungs and in two distant organs, the heart and liver. Here we report that exposure to partially purified SWCNTs (HiPco technique, Carbon Nanotechnologies, Inc., Houston, TX, USA) resulted in the augmentation of oxidative stress as evidenced by ESR detection of α-(4-pyridyl-1-oxide)-N-tert-butylnitrone spin-trapped carbon-centered lipid-derived radicals recorded shortly after the treatment. This was accompanied by a significant depletion of antioxidants and elevated biomarkers of inflammation presented by recruitment of inflammatory cells and an increase in proinflammatory cytokines in the lungs, as well as development of multifocal granulomatous pneumonia, interstitial fibrosis, and suppressed pulmonary function. Moreover, pulmonary exposure to SWCNTs also caused the formation of carbon-centered lipid-derived radicals in the heart and liver at later time points (day 7 postexposure). Additionally, SWCNTs induced a significant accumulation of oxidatively modified proteins, increase in lipid peroxidation products, depletion of antioxidants, and inflammatory response in both the heart and the liver. Furthermore, the iron chelator deferoxamine noticeably reduced lung inflammation and oxidative stress, indicating an important role for metal-catalyzed species in lung injury caused by SWCNTs. Overall, we provide direct evidence that lipid-derived free radicals are a critical contributor to tissue damage induced by SWCNTs not only in the lungs, but also in distant organs.
Collapse
Affiliation(s)
- A A Shvedova
- Pathology and Physiology Research Branch, HELD, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA; Physiology and Pharmacology, West Virginia University, Morgantown, WV 26506, USA.
| | - E R Kisin
- Pathology and Physiology Research Branch, HELD, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - A R Murray
- Pathology and Physiology Research Branch, HELD, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA; Physiology and Pharmacology, West Virginia University, Morgantown, WV 26506, USA
| | | | - K Stadler
- National Institute of Environmental Health Science, Research Triangle Park, NC 27709, USA
| | - R P Mason
- National Institute of Environmental Health Science, Research Triangle Park, NC 27709, USA
| | - M Kadiiska
- National Institute of Environmental Health Science, Research Triangle Park, NC 27709, USA
| |
Collapse
|
23
|
Kan H, Wu Z, Lin YC, Chen TH, Cumpston JL, Kashon ML, Leonard S, Munson AE, Castranova V. The role of nodose ganglia in the regulation of cardiovascular function following pulmonary exposure to ultrafine titanium dioxide. Nanotoxicology 2013; 8:447-54. [PMID: 23593933 DOI: 10.3109/17435390.2013.796536] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The inhalation of nanosized air pollutant particles is a recognised risk factor for cardiovascular disease; however, the link between occupational exposure to engineered nanoparticles and adverse cardiovascular events remains unclear. In the present study, the authors demonstrated that pulmonary exposure of rats to ultrafine titanium dioxide (UFTiO2) significantly increased heart rate and depressed diastolic function of the heart in response to isoproterenol. Moreover, pulmonary inhalation of UFTiO2 elevated mean and diastolic blood pressure in response to norepinephrine. Pretreatment of the rats ip with the transient receptor potential (TRP) channel blocker ruthenium red inhibited substance P synthesis in nodose ganglia and associated functional and biological changes in the cardiovascular system. In conclusion, the effects of pulmonary inhalation of UFTiO2 on cardiovascular function are most likely triggered by a lung-nodose ganglia-regulated pathway via the activation of TRP channels in the lung.
Collapse
Affiliation(s)
- Hong Kan
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, PPRB , Morgantown, WV , USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Castranova V, Schulte PA, Zumwalde RD. Occupational nanosafety considerations for carbon nanotubes and carbon nanofibers. Acc Chem Res 2013; 46:642-9. [PMID: 23210709 PMCID: PMC4690205 DOI: 10.1021/ar300004a] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Carbon nanotubes (CNTs) are carbon atoms arranged in a crystalline graphene lattice with a tubular morphology. CNTs exhibit high tensile strength, possess unique electrical properties, are durable, and can be functionalized. These properties allow applications as structural materials, in electronics, as heating elements, in batteries, in the production of stain-resistant fabric, for bone grafting and dental implants, and for targeted drug delivery. Carbon nanofibers (CNFs) are strong, flexible fibers that are currently used to produce composite materials. Agitation can lead to aerosolized CNTs and CNFs, and peak airborne particulate concentrations are associated with workplace activities such as weighing, transferring, mixing, blending, or sonication. Most airborne CNTs or CNFs found in workplaces are loose agglomerates of micrometer diameter. However, due to their low density, they linger in workplace air for a considerable time, and a large fraction of these structures are respirable. In rat and mouse models, pulmonary exposure to single-walled carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs), or CNFs causes the following pulmonary reactions: acute pulmonary inflammation and injury, rapid and persistent formation of granulomatous lesions at deposition sites of large CNT agglomerates, and rapid and progressive alveolar interstitial fibrosis at deposition sites of more dispersed CNT or CNF structures. Pulmonary exposure to SWCNTs can induce oxidant stress in aortic tissue and increases plaque formation in an atherosclerotic mouse model. Pulmonary exposure to MWCNTs depresses the ability of coronary arterioles to respond to dilators. These cardiovascular effects may result from neurogenic signals from sensory irritant receptors in the lung. Pulmonary exposure to MWCNTs also upregulates mRNA for inflammatory mediators in selected brain regions, and pulmonary exposure to SWCNTs upregulates the baroreceptor reflex. In addition, pulmonary exposure to MWCNTs may induce levels of inflammatory mediators in the blood, which may affect the cardiovascular system. Intraperitoneal instillation of MWCNTs in mice has been associated with abdominal mesothelioma. MWCNTs deposited in the distal alveoli can migrate to the intrapleural space, and MWCNTs injected in the intrapleural space can cause lesions at the parietal pleura. However, further studies are required to determine whether pulmonary exposure to MWCNTs can induce pleural lesions or mesothelioma. In light of the anticipated growth in the production and use of CNTs and CNFs, worker exposure is possible. Because pulmonary exposure to CNTs and CNFs causes inflammatory and fibrotic reactions in the rodent lung, adverse health effects in workers represent a concern. NIOSH has conducted a risk assessment using available animal exposure-response data and is developing a recommended exposure limit for CNTs and CNFs. Evidence indicates that engineering controls and personal protective equipment can significantly decrease workplace exposure to CNTs and CNFs. Considering the available data on health risks, it appears prudent to develop prevention strategies to minimize workplace exposure. These strategies would include engineering controls (enclosure, exhaust ventilation), worker training, administrative controls, implementation of good handling practices, and the use of personal protective equipment (such as respirators) when necessary. NIOSH has published a document containing recommendations for the safe handling of nanomaterials.
Collapse
Affiliation(s)
- Vincent Castranova
- National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA.
| | | | | |
Collapse
|
25
|
Ruiz-Esparza GU, Flores-Arredondo JH, Segura-Ibarra V, Torre-Amione G, Ferrari M, Blanco E, Serda RE. The physiology of cardiovascular disease and innovative liposomal platforms for therapy. Int J Nanomedicine 2013; 8:629-40. [PMID: 23413209 PMCID: PMC3572823 DOI: 10.2147/ijn.s30599] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Heart disease remains the major cause of death in males and females, emphasizing the need for novel strategies to improve patient treatment and survival. A therapeutic approach, still in its infancy, is the development of site-specific drug-delivery systems. Nanoparticle-based delivery systems, such as liposomes, have evolved into robust platforms for site-specific delivery of therapeutics. In this review, the clinical impact of cardiovascular disease and the pathophysiology of different subsets of the disease are described. Potential pathological targets for therapy are introduced, and promising advances in nanotherapeutic cardiovascular applications involving liposomal platforms are presented.
Collapse
|
26
|
Abstract
Carbon nanotubes (CNTs) consist of a family of carbon built nanoparticles, whose biological effects depend on their physical characteristics and other constitutive chemicals (impurities and functions attached). CNTs are considered the twenty first century material due to their unique physicochemical characteristics and applicability to industrial product. The use of these materials steadily increases worldwide and toxic outcomes need to be studied for each nanomaterial in depth to prevent adverse effects to humans and the environment. Entrance into the body is physical, and usually few nanoparticles enter the body; however, once there, they are persistent due to their limited metabolisms, so their removal is slow, and chronic cumulative health effects are studied. Oxidative stress is the main mechanism of toxicity but size, agglomeration, chirality as well as impurities and functionalization are some of the structural and chemical characteristic contributing to the CNTs toxicity outcomes. Among the many toxicity pathways, interference with cytoskeleton and fibrous mechanisms, cell signaling, membrane perturbations and the production of cytokines, chemokines and inflammation are some of the effects resulting from exposure to CNTs. The aim of this review is to offer an up-to-date scope of the effects of CNTs on biological systems with attention to mechanisms of toxicity.
Collapse
Affiliation(s)
- Yury Rodriguez-Yañez
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | | | | |
Collapse
|
27
|
Iversen NK, Frische S, Thomsen K, Laustsen C, Pedersen M, Hansen PB, Bie P, Fresnais J, Berret JF, Baatrup E, Wang T. Superparamagnetic iron oxide polyacrylic acid coated γ-Fe2O3 nanoparticles do not affect kidney function but cause acute effect on the cardiovascular function in healthy mice. Toxicol Appl Pharmacol 2013; 266:276-88. [DOI: 10.1016/j.taap.2012.10.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 10/25/2012] [Accepted: 10/26/2012] [Indexed: 11/15/2022]
|
28
|
Thompson LC, Frasier CR, Sloan RC, Mann EE, Harrison BS, Brown JM, Brown DA, Wingard CJ. Pulmonary instillation of multi-walled carbon nanotubes promotes coronary vasoconstriction and exacerbates injury in isolated hearts. Nanotoxicology 2012; 8:38-49. [PMID: 23102262 DOI: 10.3109/17435390.2012.744858] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The growing use of multi-walled carbon nanotubes (MWCNTs) across industry has increased human exposures. We tested the hypothesis that pulmonary instillation of MWCNTs would exacerbate cardiac ischaemia/reperfusion (I/R) injury. One day following intratracheal instillation of 1, 10 or 100 μg MWCNT in Sprague-Dawley rats, we used a Langendorff isolated heart model to examine cardiac I/R injury. In the 100 μg MWCNT group we report increased premature ventricular contractions at baseline and increased myocardial infarction. This was associated with increased endothelin-1 (ET-1) release and depression of coronary flow during early reperfusion. We also tested if isolated coronary vascular responses were affected by MWCNT instillation and found trends for enhanced coronary tone, which were dependent on ET-1, cyclooxygenase, thromboxane and Rho-kinase. We concluded that instillation of MWCNTs promoted cardiac injury and depressed coronary flow by invoking vasoconstrictive mechanisms involving ET-1, cyclooxygenase, thromboxane and Rho-kinase.
Collapse
Affiliation(s)
- Leslie C Thompson
- Department of Physiology, Brody School of Medicine at East Carolina University , Greenville, NC , USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Iversen NK, Nielsen ARU, Wang T, Baatrup E. Intravascular infusion of PEGylated Au nanoparticles affects cardiovascular function in healthy mice. Hum Exp Toxicol 2012; 32:216-21. [DOI: 10.1177/0960327112462724] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- NK Iversen
- Zoophysiology, Department of Bioscience, Aarhus University, Denmark
- Interdisciplinary Nanoscience Center, Aarhus University, Denmark
| | - ARU Nielsen
- Zoophysiology, Department of Bioscience, Aarhus University, Denmark
| | - T Wang
- Zoophysiology, Department of Bioscience, Aarhus University, Denmark
| | - E Baatrup
- Zoophysiology, Department of Bioscience, Aarhus University, Denmark
- Interdisciplinary Nanoscience Center, Aarhus University, Denmark
| |
Collapse
|
30
|
Urankar RN, Lust RM, Mann E, Katwa P, Wang X, Podila R, Hilderbrand SC, Harrison BS, Chen P, Ke PC, Rao AM, Brown JM, Wingard CJ. Expansion of cardiac ischemia/reperfusion injury after instillation of three forms of multi-walled carbon nanotubes. Part Fibre Toxicol 2012; 9:38. [PMID: 23072542 PMCID: PMC3518151 DOI: 10.1186/1743-8977-9-38] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 10/10/2012] [Indexed: 12/25/2022] Open
Abstract
Background The exceptional physical-chemical properties of carbon nanotubes have lead to their use in diverse commercial and biomedical applications. However, their utilization has raised concerns about human exposure that may predispose individuals to adverse health risks. The present study investigated the susceptibility to cardiac ischemic injury following a single exposure to various forms of multi-walled carbon nanotubes (MWCNTs). It was hypothesized that oropharyngeal aspiration of MWCNTs exacerbates myocardial ischemia and reperfusion injury (I/R injury). Methods Oropharyngeal aspiration was performed on male C57BL/6J mice with a single amount of MWCNT (0.01 - 100 μg) suspended in 100 μL of a surfactant saline (SS) solution. Three forms of MWCNTs were used in this study: unmodified, commercial grade (C-grade), and functionalized forms that were modified either by acid treatment (carboxylated, COOH) or nitrogenation (N-doped) and a SS vehicle. The pulmonary inflammation, serum cytokine profile and cardiac ischemic/reperfusion (I/R) injury were assessed at 1, 7 and 28 days post-aspiration. Results Pulmonary response to MWCNT oropharyngeal aspiration assessed by bronchoalveolar lavage fluid (BALF) revealed modest increases in protein and inflammatory cell recruitment. Lung histology showed modest tissue inflammation as compared to the SS group. Serum levels of eotaxin were significantly elevated in the carboxylated MWCNT aspirated mice 1 day post exposure. Oropharyngeal aspiration of all three forms of MWCNTs resulted in a time and/or dose-dependent exacerbation of myocardial infarction. The severity of myocardial injury varied with the form of MWCNTs used. The N-doped MWCNT produced the greatest expansion of the infarct at any time point and required a log concentration lower to establish a no effect level. The expansion of the I/R injury remained significantly elevated at 28 days following aspiration of the COOH and N-doped forms, but not the C-grade as compared to SS. Conclusion Our results suggest that oropharyngeal aspiration of MWCNT promotes increased susceptibility of cardiac tissue to ischemia/reperfusion injury without a significant pulmonary inflammatory response. The cardiac injury effects were observed at low concentrations of MWCNTs and presence of MWCNTs may pose a significant risk to the cardiovascular system.
Collapse
Affiliation(s)
- Rakhee N Urankar
- Department of Physiology, Brody School of Medicine at East Carolina University, 600 Moye Blvd, Brody 6N98, Greenville, NC 27834, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Carbon nanostructured materials for applications in nano-medicine, cultural heritage, and electrochemical biosensors. Anal Bioanal Chem 2012; 405:451-65. [DOI: 10.1007/s00216-012-6351-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 06/28/2012] [Accepted: 08/13/2012] [Indexed: 10/27/2022]
|
32
|
Mann EE, Thompson LC, Shannahan JH, Wingard CJ. Changes in cardiopulmonary function induced by nanoparticles. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2012; 4:691-702. [PMID: 22915448 DOI: 10.1002/wnan.1194] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Nanoparticles (NP) are highly applicable in a variety of technological and biomedical fields because of their unique physicochemical properties. The increased development and utilization of NP has amplified human exposure and raised concerns regarding their potential to generate toxicity. The biological impacts of NP exposures have been shown to be dependent on aerodynamic size, chemical composition, and the route of exposure (oral, dermal, intravenous, and inhalation), while recent research has demonstrated the cardiovascular (CV) system as an important site of toxicity. Proposed mechanisms responsible for these effects include inflammation, oxidative stress, autonomic dysregulation, and direct interactions of NP with CV cells. Specifically, NP have been shown to impact vascular endothelial cell (EC) integrity, which may disrupt the dynamic endothelial regulation of vascular tone, possibly altering systemic vascular resistance and impairing the appropriate distribution of blood flow throughout the circulation. Cardiac consequences of NP-induced toxicity include disruption of heart rate and electrical activity via catecholamine release, increased susceptibility to ischemia/reperfusion injury, and modified baroreceptor control of cardiac function. These and other CV outcomes likely contribute to adverse health effects promoting myocardial infarction, hypertension, cardiac arrhythmias, and thrombosis. This review will assess the current knowledge regarding the principle sites of CV toxicity following NP exposure. Furthermore, we will propose mechanisms contributing to altered CV function and hypothesize possible outcomes resulting in decrements in human health.
Collapse
Affiliation(s)
- Erin E Mann
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | | | | | | |
Collapse
|
33
|
Shannahan JH, Kodavanti UP, Brown JM. Manufactured and airborne nanoparticle cardiopulmonary interactions: a review of mechanisms and the possible contribution of mast cells. Inhal Toxicol 2012; 24:320-39. [PMID: 22486349 DOI: 10.3109/08958378.2012.668229] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Human inhalation exposures to manufactured nanoparticles (NP) and airborne ultrafine particles (UFP) continues to increase in both occupational and environmental settings. UFP exposures have been associated with increased cardiovascular mortality and morbidity, while ongoing research supports adverse systemic and cardiovascular health effects after NP exposures. Adverse cardiovascular health effects include alterations in heart rate variability, hypertension, thrombosis, arrhythmias, increased myocardial infarction, and atherosclerosis. Exactly how UFP and NP cause these negative cardiovascular effects is poorly understood, however a variety of mediators and mechanisms have been proposed. UFP and NP, as well as their soluble components, are known to systemically translocate from the lung. Translocated particles could mediate cardiovascular toxicity through direct interactions with the vasculature, blood, and heart. Recent study suggests that sensory nerve stimulation within the lung may also contribute to UFP- and NP-induced acute cardiovascular alterations. Activation of sensory nerves, such as C-fibers, within the lung may result in altered cardiac rhythm and function. Lastly, release of pulmonary-derived mediators into systemic circulation has been proposed to facilitate cardiovascular effects. In general, these proposed pulmonary-derived mediators include proinflammatory cytokines, oxidatively modified macromolecules, vasoactive proteins, and prothrombotic factors. These pulmonary-derived mediators have been postulated to contribute to the subsequent prothrombotic, atherogenic, and inflammatory effects after exposure. This review will evaluate the potential contribution of individual mediators and mechanisms in facilitating cardiopulmonary toxicity following inhalation of UFP and NP. Lastly, we will appraise the literature and propose a hypothesis regarding the possible role of mast cells in contributing to these systemic effects.
Collapse
Affiliation(s)
- Jonathan H Shannahan
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | | | | |
Collapse
|
34
|
Stapleton PA, Minarchick VC, McCawley M, Knuckles TL, Nurkiewicz TR. Xenobiotic particle exposure and microvascular endpoints: a call to arms. Microcirculation 2012; 19:126-42. [PMID: 21951337 DOI: 10.1111/j.1549-8719.2011.00137.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Xenobiotic particles can be considered in two genres: air pollution particulate matter and engineered nanoparticles. Particle exposures can occur in the greater environment, the workplace, and our homes. The majority of research in this field has, justifiably, focused on pulmonary reactions and outcomes. More recent investigations indicate that cardiovascular effects are capable of correlating with established mortality and morbidity epidemiological data following particle exposures. While the preliminary and general cardiovascular toxicology has been defined, the mechanisms behind these effects, specifically within the microcirculation, are largely unexplored. Therefore, the purpose of this review is several fold: first, a historical background on toxicological aspects of particle research is presented. Second, essential definitions, terminology, and techniques that may be unfamiliar to the microvascular scientist will be discussed. Third, the most current concepts and hypotheses driving cardiovascular research in this field will be reviewed. Lastly, potential future directions for the microvascular scientist will be suggested. Collectively speaking, microvascular research in the particle exposure field represents far more than a "niche." The immediate demand for basic, translational, and clinical studies is high and diverse. Microvascular scientists at all career stages are strongly encouraged to expand their research interests to include investigations associated with particle exposures.
Collapse
|
35
|
Abstract
With the development of nanotechnology, a growing number of people are expected to be exposed to its products, the engineered nanomaterials (ENMs). Some physico-chemical properties of ENMs, linked to their size in the nanoscale (1-100 nm), make them potentially more reactive, and therefore raise concern about possible adverse effects in humans. In this article, I discuss human diseases which may be predicted after exposure to ENMs, and how their pathogenetic mechanisms may be linked to exposure; in this regard, special emphasis has been given to the triad of oxidative stress/inflammation/genotoxicity and to the interaction of ENMs/proteins in different biological compartments. The analysis of possible adverse effects has been made on an organ-by-organ basis, starting from the skin, respiratory system and gastrointestinal tract. These sites are in fact not only those exposed to the highest amounts of ENMs, but are also the portals of entry to internal organs for possible systemic effects. Although the list and the relevance of possible human disorders linked to ENM exposure are at least as impressive as that of their direct or indirect beneficial effects for human health, we must be clear that ENM-linked diseases belong to the realm of possible risk (i.e. cannot be excluded, but are unlikely), whereas ENMs with proven beneficial effects are on the market. Therefore, the mandatory awareness about possible adverse effects of ENMs should in no way be interpreted as a motivation to disregard the great opportunity represented by nanotechnology.
Collapse
|
36
|
Kan H, Wu Z, Young SH, Chen TH, Cumpston JL, Chen F, Kashon ML, Castranova V. Pulmonary exposure of rats to ultrafine titanium dioxide enhances cardiac protein phosphorylation and substance P synthesis in nodose ganglia. Nanotoxicology 2011; 6:736-45. [PMID: 21877901 DOI: 10.3109/17435390.2011.611915] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The inhalation of engineered nanoparticles stimulates the development of atherosclerosis and impairs vascular function. However, the cardiac effects of inhaled engineered nanoparticles are unknown. Here, we investigate the effects of ultrafine titanium dioxide (UFTiO(2)) on the heart, and we define the possible mechanisms underlying the measured effects. Pulmonary exposure of rats to UFTiO(2) increased the phosphorylation levels of p38 mitogen-activated protein kinase and cardiac troponin I, but not Akt, in the heart and substance P synthesis in nodose ganglia. Circulatory levels of pro-inflammatory cytokines, and blood cell counts and differentials were not significantly changed after pulmonary exposure. Separately, the incubation of cardiac myocytes isolated from naïve adult rat hearts in vitro with UFTiO(2) did not alter the phosphorylation status of the same cardiac proteins. In conclusion, the inhalation of UFTiO(2) enhanced the phosphorylation levels of cardiac proteins. Such responses are likely independent of systemic inflammation, but may involve a lung-neuron-regulated pathway.
Collapse
Affiliation(s)
- Hong Kan
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
van der Zande M, Junker R, Walboomers XF, Jansen JA. Carbon Nanotubes in Animal Models: A Systematic Review on Toxic Potential. TISSUE ENGINEERING PART B-REVIEWS 2011; 17:57-69. [DOI: 10.1089/ten.teb.2010.0472] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Meike van der Zande
- Department of Biomaterials, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Rüdiger Junker
- Department of Biomaterials, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - X. Frank Walboomers
- Department of Biomaterials, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - John A. Jansen
- Department of Biomaterials, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
38
|
Abstract
Nanoparticles are particles with lengths that range from 1 to 100 nm. They are increasingly being manufactured and used for commercial purpose because of their novel and unique physicochemical properties. Although nanotechnology-based products are generally thought to be at a pre-competitive stage, an increasing number of products and materials are becoming commercially available. Human exposure to nanoparticles is therefore inevitable as they become more widely used and, as a result, nanotoxicology research is now gaining attention. However, there are many uncertainties as to whether the unique properties of nanoparticles also pose occupational health risks. These uncertainties arise because of gaps in knowledge about the factors that are essential for predicting health risks such as routes of exposure, distribution, accumulation, excretion and dose-response relationship of the nanoparticles. In particular, uncertainty remains with regard to the nature of the dose-response curve at low level exposures below the toxic threshold. In fact, in the literature, some studies that investigated the biological effects of nanoparticles, observed a hormetic dose-response. However, currently available data regarding this topic are extremely limited and fragmentary. It therefore seems clear that future studies need to focus on this issue by studying the potential adverse health effects caused by low-level exposures to nanoparticles.
Collapse
Affiliation(s)
- Ivo Iavicoli
- Institute of Occupational Health, Catholic University of Sacred Heart, School of Medicine, Italy
| | | | | |
Collapse
|