1
|
Aditya, Neeraj, Bhatia J, Yadav AN. A comprehensive review on multifunctional bioactive properties of elm oyster mushroom Hypsizygus ulmarius (Bull.) Redhead (Agaricomycetes): Current research, challenges and future trends. Heliyon 2025; 11:e41418. [PMID: 39897838 PMCID: PMC11782987 DOI: 10.1016/j.heliyon.2024.e41418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 02/04/2025] Open
Abstract
Mushrooms have evolved as a nutritional powerhouse, harnessing a diverse spectrum of bioactive molecules to fortify human health. Hypsizygus ulmarius represents a pioneering species within the oyster mushrooms distinguished by its unique characteristics and potential abilities. It is characterized by its large fruiting bodies, which have a meaty flavor and excellent taste. Additionally, this mushroom has a high yield and biological efficiency. This mushroom also holds significant importance globally and is cultivated in China, Japan and other Asian nations due to its favorable growth conditions, exceptional nutritional value, and medicinal attributes. This review focuses on the nutrition and bioactive molecules present in this mushroom species and their further implications in medicine, agriculture, biotechnology for the development of new anti-bacterial agents and their potential industrial uses for human health. This review aims to provide more recent information on the above aspects. Hypsizygus ulmarius shows great potential as a valuable source of several nutrients and bioactive chemicals that may have therapeutic qualities. The immunomodulatory, anti-oxidant, anti-inflammatory and potential anti-cancer properties of this mushroom provide opportunities for further future research in the creation of beneficial functional foods, dietary supplements and pharmaceutical interventions to enhance human health.
Collapse
Affiliation(s)
- Aditya
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli-131028 (An Institute of National Importance of India, NIFTEM-K), Sonipat, Haryana, India
| | - Neeraj
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli-131028 (An Institute of National Importance of India, NIFTEM-K), Sonipat, Haryana, India
| | - J.N. Bhatia
- Department of Plant Pathology, Chaudhary Charan Singh Haryana Agricultural University, Hisar, 125004 (CCS HAU), Haryana, India
| | - Ajar Nath Yadav
- Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India
| |
Collapse
|
2
|
Li S, Dong X, Xu L, Wu Z. Nephroprotective Effects of Selenium Nanoparticles Against Sodium Arsenite-Induced Damages. Int J Nanomedicine 2023; 18:3157-3176. [PMID: 37333733 PMCID: PMC10276609 DOI: 10.2147/ijn.s413362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/25/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction The potential effects of selenium nanoparticles (SeNPs) administration on arsenic exposure-mediated nephrotoxicity by alleviating fibrosis, inflammation, oxidative stress-related damage, and apoptosis remains more detailed investigations. Methods After the synthesis of selenium nanoparticles (SeNPs) by sodium selenite (Na2SeO3) through a versatile and green procedure, the biosafety of SeNPs was assessed by assaying renal functions and inflammation in mice. Subsequently, nephroprotective effects of SeNPs against sodium arsenite (NaAsO2)-induced damages were confirmed by biochemical, molecular, and histopathological assays, including renal function, histological lesion, fibrosis, inflammation, oxidative stress-related damage, and apoptosis in mice renal tissues and renal tubular duct epithelial cells (HK2 cells). Results The excellent biocompatibility and safety of SeNPs prepared in this study were confirmed by the non-significant differences in the renal functions and inflammation levels in mice between the negative control (NC) and 1 mg/kg SeNPs groups (p>0.05). The results of biochemical, molecular, and histopathological assays confirmed that daily administration of 1 mg/kg SeNPs for 4 weeks not only ameliorated renal dysfunctions and injuries caused by NaAsO2 exposure but also inhibited the fibrosis, inflammation, oxidative stress-related damage, and apoptosis in the renal tissues of NaAsO2-exposed mice. In addition, altered viability, inflammation, oxidative stress-related damage, and apoptosis in the NaAsO2-exposed HK2 cells were effectively reversed after 100 μg/mL SeNPs supplementation. Conclusion Our findings authentically confirmed the biosafety and nephroprotective effects of SeNPs against NaAsO2 exposure-induced damages by alleviating inflammation, oxidative stress-related damage, and apoptosis.
Collapse
Affiliation(s)
- Shubin Li
- Department of Geriatric Medical Center, Inner Mongolia People’s Hospital, Hohhot, 010021, People’s Republic of China
| | - Xingna Dong
- Department of Geriatric Medical Center, Inner Mongolia People’s Hospital, Hohhot, 010021, People’s Republic of China
| | - Limeng Xu
- Department of Geriatric Medical Center, Inner Mongolia People’s Hospital, Hohhot, 010021, People’s Republic of China
| | - Zhenli Wu
- Department of Geriatric Medical Center, Inner Mongolia People’s Hospital, Hohhot, 010021, People’s Republic of China
| |
Collapse
|
3
|
Baliou S, Adamaki M, Ioannou P, Pappa A, Panayiotidis MI, Christodoulou I, Spandidos DA, Kyriakopoulos AM, Zoumpourlis V. Ameliorative effect of taurine against diabetes and renal-associated disorders (Review). MEDICINE INTERNATIONAL 2021; 1:3. [PMID: 36699147 PMCID: PMC9855276 DOI: 10.3892/mi.2021.3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/25/2021] [Indexed: 01/28/2023]
Abstract
To develop novel therapeutic methods for both diabetic and renal disorders, scientists had initially focused on elucidating the molecular mechanisms of taurine in established cell lines and mouse models. Although a large amount of data have been revealed, taurine has been confirmed to be the next step of novel promising therapeutic interventions against diabetic disorders. Taurine appears to ameliorate diabetes 1-related complications in various organs through its antioxidant, anti-inflammatory and anti-hormonal actions. In type 2 diabetes, taurine has been positively implicated in glucose homeostasis, exerting potent hypoglycemic, anti-obesity, hypotensive and hypolipidemic effects. Of particular interest is that taurine provides protection against renal dysfunction, including hypertension and proteinuria, specific glomerular and tubular disorders, acute and chronic renal conditions, and diabetic nephropathy. The ameliorative effects of taurine against renal disorders are based on its osmoregulatory properties, its association with signaling pathways and its association with the renin-angiotensin-aldosterone system (RAAS). Further clinical studies are required to ensure the importance of research findings.
Collapse
Affiliation(s)
- Stella Baliou
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Maria Adamaki
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Petros Ioannou
- Department of Internal Medicine and Infectious Diseases, University Hospital of Heraklion, 71110 Heraklion, Greece
| | - Aglaia Pappa
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Mihalis I. Panayiotidis
- Department of Cancer Genetics, Therapeutics and Ultrastructural Pathology, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus
- Cyprus School of Molecular Medicine, 2371 Nicosia, Cyprus
| | - Ioannis Christodoulou
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71409 Heraklion, Greece
| | | | - Vassilis Zoumpourlis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| |
Collapse
|
4
|
El-Maradny YA, El-Fakharany EM, Abu-Serie MM, Hashish MH, Selim HS. Lectins purified from medicinal and edible mushrooms: Insights into their antiviral activity against pathogenic viruses. Int J Biol Macromol 2021; 179:239-258. [PMID: 33676978 DOI: 10.1016/j.ijbiomac.2021.03.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/25/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023]
Abstract
For thousands of years, fungi have been a valuable and promising source of therapeutic agents for treatment of various diseases. Mushroom is a macrofungus which has been cultivated worldwide for its nutritional value and medicinal applications. Several bioactive molecules were extracted from mushroom such as polysaccharides, lectins and terpenoids. Lectins are carbohydrate-binding proteins with non-immunologic origin. Lectins were classified according to their structure, origin and sugar specificity. This protein has different binding specificity with surface glycan moiety which determines its activity and therapeutic applications. A wide range of medicinal activities such as antitumor, antiviral, antimicrobial, immunomodulatory and antidiabetic were reported from sugar-binding proteins. However, glycan-binding protein from mushroom is not well explored as antiviral agent. The discovery of novel antiviral agents is a public health emergency to overcome the current pandemic and be ready for the upcoming viral pandemics. The mechanism of action of lectin against viruses targets numerous steps in viral life cycle such as viral attachment, entry and replication. This review described the history, classification, purification techniques, structure-function relationship and different therapeutic applications of mushroom lectin. In addition, we focus on the antiviral activity, purification and physicochemical characteristics of some mushroom lectins.
Collapse
Affiliation(s)
- Yousra A El-Maradny
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria, Egypt; Microbiology Department, High Institute of Public Health, Alexandria University, Alexandria, Egypt
| | - Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria, Egypt.
| | - Marwa M Abu-Serie
- Department of Medical Biotechnology, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria, Egypt
| | - Mona H Hashish
- Microbiology Department, High Institute of Public Health, Alexandria University, Alexandria, Egypt
| | - Heba S Selim
- Microbiology Department, High Institute of Public Health, Alexandria University, Alexandria, Egypt
| |
Collapse
|
5
|
Singh RS, Walia AK, Kennedy JF. Mushroom lectins in biomedical research and development. Int J Biol Macromol 2020; 151:1340-1350. [DOI: 10.1016/j.ijbiomac.2019.10.180] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/19/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022]
|
6
|
Zheng Y, Qu H, Wang D, Li S, Zhang C, Piao F. Protection of Taurine Against Arsenic-Induced DNA Damage of Mice Kidneys. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 975 Pt 2:917-927. [PMID: 28849511 DOI: 10.1007/978-94-024-1079-2_73] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The purpose of this study was to explore the protective capacity of taurine on arsenic (As)-induced neurotoxicity. Thirty mice were used and ten rats in each group. We treated the As exposure group with 4 ppm As2O3 for 60 days by drinking water and the protective group with 4 ppm As2O3 and 150 mg/kg taurine. Drinking water was only given in the control group. Pathologic changes and DNA damage in the mice kidney were examined by HE staining, immunohistochemistry and comet assay. Abnormal morphological changes were found in the kidney of As exposed mouse. Moreover, 8-hydroxy-2-deoxyguanosine (8-OHdG) expression and comet number, tail moment, and tail length of comet were markedly elevated in the As intoxication mice. However, histopathological changes and low expression of 8-OHdG were shown in the protective group. Our results indicate that supplementation of taurine protects against the histopathologic changes and DNA damage of mouse kidneys in As exposure group.
Collapse
Affiliation(s)
- Yinghua Zheng
- Department of Nursing, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Hongxin Qu
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, Liaoning, China
| | - Dunjia Wang
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, Liaoning, China
| | - Shuangyue Li
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, Liaoning, China
| | - Cong Zhang
- Department of Nutrition and Food Safety, Dalian Medical University, Dalian, Liaoning, China
| | - Fengyuan Piao
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
7
|
Mleczek M, Niedzielski P, Siwulski M, Rzymski P, Gąsecka M, Goliński P, Kozak L, Kozubik T. Importance of low substrate arsenic content in mushroom cultivation and safety of final food product. Eur Food Res Technol 2015. [DOI: 10.1007/s00217-015-2545-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Peters BA, Liu X, Hall MN, Ilievski V, Slavkovich V, Siddique AB, Alam S, Islam T, Graziano JH, Gamble MV. Arsenic exposure, inflammation, and renal function in Bangladeshi adults: effect modification by plasma glutathione redox potential. Free Radic Biol Med 2015; 85:174-82. [PMID: 25916185 PMCID: PMC4679178 DOI: 10.1016/j.freeradbiomed.2015.04.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/20/2015] [Accepted: 04/16/2015] [Indexed: 12/11/2022]
Abstract
Exposure to arsenic (As) in drinking water is a widespread public health problem leading to increased risk for multiple outcomes such as cancer, cardiovascular disease, and possibly renal disease; potential mechanisms include inflammation and oxidative stress. We tested the hypothesis that As exposure is associated with increased inflammation and decreased estimated glomerular filtration rate (eGFR) and examined whether the effects of As were modified by plasma glutathione (GSH), glutathione disulfide (GSSG), or the reduction potential of the GSSG/2GSH pair (EhGSH). In a cross-sectional study of N = 374 Bangladeshi adults having a wide range of As exposure, we measured markers of inflammation (plasma C-reactive protein (CRP), α-1 acid glycoprotein (AGP)), renal function (eGFR), GSH, and GSSG. In covariate-adjusted models, a 10% increase in water As, urinary As adjusted for specific gravity (uAs), or blood As (bAs) was associated with a 0.74% (p = 0.01), 0.90% (p = 0.16), and 1.39% (p = 0.07) increase in CRP, respectively; there was no association with AGP. A 10% increase in uAs or bAs was associated with an average reduction in eGFR of 0.16 (p = 0.12) and 0.21 ml/min/1.73 m(2) (p = 0.08), respectively. In stratified analyses, the effect of As exposure on CRP was observed only in participants having EhGSH > median (uAs p(Wald) = 0.03; bAs p(Wald) = 0.05). This was primarily driven by stronger effects of As exposure on CRP in participants with lower plasma GSH. The effects of As exposure on eGFR were not modified significantly by EhGSH, GSH, or GSSG. These data suggest that participants having lower plasma GSH and a more oxidized plasma EhGSH are at increased risk for As-induced inflammation. Future studies should evaluate whether antioxidant treatment lowers plasma EhGSH and reduces risk for As-induced diseases.
Collapse
Affiliation(s)
- Brandilyn A Peters
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Xinhua Liu
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Megan N Hall
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Vesna Ilievski
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Vesna Slavkovich
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Abu B Siddique
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Shafiul Alam
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Tariqul Islam
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Joseph H Graziano
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Mary V Gamble
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
9
|
Abstract
Chronic kidney disease (CKD) is an important global health problem that affects 8-15% of the population according to epidemiological studies done in different countries. Essential to prevention is the knowledge of the environmental factors associated with this disease, and heavy metals such as lead and cadmium are clearly associated with kidney injury and CKD progression. Arsenic is one of the most abundant contaminants in water and soil, and many epidemiological studies have found an association between arsenic and type 2 diabetes mellitus, hypertension and cancer; however, there is a scarcity of epidemiological studies about its association with kidney disease, and the evidence linking urinary arsenic excretion with CKD, higher urinary excretion of low molecular proteins, albuminuria or other markers of renal in injury is still limited, and more studies are necessary to characterize the role of arsenic on renal injury and CKD progression. Global efforts to reduce arsenic exposure remain important and research is also needed to determine whether specific therapies are beneficial in susceptible populations.
Collapse
|
10
|
Creatinine, arsenic metabolism, and renal function in an arsenic-exposed population in Bangladesh. PLoS One 2014; 9:e113760. [PMID: 25438247 PMCID: PMC4249915 DOI: 10.1371/journal.pone.0113760] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 10/30/2014] [Indexed: 11/19/2022] Open
Abstract
Kidney disease is emerging as an arsenic (As)-linked disease outcome, however further evidence of this association is warranted. Our first objective for this paper was to examine the potential renal toxicity of As exposure in Bangladesh. Our second objective relates to examining whether the previously reported positive association between urinary creatinine (uCrn) and As methylation may be explained by renal function. We had hypothesized that these associations relate to supply and demand for s-adenosylmethionine, the methyl donor for both creatine synthesis and As methylation. Alternatively, renal function could influence both As and creatinine excretion, or the As metabolites may influence renal function, which in turn influences uCrn. We conducted a cross-sectional study (N = 478) of adults, composed of a sample recruited in 2001 and a sample recruited in 2003. We assessed renal function using plasma cystatin C, and calculated the estimated glomerular filtration rate (eGFR). Consistent with renal toxicity of As, log-uAs had a marginal inverse association with eGFR in the 2003 sample (b = -5.6, p = 0.07), however this association was not significant in the 2001 sample (b = -1.9, p = 0.24). Adjustment for eGFR did not alter the associations between uCrn and the %uAs metabolites, indicating that GFR does not explain these associations. Increased eGFR was associated with increased odds of having %uInAs >12.2% (2001: OR = 1.01, 95%CI (1.00,1.03); 2003: OR = 1.04, 95%CI (1.01,1.07)). In the 2003 sample only, there was a negative association between eGFR and %uDMA (b = -0.08, p = 0.02). These results may indicate differential effects of renal function on excretion of InAs and DMA. Alternatively, a certain methylation pattern, involving decreased %InAs and increased %DMA, may reduce renal function. Given that these studies were cross-sectional, we cannot distinguish between these two possibilities. Discrepancies between the samples may be due to the higher As exposure, poorer nutrition, and lower As methylation capacity in the 2003 sample.
Collapse
|
11
|
Abstract
Fungi are members of a large group of eukaryotic organisms that include yeasts and molds, as well as the most familiar member, mushrooms. Fungal lectins with unique specificity and structures have been discovered. In general, fungal lectins are classified into specific families based on their amino acid sequences and three-dimensional structures. In this chapter, we provide an overview of the approximately 80 types of mushroom and fungal lectins that have been isolated and studied to date. In particular, we have focused on ten fungal lectins (Agaricus bisporus, Agrocybe cylindracea, Aleuria aurantia, Aspergillus oryzae, Clitocybe nebularis, Marasmius oreades, Psathyrella velutina, Rhizopus stolonifer, Pholiota squarrosa, Polyporus squamosus), many of which are commercially available and their properties, sugar-binding specificities, structural grouping into families, and applications for biological research being described. The sialic acid-specific lectins (Agrocybe cylindracea and Polyporus squamosus) and fucose-specific lectins (Aleuria aurantia, Aspergillus oryzae, Rhizopus stolonifer, and Pholiota squarrosa) each showed potential for use in identifying sialic acid glycoconjugates and fucose glycoconjugates. Although not much is currently known about fungal lectins compared to animal and plant lectins, the knowledge accumulated thus far shows great promise for several applications in the fields of taxonomy, biomedicine, and molecular and cellular biology.
Collapse
Affiliation(s)
- Yuka Kobayashi
- J-Oil Mills Inc., 11, Kagetoricho, Totsuka-ku, Yokohama, Kanagawa, 245-0064, Japan,
| | | |
Collapse
|
12
|
Rashid K, Sinha K, Sil PC. An update on oxidative stress-mediated organ pathophysiology. Food Chem Toxicol 2013; 62:584-600. [PMID: 24084033 DOI: 10.1016/j.fct.2013.09.026] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 08/29/2013] [Accepted: 09/19/2013] [Indexed: 12/29/2022]
Abstract
Exposure to environmental pollutants and drugs can result in pathophysiological situations in the body. Research in this area is essential as the knowledge on cellular survival and death would help in designing effective therapeutic strategies that are needed for the maintenance of the normal physiological functions of the body. In this regard, naturally occurring bio-molecules can be considered as potential therapeutic targets as they are normally available in commonly consumed foodstuffs and are thought to have minimum side effects. This review article describes the detailed mechanisms of oxidative stress-mediated organ pathophysiology and the ultimate fate of the cells either to survive or to undergo necrotic or apoptotic death. The mechanisms underlying the beneficial role of a number of naturally occurring bioactive molecules in oxidative stress-mediated organ pathophysiology have also been included in the review. The review provides useful information about the recent progress in understanding the mechanism(s) of various types of organ pathophysiology, the complex cross-talk between these pathways, as well as their modulation in stressed conditions. Additionally, it suggests possible therapeutic applications of a number of naturally occurring bioactive molecules in conditions involving oxidative stress.
Collapse
Affiliation(s)
- Kahkashan Rashid
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Calcutta 700054, West Bengal, India
| | | | | |
Collapse
|
13
|
Das J, Roy A, Sil PC. Mechanism of the protective action of taurine in toxin and drug induced organ pathophysiology and diabetic complications: a review. Food Funct 2013; 3:1251-64. [PMID: 22930035 DOI: 10.1039/c2fo30117b] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Taurine (2-aminoethanesulfonic acid), a conditionally essential amino acid, is found in large concentrations in all mammalian tissues and is particularly abundant in aquatic foods. Taurine exhibits membrane stabilizing, osmoregulatory and cytoprotective effects, antioxidative properties, regulates intracellular Ca(2+) concentration, modulates ion movement and neurotransmitters, reduce the levels of pro-inflammatory cytokines in various organs and controls blood pressure. Recently, emerging evidence from the literature shows the effectiveness of taurine as a protective agent against several environmental toxins and drug-induced multiple organ injuries as the outcome of hepatotoxicity, nephrotoxicity, neurotoxicity, testicular toxicity and cardiotoxicity in several animal models. Besides, taurine is also effective in combating diabetes and its associated complications, including cardiomyopathy, nephropathy, neuropathy, retinopathy and atherosclerosis. These beneficial effects appear to be due to the multiple actions of taurine on cellular functions. This review summarizes the mechanism of the prophylactic role of taurine against several environmental toxins and drug-induced organ pathophysiology and diabetes.
Collapse
Affiliation(s)
- Joydeep Das
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata-700054, India
| | | | | |
Collapse
|
14
|
Rana T, Bera AK, Bhattacharya D, Das S, Pan D, Das SK. Characterization of arsenic-induced cytotoxicity in liver with stress in erythrocytes and its reversibility with Pleurotus florida lectin. Toxicol Ind Health 2013; 31:108-22. [PMID: 23282998 DOI: 10.1177/0748233712468026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Arsenic is one of the most hazardous substances in the environment known to cause toxicity in multiple organs. Cell adhesion, morphological alterations, cell proliferation, terminal deoxyuridine triphosphate nick-end labeling (TUNEL) and caspase-3/CPP32 fluorometric protease assay were important biomarkers to assess apoptosis in cells. This study aimed to evaluate arsenic-induced apoptosis in the hepatocytes of rat and its protective efficacy with coadministration of ascorbic acid (AA) and Pleurotus florida lectin (PFL) individually. Results of the present study also showed that arsenic caused cytotoxicity by elevating morphological alterations, TUNEL-positive nuclei, caspase-3 activity and DNA damage and reducing cell adhesion and cell proliferation in a time-dependent manner. The apoptosis in hepatocytes was reverted to normal value after coadministration of mushroom lectin in arsenic-exposed rat. The study provided significant evidence that PFL has antiapoptotic property against arsenic-induced toxicity. The beneficial effect of PFL was proportional to its duration of exposure. Retard activities of superoxide dismutase and catalase, enhanced lipid peroxidation as well as protein carbonyl in erythrocytes caused by arsenic could also be maintained toward normalcy by supplementation of AA and PFL. These antioxidative effects were exhibited in a time-dependant manner. In rat, treatment with AA and PFL prevented alteration of plasma enzyme activities caused by arsenic. The results concluded that treatment with PFL has significant role in protecting animals from arsenic-induced erythrocytic damage. This finding might be of therapeutic benefit in people suffering from chronic exposure to arsenic from natural sources, a global problem especially relevant to millions of people on the Indian subcontinent.
Collapse
Affiliation(s)
- Tanmoy Rana
- Indian Veterinary Research Institute, Eastern Regional Station, Kolkata-37, West Bengal, India
| | - Asit Kumar Bera
- Indian Veterinary Research Institute, Eastern Regional Station, Kolkata-37, West Bengal, India National Research Centre on Yak, Dirang, West Kameng District, Arunachal Pradesh- 790101, India
| | - Debasis Bhattacharya
- Indian Veterinary Research Institute, Eastern Regional Station, Kolkata-37, West Bengal, India National Research Centre on Yak, Dirang, West Kameng District, Arunachal Pradesh- 790101, India
| | - Subhashree Das
- Indian Veterinary Research Institute, Eastern Regional Station, Kolkata-37, West Bengal, India
| | - Diganta Pan
- Indian Veterinary Research Institute, Eastern Regional Station, Kolkata-37, West Bengal, India
| | - Subrata Kumar Das
- Indian Veterinary Research Institute, Eastern Regional Station, Kolkata-37, West Bengal, India
| |
Collapse
|