1
|
Sumaira S, Vijayarathna S, Hemagirri M, Adnan M, Hassan MI, Patel M, Gupta R, Shanmugapriya, Chen Y, Gopinath SC, Kanwar JR, Sasidharan S. Plant bioactive compounds driven microRNAs (miRNAs): A potential source and novel strategy targeting gene and cancer therapeutics. Noncoding RNA Res 2024; 9:1140-1158. [PMID: 39022680 PMCID: PMC11250886 DOI: 10.1016/j.ncrna.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 07/20/2024] Open
Abstract
Irrespective of medical technology improvements, cancer ranks among the leading causes of mortality worldwide. Although numerous cures and treatments exist, creating alternative cancer therapies with fewer adverse side effects is vital. Since ancient times, plant bioactive compounds have already been used as a remedy to heal cancer. These plant bioactive compounds and their anticancer activity can also deregulate the microRNAs (miRNAs) in the cancerous cells. Therefore, the deregulation of miRNAs in cancer cells by plant bioactive compounds and the usage of the related miRNA could be a promising approach for cancer cure, mainly to prevent cancer and overcome chemotherapeutic side effect problems. Hence, this review highlights the function of plant bioactive compounds as an anticancer agent through the underlying mechanism that alters the miRNA expression in cancer cells, ultimately leading to apoptosis. Moreover, this review provides insight into using plant bioactive compounds -driven miRNAs as an anticancer agent to develop miRNA-based cancer gene therapy. They can be the potential resource for gene therapy and novel strategies targeting cancer therapeutics.
Collapse
Affiliation(s)
- Sahreen Sumaira
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| | - Soundararajan Vijayarathna
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| | - Manisekaran Hemagirri
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, P.O. Box 2440, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Mitesh Patel
- Research and Development Cell and Department of Biotechnology, Parul Institute of Applied Sciences, Parul University, Vadodara, 391760, Gujarat, India
| | - Reena Gupta
- Institute of Pharmaceutical Research, Department. Pharmaceutical Research, GLA University, Mathura, India
| | - Shanmugapriya
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| | - Yeng Chen
- Department of Oral & Craniofacial Sciences, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Subash C.B. Gopinath
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, Perlis, Malaysia
| | - Jagat R. Kanwar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), 174001, Bilaspur, Himachal Pradesh, India
| | - Sreenivasan Sasidharan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| |
Collapse
|
2
|
Moar K, Yadav S, Pant A, Deepika, Maurya PK. Anti-tumor Effects of Polyphenols via Targeting Cancer Driving Signaling Pathways: A Review. Indian J Clin Biochem 2024; 39:470-488. [PMID: 39346722 PMCID: PMC11436542 DOI: 10.1007/s12291-024-01222-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/02/2024] [Indexed: 10/01/2024]
Abstract
The use of drugs in chemotherapy poses numerous side effects. Hence the use of natural substances that can help in the prevention and cure of the disease is a dire necessity. Cancer is a deadly illness and combination of diseases, the menace of which is rising with every passing year. The research community and scientists from all over the world are working towards finding a cure of the disease. The use of polyphenols which are naturally derived from plants have a great potential to be used as anti-cancer drugs and also the use of fruits and vegetables which are rich in these polyphenols can also help in the prevention of diseases. The study aims to compile the available literature and research studies on the anti-cancer effects of polyphenols and the signaling pathways that are affected by them. To review the anti-cancer effects of polyphenols, Google Scholar, PubMed and ScienceDirect were used to study the literature available. The article that have been used for literature review were filtered using keywords including cancer, polyphenols and signaling pathways. Majorly articles from the last 10 years have been considered for the review but relevant articles from earlier than 10 years have also been considered. Almost 400 articles were studied for the review and 200 articles have been cited. The current review shows the potential of polyphenols as anti-cancer compounds and how the consumption of a diet rich in polyphenols can help in the prevention of cancer. Because of their capacity to affect a variety of oncogenic and oncosuppressive signaling pathways, phytochemicals derived from plants have been effectively introduced as an alternative anticarcinogenic medicines. Graphical Abstract
Collapse
Affiliation(s)
- Kareena Moar
- Department of Biochemistry, Central University of Haryana, Mahendergarh, 123031 India
| | - Somu Yadav
- Department of Biochemistry, Central University of Haryana, Mahendergarh, 123031 India
| | - Anuja Pant
- Department of Biochemistry, Central University of Haryana, Mahendergarh, 123031 India
| | - Deepika
- Department of Biochemistry, Central University of Haryana, Mahendergarh, 123031 India
| | - Pawan Kumar Maurya
- Department of Biochemistry, Central University of Haryana, Mahendergarh, 123031 India
| |
Collapse
|
3
|
Naponelli V, Rocchetti MT, Mangieri D. Apigenin: Molecular Mechanisms and Therapeutic Potential against Cancer Spreading. Int J Mol Sci 2024; 25:5569. [PMID: 38791608 PMCID: PMC11122459 DOI: 10.3390/ijms25105569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Due to its propensity to metastasize, cancer remains one of the leading causes of death worldwide. Thanks in part to their intrinsic low cytotoxicity, the effects of the flavonoid family in the prevention and treatment of various human cancers, both in vitro and in vivo, have received increasing attention in recent years. It is well documented that Apigenin (4',5,7-trihydroxyflavone), among other flavonoids, is able to modulate key signaling molecules involved in the initiation of cancer cell proliferation, invasion, and metastasis, including JAK/STAT, PI3K/Akt/mTOR, MAPK/ERK, NF-κB, and Wnt/β-catenin pathways, as well as the oncogenic non-coding RNA network. Based on these premises, the aim of this review is to emphasize some of the key events through which Apigenin suppresses cancer proliferation, focusing specifically on its ability to target key molecular pathways involved in angiogenesis, epithelial-to-mesenchymal transition (EMT), maintenance of cancer stem cells (CSCs), cell cycle arrest, and cancer cell death.
Collapse
Affiliation(s)
- Valeria Naponelli
- Department of Medicine and Surgery, University of Parma, Plesso Biotecnologico Integrato, Via Volturno 39, 43126 Parma, Italy
| | - Maria Teresa Rocchetti
- Department of Clinical and Experimental Medicine, University of Foggia, Via Pinto 1, 71122 Foggia, Italy;
| | - Domenica Mangieri
- Department of Clinical and Experimental Medicine, University of Foggia, Via Pinto 1, 71122 Foggia, Italy;
| |
Collapse
|
4
|
Ngernyuang N, Wongwattanakul M, Charusirisawad W, Shao R, Limpaiboon T. Green synthesized apigenin conjugated gold nanoparticles inhibit cholangiocarcinoma cell activity and endothelial cell angiogenesis in vitro. Heliyon 2022; 8:e12028. [PMID: 36506385 PMCID: PMC9732323 DOI: 10.1016/j.heliyon.2022.e12028] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/05/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a rare malignancy of the biliary tract with extremely poor clinical outcomes due to a lack of effective therapies to improve disease management. The emerging green synthesis of gold nanoparticles (AuNPs) has extensively provided their use in biomedical applications. In this study, we developed AuNPs via reducing gold salts with apigenin (4',5,7-trihydroxyflavone). The synthesized apigenin-conjugated AuNPs (api-AuNPs) were physicochemically characterized by various techniques before evaluation their biological and functional inhibition in a CCA cell line, KKU-M055. The mean size of api-AuNPs was 90.34 ± 22.82 nm with zeta potential of -36 ± 0.55. The half-maximal inhibitory concentration (IC50, 0.8 mg/mL) of api-AuNPs on cell proliferation of KKU-M055 was 1.9-fold less than that of an immortalized human cholangiocyte cell line, MMNK1 (IC50, 1.5 mg/mL). Moreover, api-AuNPs induced cell apoptosis via the up-regulation of Bax, Bid, and Caspase 3, and down-regulation of Bcl2, leading to elevated caspase 3/7, 8, 9 activities and reactive oxygen species (ROS) production. The api-AuNPs significantly inhibited the migration of KKU-M055 cells and suppressed the proliferation, migration, and in vitro tube formation of vascular endothelial cells. Collectively, our findings indicate the dual abilities of api-AuNPs that potentially inhibit cancer cell growth and motility as well as endothelial cell-mediated angiogenesis, which may offer a novel therapeutic avenue to treat CCA patients effectively.
Collapse
Affiliation(s)
- Nipaporn Ngernyuang
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | - Molin Wongwattanakul
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wannit Charusirisawad
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | - Rong Shao
- Development of Pharmacology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Temduang Limpaiboon
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Science, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
5
|
The Potential Role of Apigenin in Cancer Prevention and Treatment. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27186051. [PMID: 36144783 PMCID: PMC9505045 DOI: 10.3390/molecules27186051] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/18/2022]
Abstract
Cancer is the leading cause of death worldwide. In spite of advances in the treatment of cancer, currently used treatment modules including chemotherapy, hormone therapy, radiation therapy and targeted therapy causes adverse effects and kills the normal cells. Therefore, the goal of more effective and less side effects-based cancer treatment approaches is still at the primary position of present research. Medicinal plants or their bioactive ingredients act as dynamic sources of drugs due to their having less side effects and also shows the role in reduction of resistance against cancer therapy. Apigenin is an edible plant-derived flavonoid that has received significant scientific consideration for its health-promoting potential through modulation of inflammation, oxidative stress and various other biological activities. Moreover, the anti-cancer potential of apigenin is confirmed through its ability to modulate various cell signalling pathways, including tumor suppressor genes, angiogenesis, apoptosis, cell cycle, inflammation, apoptosis, PI3K/AKT, NF-κB, MAPK/ERK and STAT3 pathways. The current review mainly emphases the potential role of apigenin in different types of cancer through the modulation of various cell signaling pathways. Further studies based on clinical trials are needed to explore the role of apigenin in cancer management and explain the possible potential mechanisms of action in this vista.
Collapse
|
6
|
Apigenin in cancer therapy: From mechanism of action to nano-therapeutic agent. Food Chem Toxicol 2022; 168:113385. [PMID: 36007853 DOI: 10.1016/j.fct.2022.113385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/04/2022] [Accepted: 08/17/2022] [Indexed: 01/15/2023]
Abstract
Apigenin (APG) is a flavonoid presence in beverages, vegetables, and fruits containing anti-diabetic, anti-oxidant, and anti-viral activities, as well as cancer management properties. There is growing evidence that APG presented extensive anti-cancer effects in several cancer types by modulating various cellular processes, including angiogenesis, apoptosis, metastasis, autophagy, cell cycle, and immune responses, through activation or inhibition of different cell signaling pathways and molecules. By emerging nanotechnology and its advent in the biomedicine field, cancer therapy has been changed based on nanotechnology-based delivery systems. APG nanoformulations have been used to target tumor cells specifically, improve cellular uptake of APG, and overcome limitations of the free form of APG, such as low solubility and poor bioavailability. In this review, the biotherapeutic activity of APG and its mechanisms, both in free form and nanoformulation, toward cancer cells are discussed to shed some light on APG anti-tumor activity in different cancers.
Collapse
|
7
|
Abid R, Ghazanfar S, Farid A, Sulaman SM, Idrees M, Amen RA, Muzammal M, Shahzad MK, Mohamed MO, Khaled AA, Safir W, Ghori I, Elasbali AM, Alharbi B. Pharmacological Properties of 4', 5, 7-Trihydroxyflavone (Apigenin) and Its Impact on Cell Signaling Pathways. Molecules 2022; 27:4304. [PMID: 35807549 PMCID: PMC9267958 DOI: 10.3390/molecules27134304] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/23/2022] [Accepted: 07/01/2022] [Indexed: 12/04/2022] Open
Abstract
Plant bioactive compounds, particularly apigenin, have therapeutic potential and functional activities that aid in the prevention of infectious diseases in many mammalian bodies and promote tumor growth inhibition. Apigenin is a flavonoid with low toxicities and numerous bioactive properties due to which it has been considered as a traditional medicine for decades. Apigenin shows synergistic effects in combined treatment with sorafenib in the HepG2 human cell line (HCC) in less time and statistically reduces the viability of tumor cells, migration, gene expression and apoptosis. The combination of anti-cancerous drugs with apigenin has shown health promoting potential against various cancers. It can prevent cell mobility, maintain the cell cycle and stimulate the immune system. Apigenin also suppresses mTOR activity and raises the UVB-induced phagocytosis and reduces the cancerous cell proliferation and growth. It also has a high safety threshold, and active (anti-cancer) doses can be gained by consuming a vegetable and apigenin rich diet. Apigenin also boosted autophagosome formation, decreased cell proliferation and activated autophagy by preventing the activity of the PI3K pathway, specifically in HepG2 cells. This paper provides an updated overview of apigenin's beneficial anti-inflammatory, antibacterial, antiviral, and anticancer effects, making it a step in the right direction for therapeutics. This study also critically analyzed the effect of apigenin on cancer cell signaling pathways including the PI3K/AKT/MTOR, JAK/STAT, NF-κB and ERK/MAPK pathways.
Collapse
Affiliation(s)
- Rameesha Abid
- Department of Biotechnology, University of Sialkot, Sialkot 51310, Pakistan
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Center, Islamabad 44100, Pakistan; (S.G.); (M.I.)
| | - Shakira Ghazanfar
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Center, Islamabad 44100, Pakistan; (S.G.); (M.I.)
| | - Arshad Farid
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan 29050, Pakistan;
| | | | - Maryam Idrees
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Center, Islamabad 44100, Pakistan; (S.G.); (M.I.)
- Department of Microbiology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | | | - Muhammad Muzammal
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan 29050, Pakistan;
| | - Muhammad Khurram Shahzad
- Biotechnology and Bioinformatics Department, International Islamic University, Islamabad 44100, Pakistan;
| | | | | | - Waqas Safir
- College of Life Science and Technology, Xinjiang University, Urumqi 830046, China;
| | - Ifra Ghori
- Department of Biotechnology, Fatima Jinnah Women University, Rawalpindi 46000, Pakistan;
| | - Abdelbaset Mohamed Elasbali
- Department of Clinical Laboratory Science, College of Applied Sciences-Qurayyat, Jouf University, Sakaka 72388, Saudi Arabia
| | - Bandar Alharbi
- Department of Medical Laboratory, College of Applied Medical Science, University of Hail, Hail 81481, Saudi Arabia;
| |
Collapse
|
8
|
The effect of apigenin and chemotherapy combination treatments on apoptosis-related genes and proteins in acute leukaemia cell lines. Sci Rep 2022; 12:8858. [PMID: 35614109 PMCID: PMC9132959 DOI: 10.1038/s41598-022-11441-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/30/2022] [Indexed: 12/30/2022] Open
Abstract
Apigenin is a dietary polyphenol found abundantly in fruit and vegetables, which sensitizes leukaemia cells to topoisomerase inhibitor agents (e.g., etoposide), and alkylating agents (e.g., cyclophosphamide), reducing ATP levels and inducing apoptosis; whilst being protective to control haematopoietic stem cells. This study analysed the expression profiles of intrinsic and extrinsic apoptosis-related genes and proteins to help elucidate the mechanisms of action of apigenin when used in combination with etoposide or cyclophosphamide in lymphoid and myeloid leukaemia cell lines (Jurkat and THP-1). Expression of apoptosis-related genes were measured using a TaqMan® Human Apoptosis Array and the StepOne Plus RT-qPCR System, whilst apoptosis-related proteins were determined using a protein profiler™-human apoptosis array and the LI-COR OdysseyR Infrared Imaging System. Apigenin when combined with etoposide or cyclophosphamide-induced apoptosis via the mitochondrial pathway, increasing the expression of pro-apoptotic cytochrome c, SMAC/DIABLO, and HTRA2/OMI, which promoted caspase-9 and -3 activation. Targeting anti-apoptotic and/or pro-apoptotic members of the apoptotic pathways is a promising strategy to induce cancer cell death and improve sensitivity to chemotherapy agents. Here the apoptotic pathways induced by apigenin in combination with etoposide or cyclophosphamide were identified within human leukaemia cell lines, such applications could provide combination therapies for the treatment of leukaemia.
Collapse
|
9
|
Crassolide Induces G2/M Cell Cycle Arrest, Apoptosis, and Autophagy in Human Lung Cancer Cells via ROS-Mediated ER Stress Pathways. Int J Mol Sci 2022; 23:ijms23105624. [PMID: 35628435 PMCID: PMC9144222 DOI: 10.3390/ijms23105624] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/05/2022] [Accepted: 05/15/2022] [Indexed: 02/07/2023] Open
Abstract
Crassolide, a cembranoid diterpene extracted from the soft coral Lobophytum crissum, has been proven to possess antioxidant and immunomodulatory properties. In the present study, we assessed the anticancer effects of crassolide on human H460 non-small-cell lung cancer (NSCLC) cells. We found that crassolide exerted cytotoxic effects on H460 cancer cells in vitro, inducing G2/M phase arrest and apoptosis. In addition, in H460 cells exposed to crassolide, the expression of the autophagy-related proteins LC3-II and beclin was increased, while the expression of p62 was decreased. Moreover, inhibiting autophagy with chloroquine (CQ) suppressed the crassolide-induced G2/M arrest and apoptosis of H460 cells. Moreover, we also found that crassolide induced endoplasmic reticulum (ER) stress in lung cancer cells by increasing the expression of ER stress marker proteins and that the crassolide-induced G2/M arrest, apoptosis, and autophagy were markedly attenuated by the ER stress inhibitor 4-phenylbutyric acid (4-PBA). Furthermore, we found that crassolide promoted reactive oxygen species (ROS) production by H460 cells and that the ROS inhibitor N-acetylcysteine (NAC) decreased the crassolide-induced ER stress, G2/M arrest, apoptosis, and autophagy. In conclusion, our findings show that crassolide inhibits NSCLC cell malignant biological behaviors for the first time, suggesting that this effect may be mechanistically achieved by inducing G2/M arrest, apoptosis, and autophagy through ROS accumulation, which activates the ER stress pathway. As a result of our findings, we now have a better understanding of the molecular mechanism underlying the anticancer effect of crassolide, and we believe crassolide might be a candidate for targeted cancer therapy.
Collapse
|
10
|
Role of Induced Programmed Cell Death in the Chemopreventive Potential of Apigenin. Int J Mol Sci 2022; 23:ijms23073757. [PMID: 35409117 PMCID: PMC8999072 DOI: 10.3390/ijms23073757] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 02/01/2023] Open
Abstract
The flavonoid apigenin (4′,5,7-trihydroxyflavone), which is one of the most widely distributed phytochemicals in the plant kingdom, is one of the most thoroughly investigated phenolic components. Previous studies have attributed the physiological effects of apigenin to its anti-allergic, antibacterial, antidiabetic, anti-inflammatory, antioxidant, antiviral, and blood-pressure-lowering properties, and its documented anticancer properties have been attributed to the induction of apoptosis and autophagy, the inhibition of inflammation, angiogenesis, and cell proliferation, and the regulation of cellular responses to oxidative stress and DNA damage. The most well-known mechanism for the compound’s anticancer effects in human cancer cell lines is apoptosis, followed by autophagy, and studies have also reported that apigenin induces novel cell death mechanisms, such as necroptosis and ferroptosis. Therefore, the aim of this paper is to review the therapeutic potential of apigenin as a chemopreventive agent, as well as the roles of programmed cell death mechanisms in the compound’s chemopreventive properties.
Collapse
|
11
|
Slika H, Mansour H, Wehbe N, Nasser SA, Iratni R, Nasrallah G, Shaito A, Ghaddar T, Kobeissy F, Eid AH. Therapeutic potential of flavonoids in cancer: ROS-mediated mechanisms. Biomed Pharmacother 2022; 146:112442. [PMID: 35062053 DOI: 10.1016/j.biopha.2021.112442] [Citation(s) in RCA: 165] [Impact Index Per Article: 82.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer is a leading cause of morbidity and mortality around the globe. Reactive oxygen species (ROS) play contradicting roles in cancer incidence and progression. Antioxidants have attracted attention as emerging therapeutic agents. Among these are flavonoids, which are natural polyphenols with established anticancer and antioxidant capacities. Increasing evidence shows that flavonoids can inhibit carcinogenesis via suppressing ROS levels. Surprisingly, flavonoids can also trigger excessive oxidative stress, but this can also induce death of malignant cells. In this review, we explore the inherent characteristics that contribute to the antioxidant capacity of flavonoids, and we dissect the scenarios in which they play the contrasting role as pro-oxidants. Furthermore, we elaborate on the pathways that link flavonoid-mediated modulation of ROS to the prevention and treatment of cancer. Special attention is given to the ROS-mediated anticancer functions that (-)-epigallocatechin gallate (EGCG), hesperetin, naringenin, quercetin, luteolin, and apigenin evoke in various cancers. We also delve into the structure-function relations that make flavonoids potent antioxidants. This review provides a detailed perspective that can be utilized in future experiments or trials that aim at utilizing flavonoids or verifying their efficacy for developing new pharmacologic agents. We support the argument that flavonoids are attractive candidates for cancer therapy.
Collapse
Affiliation(s)
- Hasan Slika
- Department of Pharmacology and Toxicology, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon.
| | - Hadi Mansour
- Department of Pharmacology and Toxicology, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon.
| | - Nadine Wehbe
- Department of Biology, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon.
| | - Suzanne A Nasser
- Department of Pharmacology and Therapeutics, Beirut Arab University, P.O. Box 11-5020, Beirut, Lebanon.
| | - Rabah Iratni
- Department of Biology, College of Science, United Arab Emirates University, P.O. Box 15551, Al-Ain, United Arab Emirates.
| | - Gheyath Nasrallah
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, P.O. Box: 2713, Doha, Qatar.
| | - Abdullah Shaito
- Biomedical Research Center, Qatar University, P.O. Box: 2713, Doha, Qatar.
| | - Tarek Ghaddar
- Department of Chemistry, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon.
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, American University of Beirut, P.O. Box: 11-0236, Beirut, Lebanon.
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar; Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
12
|
The natural flavones, acacetin and apigenin, induce Cdk-Cyclin mediated G2/M phase arrest and trigger ROS-mediated apoptosis in glioblastoma cells. Mol Biol Rep 2021; 48:539-549. [PMID: 33394232 DOI: 10.1007/s11033-020-06087-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/12/2020] [Indexed: 12/21/2022]
Abstract
Brain and CNS-related cancers are rare; however, 0.3 million incidences and 0.24 million deaths in 2018 demonstrates the unrelenting associated dangers. Glioblastoma is a brain cancer of star-shaped glial cells. It is almost universally fatal within 2 years of diagnosis despite maximal medical therapies. This study aims to evaluate the in-depth anticancer activity of acacetin and apigenin on glioblastoma cells (U87). In the present report, we have isolated two flavonoids, acacetin and apigenin; and studied the in-depth anticancer activity on U87 cells. Selective cytotoxicity of acacetin and apigenin was observed towards the U87 cells (IC50: 43.73 ± 1.19 and 48.18 ± 1.37 μM, respectively). The flow cytometer-based result revealed the induction of G2/M phase arrest along with the increase in sub G1 population upon compound treatment. Annexin-V-FLUOS and DAPI staining also confirmed the apoptosis-inducing effects of compounds. Flow cytometer and confocal microscopy-based DCFH-DA staining showed ROS-inducing effect of the compounds. The up-regulation of p21 and down-regulation of Cyclin-A1, Cyclin-B1, and Cdk-1 revealed the G2/M phase arrest mechanism of acacetin and apigenin. Furthermore, western blotting result confirmed the activation of intrinsic pathway of apoptosis upon acacetin treatment and activation of both extrinsic and intrinsic pathways of apoptosis upon apigenin treatment through the regulation of Bax, t-Bid, caspase 8, caspase 9, caspase 3, and PARP. The obtained result showed a significant effect (P < 0.05) of acacetin and apigenin on U87 cells. Acacetin and apigenin-induced ROS is responsible for the induction of cell cycle arrest and activation of caspase-cascade pathways in U87 cells.
Collapse
|
13
|
Ahmed SA, Parama D, Daimari E, Girisa S, Banik K, Harsha C, Dutta U, Kunnumakkara AB. Rationalizing the therapeutic potential of apigenin against cancer. Life Sci 2020; 267:118814. [PMID: 33333052 DOI: 10.1016/j.lfs.2020.118814] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/14/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Despite the remarkable advances made in the diagnosis and treatment of cancer during the past couple of decades, it remains the second largest cause of mortality in the world, killing approximately 9.6 million people annually. The major challenges in the treatment of the advanced stage of this disease are the development of chemoresistance, severe adverse effects of the drugs, and high treatment cost. Therefore, the development of drugs that are safe, efficacious, and cost-effective remains a 'Holy Grail' in cancer research. However, the research over the past four decades shed light on the cancer-preventive and therapeutic potential of natural products and their underlying mechanism of action. Apigenin is one such compound, which is known to be safe and has significant potential in the prevention and therapy of this disease. AIM To assess the literature available on the potential of apigenin and its analogs in modulating the key molecular targets leading to the prevention and treatment of different types of cancer. METHOD A comprehensive literature search has been carried out on PubMed for obtaining information related to the sources and analogs, chemistry and biosynthesis, physicochemical properties, biological activities, bioavailability and toxicity of apigenin. KEY FINDINGS The literature search resulted in many in vitro, in vivo and a few cohort studies that evidenced the effectiveness of apigenin and its analogs in modulating important molecular targets and signaling pathways such as PI3K/AKT/mTOR, JAK/STAT, NF-κB, MAPK/ERK, Wnt/β-catenin, etc., which play a crucial role in the development and progression of cancer. In addition, apigenin was also shown to inhibit chemoresistance and radioresistance and make cancer cells sensitive to these agents. Reports have further revealed the safety of the compound and the adaptation of nanotechnological approaches for improving its bioavailability. SIGNIFICANCE Hence, the present review recapitulates the properties of apigenin and its pharmacological activities against different types of cancer, which warrant further investigation in clinical settings.
Collapse
Affiliation(s)
- Semim Akhtar Ahmed
- Cell and Molecular Biology Laboratory, Department of Zoology, Cotton University, Pan Bazar, Guwahati, Assam 781001, India
| | - Dey Parama
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Enush Daimari
- Cell and Molecular Biology Laboratory, Department of Zoology, Cotton University, Pan Bazar, Guwahati, Assam 781001, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Kishore Banik
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Choudhary Harsha
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Uma Dutta
- Cell and Molecular Biology Laboratory, Department of Zoology, Cotton University, Pan Bazar, Guwahati, Assam 781001, India.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India.
| |
Collapse
|
14
|
Pan X, Shao Y, Wang F, Cai Z, Liu S, Xi J, He R, Zhao Y, Zhuang R. Protective effect of apigenin magnesium complex on H 2O 2-induced oxidative stress and inflammatory responses in rat hepatic stellate cells. PHARMACEUTICAL BIOLOGY 2020; 58:553-560. [PMID: 32544362 PMCID: PMC8641681 DOI: 10.1080/13880209.2020.1772840] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Context: Apigenin displays antioxidant and anti-inflammatory effects. However, effects of apigenin magnesium (AM) complex on these aspects remain unknown.Objective: This study investigated the effects of AM complex on oxidative stress and inflammatory responses in hydrogen peroxide (H2O2)-induced rat hepatic stellate cells (HSCs).Materials and methods: The antioxidant and anti-inflammatory effects of AM complex at concentrations of 0.625, 1.25, and 2.5 mg/mL were evaluated, comparing to HSCs treated by H2O2 alone. Cell viability, reactive oxygen species (ROS), the activity of superoxide dismutase (SOD), glutathione (GSH), malondialdehyde (MDA), nitric oxide (NO), interleukin 6 (IL-6), and nuclear factor-kappa B (NF-κB) levels were measured. Moreover, cell apoptosis, mRNA expression levels of transforming growth factor-β (TGF-β), NF-κB, and inducible nitric oxide synthase (iNOS) were assessed.Results: AM complex significantly inhibited oxidative stress and inflammatory response at concentrations of 0.625, 1.25, and 2.5 mg/mL (IC50 = 1.679 mg/mL). AM complex elevated the survival rate of H2O2-treated HSCs and had no toxic effects on HSCs. AM complex also promoted SOD activity and GSH levels but suppressed ROS, MDA, and NO levels. Additionally, AM complex decreased IL-6 and NF-κB levels, gene expression of TGF-β, NF-κB, and iNOS, as well as induced apoptosis of HSCs.Discussion and conclusions: Data indicated that AM complex mitigated oxidative stress and inflammatory responses on H2O2-treated HSCs, suggesting that AM complex is a possible candidate for anti-hepatic diseases. Additional efforts, both in vivo and in humans, are required to assess of AM complex as a potential therapeutic drug in liver diseases.
Collapse
Affiliation(s)
- Xuwang Pan
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, Zhejiang, China
| | - Yidan Shao
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, Zhejiang, China
| | - Fugen Wang
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, Zhejiang, China
| | - Zhaobin Cai
- Department of Liver Disease, Hangzhou Xixi Hospital, Hangzhou, Zhejiang, China
| | - Shourong Liu
- Department of Liver Disease, Hangzhou Xixi Hospital, Hangzhou, Zhejiang, China
| | - Jianjun Xi
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, Zhejiang, China
| | - Ruoyu He
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, Zhejiang, China
| | - Yanmei Zhao
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, Zhejiang, China
| | - Rangxiao Zhuang
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, Zhejiang, China
- CONTACT Rangxiao Zhuang Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, 2, Hengbu Road, Hangzhou, Zhejiang, 310023, China
| |
Collapse
|
15
|
Li G, Ding K, Qiao Y, Zhang L, Zheng L, Pan T, Zhang L. Flavonoids Regulate Inflammation and Oxidative Stress in Cancer. Molecules 2020; 25:E5628. [PMID: 33265939 PMCID: PMC7729519 DOI: 10.3390/molecules25235628] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer is the second leading cause of death globally. Millions of persons die due to cancer each year. In the last two decades, the anticancer effects of natural flavonoids have become a hot topic in many laboratories. Meanwhile, flavonoids, of which over 8000 molecules are known to date, are potential candidates for the discovery of anticancer drugs. The current review summarizes the major flavonoid classes of anticancer efficacy and discusses the potential anti-cancer mechanisms through inflammation and oxidative stress action, which were based on database and clinical studies within the past years. The results showed that flavonoids could regulate the inflammatory response and oxidative stress of tumor through some anti-inflammatory mechanisms such as NF-κB, so as to realize the anti-tumor effect.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lin Zhang
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China; (G.L.); (K.D.); (Y.Q.); (L.Z.); (L.Z.); (T.P.)
| |
Collapse
|
16
|
Inhibitory Effects of Apigenin on Tumor Carcinogenesis by Altering the Gut Microbiota. Mediators Inflamm 2020; 2020:7141970. [PMID: 33082711 PMCID: PMC7559228 DOI: 10.1155/2020/7141970] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/11/2020] [Accepted: 09/19/2020] [Indexed: 12/17/2022] Open
Abstract
The flavonoid apigenin is common to many plants. Although the responsible mechanisms have yet to be elucidated, apigenin demonstrates tumor suppression in vitro and in vivo. This study uses an azoxymethane (AOM)/dextran sodium sulfate- (DSS-) induced colon cancer mouse model to investigate apigenin's potential mechanism of action exerted through its effects upon gut microbiota. The size and quantity of tumors were reduced significantly in the apigenin treatment group. Using 16S rRNA high-throughput sequencing of fecal samples, the composition of gut microbiota was significantly affected by apigenin. Further experiments in which gut microbiota were reduced and feces were transplanted provided further evidence of apigenin-modulated gut microbiota exerting antitumor effects. Apigenin was unable to reduce the number or size of tumors when gut microbiota were depleted. Moreover, tumor inhibition effects were initiated following the transplant of feces from mice treated with apigenin. Our findings suggest that the effect of apigenin on the composition of gut microbiota can suppress tumors.
Collapse
|
17
|
Li Y, Chen X, He W, Xia S, Jiang X, Li X, Bai J, Li N, Chen L, Yang B. Apigenin Enhanced Antitumor Effect of Cisplatin in Lung Cancer via Inhibition of Cancer Stem Cells. Nutr Cancer 2020; 73:1489-1497. [PMID: 32757802 DOI: 10.1080/01635581.2020.1802494] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cancer stem cell theory has been proposed to explain tumor heterogeneity and the carcinogenesis process. Highly tumorigenic lung cancer stem cells develop resistance to cisplatin (CDDP), a common chemotherapy drug. Herein, we attempted to clarify whether apigenin (API) can improve the antitumor efficiency of CDDP in lung cancer using cancer stem cells. Lung cancer stem cells were identified as CD 133 positive cancer cells in non-small cell lung cancer (NSCLC) A549, H1299 cells and CDDP-resistant NSCLC A549R cells. The cytotoxic effect of API was measured in CDDP-treated A549, H1299, and A549R cells. API repressed CD 133 positive cells and enhanced the antitumor effect of CDDP in A549, H1299, and A549R cells. The synergistic antitumor effect of API and CDDP was blocked by addition of the p53 inhibitor Pifithrin-α, and siRNA targeting the p53 gene in A549R cells. Furthermore, API eliminates CDDP-induced CSC via p53, since A549R cells lacking p53 and Pifithrin-α addition derepressed the decrease in CD 133 positive cells after API treatment in CDDP-treated A549 and A549R cells. The findings indicate that API might eliminate cancer stem cells and enhance the antitumor effects of CDDP in NSCLC via p53.
Collapse
Affiliation(s)
- Yunxia Li
- Department of Respiratory Medicine, Affiliated Center Hospital of Shenyang Medical College, Shenyang, P. R. China
| | - Xin Chen
- Department of Respiratory Medicine, Affiliated Center Hospital of Shenyang Medical College, Shenyang, P. R. China
| | - Wei He
- Department of Respiratory Medicine, Affiliated Center Hospital of Shenyang Medical College, Shenyang, P. R. China
| | - Shuyue Xia
- Department of Respiratory Medicine, Affiliated Center Hospital of Shenyang Medical College, Shenyang, P. R. China
| | - Xiaochuan Jiang
- Department of Respiratory Medicine, Affiliated Center Hospital of Shenyang Medical College, Shenyang, P. R. China
| | - Xiaoyang Li
- Department of Respiratory Medicine, Affiliated Center Hospital of Shenyang Medical College, Shenyang, P. R. China
| | - Jiayu Bai
- Department of Respiratory Medicine, Affiliated Center Hospital of Shenyang Medical College, Shenyang, P. R. China
| | - Nan Li
- Department of Respiratory Medicine, Affiliated Center Hospital of Shenyang Medical College, Shenyang, P. R. China
| | - Lei Chen
- Department of Respiratory Medicine, Affiliated Center Hospital of Shenyang Medical College, Shenyang, P. R. China
| | - Biao Yang
- Laboratory of Microbiology, School of Basic Medical Science, Shenyang Medical College, Shenyang, P. R. China
| |
Collapse
|
18
|
Regulation of the Mitochondrial BK Ca Channel by the Citrus Flavonoid Naringenin as a Potential Means of Preventing Cell Damage. Molecules 2020; 25:molecules25133010. [PMID: 32630135 PMCID: PMC7412269 DOI: 10.3390/molecules25133010] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 12/27/2022] Open
Abstract
Naringenin, a flavanone obtained from citrus fruits and present in many traditional Chinese herbal medicines, has been shown to have various beneficial effects on cells both in vitro and in vivo. Although the antioxidant activity of naringenin has long been believed to be crucial for its effects on cells, mitochondrial pathways (including mitochondrial ion channels) are emerging as potential targets for the specific pharmacological action of naringenin in cardioprotective strategies. In the present study, we describe interactions between the mitochondrial large-conductance calcium-regulated potassium channel (mitoBKCa channel) and naringenin. Using the patch-clamp method, we showed that 10 µM naringenin activated the mitoBKCa channel present in endothelial cells. In the presence of 30 µM Ca2+, the increase in the mitoBKCa channel probability of opening from approximately 0.25 to 0.50 at −40 mV was observed. In addition, regulation of the mitoBKCa channel by naringenin was dependent on the concentration of calcium ions. To confirm our data, physiological studies on the mitochondria were performed. An increase in oxygen consumption and a decrease in membrane potential was observed after naringenin treatment. In addition, contributions of the mitoBKCa channel to apoptosis and necrosis were investigated. Naringenin protected cells against damage induced by tumor necrosis factor α (TNF-α) in combination with cycloheximide. In this study, we demonstrated that the flavonoid naringenin can activate the mitoBKCa channel present in the inner mitochondrial membrane of endothelial cells. Our studies describing the regulation of the mitoBKCa channel by this natural, plant-derived substance may help to elucidate flavonoid-induced cytoprotective mechanisms.
Collapse
|
19
|
Imran M, Aslam Gondal T, Atif M, Shahbaz M, Batool Qaisarani T, Hanif Mughal M, Salehi B, Martorell M, Sharifi-Rad J. Apigenin as an anticancer agent. Phytother Res 2020; 34:1812-1828. [PMID: 32059077 DOI: 10.1002/ptr.6647] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/03/2020] [Accepted: 01/31/2020] [Indexed: 12/26/2022]
Abstract
Apigenin is an edible plant-derived flavonoid that has been reported as an anticancer agent in several experimental and biological studies. It exhibits cell growth arrest and apoptosis in different types of tumors such as breast, lung, liver, skin, blood, colon, prostate, pancreatic, cervical, oral, and stomach, by modulating several signaling pathways. Apigenin induces apoptosis by the activation of extrinsic caspase-dependent pathway by upregulating the mRNA expressions of caspase-3, caspase-8, and TNF-α. It induces intrinsic apoptosis pathway as evidenced by the induction of cytochrome c, Bax, and caspase-3, while caspase-8, TNF-α, and B-cell lymphoma 2 levels remained unchanged in human prostate cancer PC-3 cells. Apigenin treatment leads to significant downregulation of matrix metallopeptidases-2, -9, Snail, and Slug, suppressing invasion. The expressions of NF-κB p105/p50, PI3K, Akt, and the phosphorylation of p-Akt decreases after treatment with apigenin. However, apigenin-mediated treatment significantly reduces pluripotency marker Oct3/4 protein expression which might be associated with the downregulation of PI3K/Akt/NF-κB signaling.
Collapse
Affiliation(s)
- Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore-Lahore, Lahore, Pakistan
| | - Tanweer Aslam Gondal
- School of Exercise and Nutrition, Deakin University, Melbourne, Victoria, Australia
| | - Muhammad Atif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Muhammad Shahbaz
- Department of Food Science and Technology, MNS-University of Agriculture Multan, Multan, Pakistan
| | - Tahira Batool Qaisarani
- Department of Agricultural Engineering and Technology, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Muhammad Hanif Mughal
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore-Lahore, Lahore, Pakistan
| | - Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepción, Concepción, Chile.,Unidad de Desarrollo Tecnológico, UDT, Universidad de Concepción, Concepción, Chile
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
He Y, Fang X, Shi J, Li X, Xie M, Liu X. Apigenin attenuates pulmonary hypertension by inducing mitochondria-dependent apoptosis of PASMCs via inhibiting the hypoxia inducible factor 1α–KV1.5 channel pathway. Chem Biol Interact 2020; 317:108942. [DOI: 10.1016/j.cbi.2020.108942] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 12/06/2019] [Accepted: 01/08/2020] [Indexed: 01/10/2023]
|
21
|
Kashyap D, Sharma A, Tuli HS, Sak K, Garg VK, Buttar HS, Setzer WN, Sethi G. Apigenin: A natural bioactive flavone-type molecule with promising therapeutic function. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.07.037] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
22
|
Vrhovac Madunić I, Madunić J, Antunović M, Paradžik M, Garaj-Vrhovac V, Breljak D, Marijanović I, Gajski G. Apigenin, a dietary flavonoid, induces apoptosis, DNA damage, and oxidative stress in human breast cancer MCF-7 and MDA MB-231 cells. Naunyn Schmiedebergs Arch Pharmacol 2018. [PMID: 29541820 DOI: 10.1007/s00210-018-1486-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Apigenin is found in several dietary plant foods such as vegetables and fruits. To investigate potential anticancer properties of apigenin on human breast cancer, ER-positive MCF-7 and triple-negative MDA MB-231 cells were used. Moreover, toxicological safety of apigenin towards normal cells was evaluated in human lymphocytes. Cytotoxicity of apigenin towards cancer cells was evaluated by MTT assay whereas further genotoxic and oxidative stress parameters were measured by comet and lipid peroxidation assays, respectively. In order to examine the type of cell death induced by apigenin, several biomarkers were used. Toxicological safety towards normal cells was evaluated by cell viability and comet assays. After the treatment with apigenin, we observed changes in cell morphology in a dose- (10 to 100 μM) and time-dependent manner. Moreover, apigenin caused cell death in both cell lines leading to significant toxicity and dominantly to apoptosis. Furthermore, apigenin proved to be genotoxic towards the selected cancer cells with a potential to induce oxidative damage to lipids. Of great importance is that no significant cytogenotoxic effects were detected in normal cells. The observed cytogenotoxic and pro-cell death activities of apigenin coupled with its low toxicity towards normal cells indicate that this natural product could be used as a future anticancer modality. Therefore, further analysis to determine the exact mechanism of action and in vivo studies on animal models are warranted.
Collapse
Affiliation(s)
- Ivana Vrhovac Madunić
- Molecular Toxicology Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Josip Madunić
- Department of Molecular Biology, Faculty of Science, University of Zagreb, Horvatovac 102a/2, 10000, Zagreb, Croatia
| | - Maja Antunović
- Department of Molecular Biology, Faculty of Science, University of Zagreb, Horvatovac 102a/2, 10000, Zagreb, Croatia
| | - Mladen Paradžik
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia
| | - Vera Garaj-Vrhovac
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Davorka Breljak
- Molecular Toxicology Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Inga Marijanović
- Department of Molecular Biology, Faculty of Science, University of Zagreb, Horvatovac 102a/2, 10000, Zagreb, Croatia
| | - Goran Gajski
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia.
| |
Collapse
|
23
|
Shankar E, Goel A, Gupta K, Gupta S. Plant flavone apigenin: An emerging anticancer agent. CURRENT PHARMACOLOGY REPORTS 2017; 3:423-446. [PMID: 29399439 PMCID: PMC5791748 DOI: 10.1007/s40495-017-0113-2] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Research in cancer chemoprevention provides convincing evidence that increased intake of vegetables and fruits may reduce the risk of several human malignancies. Phytochemicals present therein provide beneficial anti-inflammatory and antioxidant properties that serve to improve the cellular microenvironment. Compounds known as flavonoids categorized anthocyanidins, flavonols, flavanones, flavonols, flavones, and isoflavones have shown considerable promise as chemopreventive agents. Apigenin (4', 5, 7-trihydroxyflavone), a major plant flavone, possessing antioxidant, anti-inflammatory, and anticancer properties affecting several molecular and cellular targets used to treat various human diseases. Epidemiologic and case-control studies have suggested apigenin reduces the risk of certain cancers. Studies demonstrate that apigenin retain potent therapeutic properties alone and/or increases the efficacy of several chemotherapeutic drugs in combination on a variety of human cancers. Apigenin's anticancer effects could also be due to its differential effects in causing minimal toxicity to normal cells with delayed plasma clearance and slow decomposition in liver increasing the systemic bioavailability in pharmacokinetic studies. Here we discuss the anticancer role of apigenin highlighting its potential activity as a chemopreventive and therapeutic agent. We also highlight the current caveats that preclude apigenin for its use in the human trials.
Collapse
Affiliation(s)
- Eswar Shankar
- Department of Urology, The James and Eilleen Dicke Laboratory, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Urology, The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Aditi Goel
- Department of Biology, School of Undergraduate Studies, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Karishma Gupta
- Department of Urology, The James and Eilleen Dicke Laboratory, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Urology, The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Sanjay Gupta
- Department of Urology, The James and Eilleen Dicke Laboratory, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Urology, The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
- Department of Nutrition, Case Western Reserve University, Cleveland, OH 44106, USA
- Division of General Medical Sciences, Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
- Department of Urology, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
24
|
Oxidative Stress Triggered by Apigenin Induces Apoptosis in a Comprehensive Panel of Human Cervical Cancer-Derived Cell Lines. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1512745. [PMID: 28191273 PMCID: PMC5278229 DOI: 10.1155/2017/1512745] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 12/13/2016] [Accepted: 12/18/2016] [Indexed: 12/31/2022]
Abstract
Recently, the cytotoxic effects of apigenin (4′,5,7-trihydroxyflavone), particularly its marked inhibition of cancer cell viability both in vitro and in vivo, have attracted the attention of the anticancer drug discovery field. Despite this, there are few studies of apigenin in cervical cancer, and these studies have mostly been conducted using HeLa cells. To evaluate the possibility of apigenin as a new therapeutic candidate for cervical cancer, we evaluated its cytotoxic effects in a comprehensive panel of human cervical cancer-derived cell lines including HeLa (human papillomavirus/HPV 18-positive), SiHa (HPV 16-positive), CaSki (HPV 16 and HPV 18-positive), and C33A (HPV-negative) cells in comparison to a nontumorigenic spontaneously immortalized human epithelial cell line (HaCaT). Our results demonstrated that apigenin had a selective cytotoxic effect and could induce apoptosis in all cervical cancer cell lines which were positively marked with Annexin V, but not in HaCaT (control cells). Additionally, apigenin was able to induce mitochondrial redox impairment, once it increased ROS levels and H2O2, decreased the Δψm, and increased LPO. Still, apigenin was able to inhibit migration and invasion of cancer cells. Thus, apigenin appears to be a promising new candidate as an anticancer drug for cervical cancer induced by different HPV genotypes.
Collapse
|
25
|
Erdogan S, Doganlar O, Doganlar ZB, Serttas R, Turkekul K, Dibirdik I, Bilir A. The flavonoid apigenin reduces prostate cancer CD44(+) stem cell survival and migration through PI3K/Akt/NF-κB signaling. Life Sci 2016; 162:77-86. [PMID: 27569589 DOI: 10.1016/j.lfs.2016.08.019] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/10/2016] [Accepted: 08/20/2016] [Indexed: 12/20/2022]
Abstract
AIMS Cancer stem cells (CSCs) are involved in drug resistance, metastasis and recurrence of cancers. The efficacy of apigenin on cell survival, apoptosis, migration and stemness properties were analyzed in CSCs. MAIN METHODS Prostate CSCs (CD44(+)) were isolated from human prostate cancer (PCa) PC3 cells using a magnetic-activated cell sorting system. PC3 and CSCs were treated with various concentrations of apigenin, docetaxel and their combinations for 48h. KEY FINDINGS Apigenin dose dependently inhibited CSCs and PC3 cell survival, and this was accompanied with a significant increase of p21 and p27. Apigenin induced apoptosis via an extrinsic caspase-dependent pathway by upregulating the mRNA expressions of caspases-8, -3 and TNF-α, but failed to regulate the intrinsic pathway as determined by the Bax, cytochrome c (Cyt-c) and APAF-1 in CSCs. In contrary to CSCs, apigenin induced intrinsic apoptosis pathway as evidenced by the induction of Bax, Cyt-c and caspase-3 while caspase-8, TNF-α and Bcl-2 levels remained unchanged in PC3 cells. The flavonoid strongly suppressed the migration rate of CSCs compared to untreated cells. Significant downregulation of matrix metallopeptidases-2, -9, Snail and Slug exhibits the ability of apigenin treatment to suppress invasion. The expressions of NF-κB p105/p50, PI3K, Akt and the phosphorylation of pAkt were decreased after apigenin treatment. Moreover, apigenin treatment significantly reduced pluripotency marker Oct3/4 protein expression which might be associated with the down-regulation of PI3K/Akt/NF-κB signaling. SIGNIFICANCE Our data indicated that, apigenin could be a useful compound to prevent proliferation and migration of cancer cells as well as CSCs.
Collapse
Affiliation(s)
- Suat Erdogan
- Department of Medical Biology, School of Medicine, Trakya University, Balkan Campus, Edirne, Turkey.
| | - Oguzhan Doganlar
- Department of Medical Biology, School of Medicine, Trakya University, Balkan Campus, Edirne, Turkey
| | - Zeynep B Doganlar
- Department of Medical Biology, School of Medicine, Trakya University, Balkan Campus, Edirne, Turkey
| | - Riza Serttas
- Department of Medical Biology, School of Medicine, Trakya University, Balkan Campus, Edirne, Turkey
| | - Kader Turkekul
- Department of Medical Biology, School of Medicine, Trakya University, Balkan Campus, Edirne, Turkey
| | - Ilker Dibirdik
- Department of Biochemistry, School of Medicine, Trakya University, Balkan Campus, Edirne, Turkey
| | - Ayhan Bilir
- Department of Histology and Embryology, School of Medicine, İstanbul University, Capa, Istanbul, Turkey
| |
Collapse
|
26
|
Natural Polyphenols for Prevention and Treatment of Cancer. Nutrients 2016; 8:nu8080515. [PMID: 27556486 PMCID: PMC4997428 DOI: 10.3390/nu8080515] [Citation(s) in RCA: 410] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/12/2016] [Accepted: 08/12/2016] [Indexed: 02/06/2023] Open
Abstract
There is much epidemiological evidence that a diet rich in fruits and vegetables could lower the risk of certain cancers. The effect has been attributed, in part, to natural polyphenols. Besides, numerous studies have demonstrated that natural polyphenols could be used for the prevention and treatment of cancer. Potential mechanisms included antioxidant, anti-inflammation as well as the modulation of multiple molecular events involved in carcinogenesis. The current review summarized the anticancer efficacy of major polyphenol classes (flavonoids, phenolic acids, lignans and stilbenes) and discussed the potential mechanisms of action, which were based on epidemiological, in vitro, in vivo and clinical studies within the past five years.
Collapse
|
27
|
Lim W, Park S, Bazer FW, Song G. Apigenin Reduces Survival of Choriocarcinoma Cells by Inducing Apoptosis via the PI3K/AKT and ERK1/2 MAPK Pathways. J Cell Physiol 2016; 231:2690-9. [PMID: 26970256 DOI: 10.1002/jcp.25372] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 03/08/2016] [Indexed: 02/04/2023]
Abstract
Apigenin is a flavonoid found in parsley, onions, oranges, tea, chamomile, wheat, and sprouts. It has a variety of biological properties including anti-oxidant, anti-mutagenic, anti-carcinogenic, anti-inflammatory, anti-proliferative, and anti-spasmodic effects. Based on epidemiological and case-control studies, apigenin is regarded as a novel chemotherapeutic agent against various cancer types. However, little is known about the effects of apigenin on choriocarcinoma cells. Therefore, we investigated the anti-cancer effects of apigenin on choriocarcinoma cells (JAR and JEG3) in the present study. Apigenin reduced viability and migratory properties, increased apoptosis, and suppressed mitochondrial membrane potential in both the JAR and JEG3 cells. In addition, apigenin predominantly decreased phosphorylation of AKT, P70RSK, and S6 whereas the phosphorylation of ERK1/2 and P90RSK was increased by apigenin treatment of JAR and JEG3 cells in a dose-dependent manner. Moreover, treatment of JAR and JEG3 cells with both apigenin and pharmacological inhibitors of PI3K/AKT (LY294002) and ERK1/2 (U0126) revealed synergistic anti-proliferative effects. Collectively, these results indicated that the apigenin is an invaluable chemopreventive agent that inhibits progression and metastasis of choriocarcinoma cells through regulation of PI3K/AKT and ERK1/2 MAPK signal transduction mechanism. J. Cell. Physiol. 231: 2690-2699, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Whasun Lim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Sunwoo Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Fuller W Bazer
- Department of Animal Science, Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, Texas
| | - Gwonhwa Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
28
|
Wu SH, Hsiao YT, Kuo CL, Yu FS, Hsu SC, Wu PP, Chen JC, Hsia TC, Liu HC, Hsu WH, Chung JG. Bufalin Inhibits NCI-H460 Human Lung Cancer Cell Metastasis In Vitro by Inhibiting MAPKs, MMPs, and NF-κB Pathways. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 43:1247-64. [PMID: 26446205 DOI: 10.1142/s0192415x15500718] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Bufalin, a component of Chan Su (a traditional Chinese medicine), has been known to have antitumor effects for thousands of years. In this study, we investigated its anti-metastasis effects on NCI-H460 lung cancer cells. Under sub-lethal concentrations (from 25 up to 100 nM), bufalin significantly inhibits the invasion and migration nature of NCI-H460 cells that were measured by Matrigel Cell Migration Assay and Invasion System. Bufalin also suppressed the enzymatic activity of matrix metalloproteinase (MMP)-9, which was examined by gelatin zymography methods. Western blotting revealed that bufalin depressed several key metastasis-related proteins, such as NF-κB, MMP-2, MMP-9, protein kinase C (PKC), phosphatidylinositol 3-kinase (PI3-K), phosphorylated Akt, growth factor receptor-bound protein 2 (GRB2), phosphorylated extracellular signal-regulated kinase (ERK), phosphorylated p38, and phosphorylated c-Jun NH2-terminal kinase (JNK). As evidenced by immunostaining and the electrophoretic mobility shift assay (EMSA), bufalin induced not only a decreased cytoplasmic NF-κB production, but also decreased its nuclear translocation. Several metastasis-related genes, including Rho-associated (Rho A), coiled-coil-containing protein kinase 1 (ROCK1), and focal adhesion kinase (FAK), were down-regulated after bufalin treatment. In conclusion, bufalin is effective in inhibiting the metastatic nature of NCI-H460 cells in low, sub-lethal concentrations. Such an effect involves many mechanisms including MMPs, mitogen-activated protein kinases (MAPKs) and NF-κB systems. Bufalin has a potential to evolve into an anti-metastasis drug for human lung cancer in the future.
Collapse
Affiliation(s)
- Shin-Hwar Wu
- Institute of Clinical Medical Science, China Medical University, Taichung 404, Taiwan.,Division of Critical Care Medicine, Department of Medicine, Changhua Christian Hospital, Changhua 505, Taiwan
| | - Yung-Ting Hsiao
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan
| | - Chao-Lin Kuo
- Department of Chinese Medicine Resources, China Medical University, Taichung 404, Taiwan
| | - Fu-Shun Yu
- School of Dentistry, China Medical University, Taichung 404, Taiwan
| | - Shu-Chun Hsu
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan
| | - Ping-Ping Wu
- School of Pharmacy, China Medical University, Taichung 404, Taiwan
| | - Jaw-Chyun Chen
- Department of Medicinal Botany and Health Applications, Da-Yeh University, Changhua 515, Taiwan
| | - Te-Chun Hsia
- Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Hsin-Chung Liu
- Department of Chinese Medicine Resources, China Medical University, Taichung 404, Taiwan
| | - Wu-Huei Hsu
- Department of Internal Medicine, China Medical University, Taichung 404, Taiwan.,Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Jing-Gung Chung
- Department of Chinese Medicine Resources, China Medical University, Taichung 404, Taiwan.,Department of Biotechnology, Asia University, Taichung 413, Taiwan
| |
Collapse
|
29
|
Naidek KP, Zuconelli CR, Cruz OM, Ribeiro R, Winnischofer SM, Winnischofer H. Characterization of 2,3,6,7,10,11-hexahydroxytriphenylene and its effects on cell viability in human cancer cell lines. Biochem Cell Biol 2016; 94:205-11. [DOI: 10.1139/bcb-2015-0093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We synthesized 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP), characterized it by electrochemistry, spectroelectrochemistry, and electron paramagnetic resonance techniques, and evaluated its cytotoxicity to human cancer cell lines. The results revealed that HHTP has accessible higher-oxidation states, especially the tris-semiquinone monoradical. This species is stable and is formed after being stored for months. HHTP exhibited cytotoxic effects on 5 human cancer cell lines, including glioma and lung cancer cells. The cytotoxic effect was evaluated based on the decrease in cell viability, increases in the percentage of cells with fragmented DNA, and elevated numbers of annexin V–PI-positive cells after HHTP treatment.
Collapse
Affiliation(s)
- Karine P. Naidek
- Universidade Federal do Paraná, Dep. Química, C.P. 19081, 81531-980, Curitiba, Paraná, Brazil
| | - Cristiane R. Zuconelli
- Universidade Federal do Paraná, Dep. Bioquímica e Biologia Molecular, C.P. 19046, 81531-980, Curitiba, Paraná, Brazil
| | - Otavio M. Cruz
- Universidade Federal do Paraná, Dep. Bioquímica e Biologia Molecular, C.P. 19046, 81531-980, Curitiba, Paraná, Brazil
| | - Ronny Ribeiro
- Universidade Federal do Paraná, Dep. Química, C.P. 19081, 81531-980, Curitiba, Paraná, Brazil
| | - Sheila M.B. Winnischofer
- Universidade Federal do Paraná, Dep. Bioquímica e Biologia Molecular, C.P. 19046, 81531-980, Curitiba, Paraná, Brazil
| | - Herbert Winnischofer
- Universidade Federal do Paraná, Dep. Química, C.P. 19081, 81531-980, Curitiba, Paraná, Brazil
| |
Collapse
|
30
|
Andueza A, García-Garzón A, Ruiz de Galarreta M, Ansorena E, Iraburu MJ, López-Zabalza MJ, Martínez-Irujo JJ. Oxidation pathways underlying the pro-oxidant effects of apigenin. Free Radic Biol Med 2015; 87:169-80. [PMID: 26119779 DOI: 10.1016/j.freeradbiomed.2015.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 05/22/2015] [Accepted: 06/17/2015] [Indexed: 10/23/2022]
Abstract
Apigenin, a natural flavone, is emerging as a promising compound for the treatment of several diseases. One of the hallmarks of apigenin is the generation of intracellular reactive oxygen species (ROS), as judged by the oxidation of reduced dichlorofluorescein derivatives seen in many cell types. This study aimed to reveal some mechanisms by which apigenin can be oxidized and how apigenin-derived radicals affect the oxidation of 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein (H(2)DCF), a probe usually employed to detect intracellular ROS. Apigenin induced a rapid oxidation of H(2)DCF in two different immortalized cell lines derived from rat and human hepatic stellate cells. However, apigenin did not generate ROS in these cells, as judged by dihydroethidium oxidation and extracellular hydrogen peroxide production. In cell-free experiments we found that oxidation of apigenin leads to the generation of a phenoxyl radical, which directly oxidizes H(2)DCF with catalytic amounts of hydrogen peroxide. The net balance of the reaction was the oxidation of the probe by molecular oxygen due to redox cycling of apigenin. This flavonoid was also able to deplete NADH and glutathione by a similar mechanism. Interestingly, H(2)DCF oxidation was significantly accelerated by apigenin in the presence of horseradish peroxidase and xanthine oxidase, but not with other enzymes showing peroxidase-like activity, such as cytochrome c or catalase. We conclude that in cells treated with apigenin oxidation of reduced dichlorofluorescein derivatives does not measure intracellular ROS and that pro- and antioxidant effects of flavonoids deduced from these experiments are inconclusive and must be confirmed by other techniques.
Collapse
Affiliation(s)
- Aitor Andueza
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain
| | - Antonia García-Garzón
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain
| | | | - Eduardo Ansorena
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain
| | - María J Iraburu
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain
| | - María J López-Zabalza
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain
| | - Juan J Martínez-Irujo
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain.
| |
Collapse
|
31
|
Singh P, Tomar RS, Rath SK. Anticancer potential of the histone deacetylase inhibitor-like effects of flavones, a subclass of polyphenolic compounds: a review. Mol Biol Rep 2015; 42:1515-31. [PMID: 26033434 DOI: 10.1007/s11033-015-3881-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 10/30/2014] [Indexed: 12/26/2022]
Abstract
Cancer is characterized by the uncontrolled division of cells, followed by their invasion to other tissues. These kinds of cellular abnormalities arise as a result of the accumulation of genetic mutations or epigenetic alterations. Targeting genetic mutations by drugs is a conventional treatment approach. Nowadays, the development and use of epigenetic drugs are burgeoning, owing to the advancements in epigenetic research. The therapeutic intervention of cancer development by histone deacetylase inhibitors (HDACIs) holds promise for helping to control the disease, but their nonspecific functions impose certain side effects. Therefore, the search for more HDACIs becomes essential. Plentiful literature on the versatility of dietary components including flavones, a class of the flavonoid group, has already established these compounds to be better anticancer agents. The present review focuses on the significance of flavones with regard to their HDACI-mimicking effects as suggested by the recent evidences. The review also proposes an in-depth screening of flavones in future studies, in the hope that flavones may provide a better alternative to synthetic HDACIs.
Collapse
Affiliation(s)
- Prabhat Singh
- Department of Biological Sciences, Indian Institute of Science Education & Research Bhopal (IISER Bhopal), I.T.I. Transit Campus, Govindpura, Bhopal, 462023, M.P., India.
| | - Raghuvir Singh Tomar
- Department of Biological Sciences, Indian Institute of Science Education & Research Bhopal (IISER Bhopal), I.T.I. Transit Campus, Govindpura, Bhopal, 462023, M.P., India
| | - Srikanta Kumar Rath
- Division of Toxicology, CSIR-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
32
|
The Flavonoid Apigenin Ameliorates Cisplatin-Induced Nephrotoxicity through Reduction of p53 Activation and Promotion of PI3K/Akt Pathway in Human Renal Proximal Tubular Epithelial Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:186436. [PMID: 26089934 PMCID: PMC4454761 DOI: 10.1155/2015/186436] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/10/2015] [Indexed: 12/17/2022]
Abstract
Apigenin is a member of the flavone subclass of flavonoids present in fruits and vegetables. Apigenin has long been considered to have various biological activities, such as antioxidant, anti-inflammatory, and antitumorigenic properties, in various cell types. Cisplatin was known to exhibit cytotoxic effect to renal cells by inducing apoptosis through activation of p53. The present study investigated the antiapoptotic effects of apigenin on the cisplatin-treated human renal proximal tubular epithelial (HK-2) cells. HK-2 cells were pretreated with apigenin (5, 10, 20 μM) for 1 h and then treated with 40 μM cisplatin for various times. Apigenin inhibited the cisplatin-induced apoptosis of HK-2 cells. Interestingly, apigenin itself exerted cytostatic activity because of its ability to induce cell cycle arrest. Apigenin inhibited caspase-3 activity and PARP cleavage in cisplatin-treated cells. Apigenin reduced cisplatin-induced phosphorylation and expression of p53, with no significant influence on production of ROS that is known to induce p53 activation. Furthermore, apigenin promoted cisplatin-induced Akt phosphorylation, suggesting that enhanced Akt activation may be involved in cytoprotection. Taken together, these results suggest that apigenin ameliorates cisplatin-induced apoptosis through reduction of p53 activation and promotion of PI3K/Akt pathway in HK-2 cells.
Collapse
|
33
|
Suh YA, Jo SY, Lee HY, Lee C. Inhibition of IL-6/STAT3 axis and targeting Axl and Tyro3 receptor tyrosine kinases by apigenin circumvent taxol resistance in ovarian cancer cells. Int J Oncol 2014; 46:1405-11. [PMID: 25544427 DOI: 10.3892/ijo.2014.2808] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 11/26/2014] [Indexed: 11/05/2022] Open
Abstract
Ovarian cancer is the number one cause of death from gynaecological malignancy. Platinum-based and taxol-based chemotherapy has been used as a standard therapy, but intrinsic and acquired resistance to chemotherapy is a major obstacle to treat the disease. In the present study, we found that in the chemoresistant ovarian cancer SKOV3/TR cells, interleukin-6 (IL-6), IL-6 receptor and signal transducers and activators of transcription 3 (STAT3) expression as well as STAT3 phosphorylation were upregulated compared to those in parental cells. Silencing of IL-6 using IL-6 siRNA was found to suppress IL-6 production, STAT3 and phosphoSTAT3 levels, which eventually reduced proliferation and clonogenicity of taxol-resistant SKOV3/TR cells. In addition, stattic, a STAT3 inhibitor, was found to result in decrease of cell viability and clonogenicity of these cells, indicating that the elevated IL-6 and STAT3, phosphoSTAT3 levels are associated with the development of taxol resistance. Next, we found anti-proliferative effect of apigenin on both SKOV3 and SKOV3/TR cells. RT-PCR and western blot results showed that apigenin significantly reduced the expression of Axl and Tyro3 receptor tyrosine kinases (RTKs) at mRNA and protein level, which account for its cytotoxic activity. We further found that apigenin decreased Akt phosphorylation and the level of B-cell lymphoma-extra large (Bcl-xl or BCL2-like 1 isoform 1), an inhibitor of apoptosis. On the contrary to these results, apigenin had no effect on IL-6 production, STAT3 and phosphoSTAT3 protein levels, suggesting that apigenin exerts its anti-proliferative activity via downregulation of Axl and Tyro3 expression, Akt phosphorylation and Bcl-xl expression, but not modulation of IL-6/STAT3 axis. Taken together, our data suggest that inhibition of IL-6/STAT3 signaling pathway and downregulation of Axl and Tyro3 RTKs expression might be a therapeutic strategy to overcome taxol resistance in ovarian cancer cells.
Collapse
Affiliation(s)
- Young-Ah Suh
- Institute for Innovative Cancer Research, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Se-Young Jo
- Institute for Innovative Cancer Research, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Hwa-Young Lee
- Department of Biochemistry and Molecular Biology, School of Medicine, Yeungnam University, Daegu 705-717, Republic of Korea
| | - Chuhee Lee
- Department of Biochemistry and Molecular Biology, School of Medicine, Yeungnam University, Daegu 705-717, Republic of Korea
| |
Collapse
|
34
|
Avelino-Flores MDC, Cruz-López MDC, Jiménez-Montejo FE, Reyes-Leyva J. Cytotoxic activity of the methanolic extract of Turnera diffusa Willd on breast cancer cells. J Med Food 2014; 18:299-305. [PMID: 25299247 DOI: 10.1089/jmf.2013.0055] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Turnera diffusa Willd, commonly known as Damiana, is employed in traditional medicine as a stimulant, aphrodisiac, and diuretic. Its leaves and stems are used for flavoring and infusion. Damiana is considered to be safe for medicinal use by the FDA. Pharmacological studies have established the hypoglycemic, antiaromatase, prosexual, estrogenic, antibacterial, and antioxidant activity of T. diffusa. The aim of the present study was to evaluate the possible cytotoxic effect of extracts and organic fractions of this plant on five tumor cell lines (SiHa, C-33, Hep G2, MDA-MB-231, and T-47D) and normal human fibroblasts. The results show that the methanolic extract (TdM) displayed greater activity on MDA-MB-231 breast cancer cells (with an IC50 of 30.67 μg/mL) than on the other cancer cell lines. Four organic fractions of this extract exhibited activity on this cancer cell line. In the most active fraction (F4), two active compounds were isolated, arbutin (1) and apigenin (2). This is the first report of a cytotoxic effect by T. diffusa on cancer cells. The IC50 values suggest that the methanolic extract of T. diffusa has potential as an anticancer therapy.
Collapse
|
35
|
Sak K. Cytotoxicity of dietary flavonoids on different human cancer types. Pharmacogn Rev 2014; 8:122-46. [PMID: 25125885 PMCID: PMC4127821 DOI: 10.4103/0973-7847.134247] [Citation(s) in RCA: 297] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 03/27/2014] [Accepted: 06/10/2014] [Indexed: 02/06/2023] Open
Abstract
Flavonoids are ubiquitous in nature. They are also in food, providing an essential link between diet and prevention of chronic diseases including cancer. Anticancer effects of these polyphenols depend on several factors: Their chemical structure and concentration, and also on the type of cancer. Malignant cells from different tissues reveal somewhat different sensitivity toward flavonoids and, therefore, the preferences of the most common dietary flavonoids to various human cancer types are analyzed in this review. While luteolin and kaempferol can be considered as promising candidate agents for treatment of gastric and ovarian cancers, respectively, apigenin, chrysin, and luteolin have good perspectives as potent antitumor agents for cervical cancer; cells from main sites of flavonoid metabolism (colon and liver) reveal rather large fluctuations in anticancer activity probably due to exposure to various metabolites with different activities. Anticancer effect of flavonoids toward blood cancer cells depend on their myeloid, lymphoid, or erythroid origin; cytotoxic effects of flavonoids on breast and prostate cancer cells are highly related to the expression of hormone receptors. Different flavonoids are often preferentially present in certain food items, and knowledge about the malignant tissue-specific anticancer effects of flavonoids could be purposely applied both in chemoprevention as well as in cancer treatment.
Collapse
Affiliation(s)
- Katrin Sak
- Non Government Organization Praeventio, Tartu, Estonia
| |
Collapse
|
36
|
Kim KC, Choi EH, Lee C. Axl receptor tyrosine kinase is a novel target of apigenin for the inhibition of cell proliferation. Int J Mol Med 2014; 34:592-8. [PMID: 24926787 DOI: 10.3892/ijmm.2014.1804] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 06/03/2014] [Indexed: 12/14/2022] Open
Abstract
The Axl receptor tyrosine kinase (RTK), along with Tyro 3 and Mer, belongs to the TAM subfamily that promotes survival, stimulates proliferation and/or inhibits apoptosis. In various types of human cancer, including breast, lung and prostate cancer, Axl expression is increased and correlates with an advanced clinical stage. In this study, we examined whether apigenin has an effect on Axl expression, which in turn can affect cell proliferation. The treatment of the non‑small cell lung cancer (NSCLC) cells, A549 and H460, with apigenin decreased Axl mRNA and protein expression in a dose‑dependent manner. Axl promoter activity was also inhibited by apigenin, indicating that apigenin suppressed Axl expression at the transcriptional level. Upon treatment with apigenin, the viability of both the A549 and H460 cells was gradually decreased and the anti-proliferative effects were further confirmed by the dose‑dependent decrease in the clonogenic ability of the apigenin‑treated cells. Subsequently, we found that the viability and clonogenic ability of the cells treated with apigenin was less or more affected by transfection of the cells with a Axl-expressing plasmid or Axl targeting siRNA, compared to transfection with the empty vector or control siRNA, respectively. In addition, apigenin increased the expression of p21, a cyclin-dependent kinase inhibitor, but reduced the expression of X-linked inhibitor of apoptosis protein (XIAP). These cell cycle arrest and pro-apoptotic effects of apigenin were also attenuated or augmented by the up- or downregulation of Axl expression, respectively, which suggests that Axl is a novel target of apigenin through which it exerts its inhibitory effects on cell proliferation. Taken together, our data indicate that apigenin downregulates Axl expression, which subsequently results in the inhibition of NSCLC cell proliferation through the increase and decrease of p21 and XIAP expression, respectively.
Collapse
Affiliation(s)
- Kyung-Chan Kim
- Department of Internal Medicine, College of Medicine, Catholic University of Daegu, Daegu 705-718, Republic of Korea
| | - Eun-Ha Choi
- Department of Biochemistry and Molecular Biology, School of Medicine, Yeungnam University, Daegu 705-717, Republic of Korea
| | - Chuhee Lee
- Department of Biochemistry and Molecular Biology, School of Medicine, Yeungnam University, Daegu 705-717, Republic of Korea
| |
Collapse
|
37
|
Bao YY, Zhou SH, Fan J, Wang QY. Anticancer mechanism of apigenin and the implications of GLUT-1 expression in head and neck cancers. Future Oncol 2014; 9:1353-64. [PMID: 23980682 DOI: 10.2217/fon.13.84] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Apigenin, a natural phytoestrogen flavonoid, has potential biological effects, including antioxidative, anti-inflammatory and anticancer activities. The mechanisms of anticancer activities of apigenin are unknown. Some studies have found that apigenin inhibits GLUT-1 mRNA and protein expression in cancer cells. Thus, we hypothesized that apigenin exerts similar effects on head and neck cancers through its inhibition of GLUT-1 expression. In this article, we review the anticancer mechanism of apigenin and the implications of GLUT-1 expression in head and neck cancers. In addition, we describe the current state of knowledge about the relationship between apigenin and GLUT-1 expression in head and neck cancers.
Collapse
Affiliation(s)
- Yang-Yang Bao
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou City, Zhejiang Province, China
| | | | | | | |
Collapse
|
38
|
Teiten MH, Gaascht F, Dicato M, Diederich M. Anticancer bioactivity of compounds from medicinal plants used in European medieval traditions. Biochem Pharmacol 2013; 86:1239-47. [DOI: 10.1016/j.bcp.2013.08.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 08/06/2013] [Accepted: 08/06/2013] [Indexed: 11/24/2022]
|
39
|
Chunhua L, Donglan L, Xiuqiong F, Lihua Z, Qin F, Yawei L, Liang Z, Ge W, Linlin J, Ping Z, Kun L, Xuegang S. Apigenin up-regulates transgelin and inhibits invasion and migration of colorectal cancer through decreased phosphorylation of AKT. J Nutr Biochem 2013; 24:1766-75. [PMID: 23773626 DOI: 10.1016/j.jnutbio.2013.03.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 03/07/2013] [Accepted: 03/19/2013] [Indexed: 12/12/2022]
Abstract
Colorectal cancer (CRC) is a major cause of morbidity and mortality throughout the world. Apigenin is a flavonoid that possesses various clinically relevant properties such as anti-tumour, anti-platelet and anti-inflammatory activities. Our results showed that apigenin has anti-proliferation, anti-invasion and anti-migration effects in three kinds of colorectal adenocarcinoma cell lines, namely SW480, DLD-1 and LS174T. Proteomic analysis with SW480 indicated that apigenin up-regulated the expression of transgelin (TAGLN) in mitochondria to exert its anti-tumour growth and anti-metastasis effects. Real-time quantitative polymerase chain reaction (RQ-PCR) and western blot confirm the up-regulation in all the three colorectal adenocarcinoma cells. An inverse correlation was observed between TAGLN expression and CRC metastasis in tissue microarray staining. TAGLN siRNA increased the viability of SW480. Apigenin decreased the expression of MMP-9 in a dose-dependent manner. Transfection of three truncated forms of TAGLN and wild type has identified TAGLN as a repressor of MMP-9 expression. A synergetic effect was observed in overexpression of TAGLN wild type and apigenin treatment which manifested as lowered phosphorylation of AKT Ser473 and ATK Thr308. In an orthotopic CRC model, apigenin inhibited tumour growth and metastasis to liver and lung. In conclusion, our research provided direct evidence that apigenin inhibited tumour growth and metastasis both in vitro and in vivo. Apigenin up-regulated TAGLN and hence down-regulated MMP-9 expression through decreasing phosphorylation of Akt at Ser473 and in particular Thr308 to prevent cell proliferation and migration.
Collapse
Affiliation(s)
- Li Chunhua
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Taishan People's Hospital, Taishan 529200, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Wu RSC, Yu CS, Liu KC, Huang HY, Ip SW, Lin JP, Chueh FS, Yang JS, Chung JG. Citosol (thiamylal sodium) triggers apoptosis and affects gene expressions of murine leukemia RAW 264.7 cells. Hum Exp Toxicol 2012; 31:771-9. [DOI: 10.1177/0960327111429137] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Citosol (thiamylal sodium) is one of generally used anesthetic–sedative agents for clinical patients, and it has not been reported to show induction of cytotoxic effects in cancer cells, especially in mice leukemia RAW 264.7 cells in vitro. In the present study, we investigated the cytotoxic effects of citosol on mice leukemic RAW 264.7 cells, including the effects on protein and gene expression levels which are determined by Western blotting and DNA microarray methods, respectively. Results indicated that citosol induced cell morphological changes, cytotoxic effect, and induction of apoptosis in RAW 264.7 cells. Western blotting analysis demonstrated that citosol promoted the levels of Fas, cytochrome c, caspase 9 and 3 active form and Bax levels, but it suppressed Bcl-xl protein level that may lead to apoptotic death in RAW 264.7 cells. Furthermore, DNA microarray assay indicated that citosol significantly promoted the expression of 5 genes (Gm4884, Gm10883, Lce1c, Lrg1, and LOC100045878) and significantly inhibited the expression of 24 genes (Gm10679, Zfp617, LOC621831, Gm5929, Snord116, Gm3994, LOC380994, Gm5592, LOC380994, LOC280487, Gm4638, Tex24, A530064D06Rik, BC094916, EG668725, Gm189, Hist2h3c2, Gm8020, Snord115, Gm3079, Olfr198, Tdh, Snord115, and Olfr1249). Based on these observations, citosol induced cell apoptosis and influenced gene expression in mice leukemia RAW 264.7 cells in vitro.
Collapse
Affiliation(s)
- RS-C Wu
- Department of Anesthesiology, China Medical University Hospital, Taichung, Taiwan
| | - C-S Yu
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - K-C Liu
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - H-Y Huang
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - S-W Ip
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - J-P Lin
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - F-S Chueh
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - J-S Yang
- Department of Pharmacology, China Medical University, Taichung, Taiwan
| | - J-G Chung
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
41
|
Jayasooriya RGPT, Kang SH, Kang CH, Choi YH, Moon DO, Hyun JW, Chang WY, Kim GY. Apigenin decreases cell viability and telomerase activity in human leukemia cell lines. Food Chem Toxicol 2012; 50:2605-11. [PMID: 22617349 DOI: 10.1016/j.fct.2012.05.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Revised: 04/21/2012] [Accepted: 05/11/2012] [Indexed: 10/28/2022]
Abstract
Recent studies have shown that apigenin (4',5,7-trihydroxyflavone inhibits human malignant cancer cell growth through cell cycle arrest and apoptosis. However, the underlying relationship between apoptosis and telomerase activity in response to apigenin exposure is not well understood. In this study, we found that apigenin significantly induces direct cytotoxicity in human leukemia cells (U937, THP-1 and HL60) through activation of the caspase pathway. As we presumed, treatment with apigenin was found to increase the level of intracellular reactive oxygen species (ROS), whereas pretreatment with antioxidants, N-acetyl-cysteine (NAC) or glutathione (GSH), completely attenuated ROS generation. Surprisingly, these antioxidants did not promote recuperation from apigenin-induced cell death. We further showed that apigenin downregulates telomerase activity in caspase-dependent apoptosis and observed that apigenin dosing results in downregulation of telomerase activity by suppression of c-Myc-mediated telomerase reverse transcriptase (hTERT) expression. In addition, treatment of apigenin-dosed cells with the two antioxidants did not restore telomerase activity. Taken together, this data suggests that ROS is not essential for suppression of apigenin-mediated apoptosis associated with the activation of caspases and regulation of telomerase activity via suppression of hTERT. We conclude that apigenin has a direct cytotoxic effect and the loss of telomerase activity in leukemia cells.
Collapse
Affiliation(s)
- R G P T Jayasooriya
- Laboratory of Immunobiology, Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Benarba B, Meddah B, Aoues A. Bryonia dioica aqueous extract induces apoptosis through mitochondrial intrinsic pathway in BL41 Burkitt's lymphoma cells. JOURNAL OF ETHNOPHARMACOLOGY 2012; 141:510-516. [PMID: 22465729 DOI: 10.1016/j.jep.2012.02.052] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Revised: 01/16/2012] [Accepted: 02/07/2012] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bryonia dioica Jacq. is a climbing perennial herb with tuberous roots which is widely used in traditional medicine in Algeria for the treatment of cancers; it belongs to the genus Bryonia (Cucurbitaceae). AIM OF THE STUDY To investigate the cytotoxic and apoptogenic activities, the phytochemical composition and acute toxicity of the aqueous extract of Bryonia dioica roots growing in Algeria. MATERIALS AND METHODS Dried roots of Bryonia dioica were extracted with water (decoction). The cytotoxic effects of the aqueous extract in the Burkitt's lymphoma BL41 cell lines were evaluated by flow cytometry. Apoptosis induction was assessed by two corroborative assays; propidium iodide (PI) staining of cell DNA and flow cytometric light scatter analysis. The mitochondria membrane potential was investigated using a fluorescent dye DIOC6. The expression of caspases-3, -8, -9 and PARP was assessed by Western blot. The phytochemical screening of the roots of Bryonia dioica was performed using qualitative phytochemical standard procedures. RESULTS The Bryonia dioica aqueous extract induced cell death in a dose-dependent manner. The IC50 of Bryonia dioica aqueous extract was estimated to be approximately 15, 63μg/ml. This was accompanied by induction of apoptosis, activation of caspase-3 and -9, cleavage of PARP and loss of mitochondria membrane potential. Furthermore, the phytochemical screening of roots of Bryonia dioica showed the presence of various bioactive such as polyphenols, sterols and triterpenes, alkaloids, c-heterosides, carbohydrates and saponins. CONCLUSION The aqueous extract of Bryonia dioica induces apoptosis in the Burkitt's lymphoma BL41 cell lines via the mitochondrial pathway. The flavonoids, sterols and triterpens detected could be responsible for the cytotoxic and apoptogenic activities of the aqueous extract of Bryonia dioica. These findings suggest that Bryonia dioica could be considered as a promising source for developing novel therapeutics against Burkitt's lymphoma.
Collapse
MESH Headings
- Antineoplastic Agents, Phytogenic/chemistry
- Antineoplastic Agents, Phytogenic/isolation & purification
- Antineoplastic Agents, Phytogenic/pharmacology
- Antineoplastic Agents, Phytogenic/toxicity
- Apoptosis/drug effects
- Blotting, Western
- Bryonia/chemistry
- Burkitt Lymphoma/metabolism
- Burkitt Lymphoma/pathology
- Caspase 3/metabolism
- Caspase 9/metabolism
- Cell Line, Tumor
- Dose-Response Relationship, Drug
- Flow Cytometry
- Humans
- Inhibitory Concentration 50
- Light
- Membrane Potential, Mitochondrial/drug effects
- Mitochondria/drug effects
- Mitochondria/metabolism
- Mitochondria/pathology
- Phytotherapy
- Plant Extracts/chemistry
- Plant Extracts/isolation & purification
- Plant Extracts/pharmacology
- Plant Extracts/toxicity
- Plant Roots
- Plants, Medicinal
- Poly(ADP-ribose) Polymerases/metabolism
- Scattering, Radiation
- Signal Transduction/drug effects
- Solvents/chemistry
- Water/chemistry
Collapse
Affiliation(s)
- Bachir Benarba
- Laboratory Research on Biological Systems and Geomatics, Faculty of Nature and Life, University of Mascara, Algeria.
| | | | | |
Collapse
|
43
|
Zbidah M, Lupescu A, Jilani K, Fajol A, Michael D, Qadri SM, Lang F. Apigenin-induced suicidal erythrocyte death. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:533-538. [PMID: 22132906 DOI: 10.1021/jf204107f] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Apigenin, a flavone in fruits and vegetables, stimulates apoptosis and thus counteracts cancerogenesis. Erythrocytes may similarly undergo suicidal cell death or eryptosis, characterized by cell shrinkage and phosphatidylserine exposure at the cell surface. Triggers of eryptosis include increase of cytosolic Ca(2+) activity ([Ca(2+)](i)), ceramide formation and ATP depletion. The present study explored the effect of apigenin on eryptosis. [Ca(2+)](i) was estimated from Fluo3-fluorescence, cell volume from forward scatter, phosphatidylserine exposure from annexin V binding, hemolysis from hemoglobin release, ceramide utilizing antibodies, and cytosolic ATP with luciferin-luciferase. A 48 h exposure to apigenin significantly increased [Ca(2+)](i) (≥ 1 μM), increased ceramide formation (15 μM), decreased ATP concentration (15 μM), decreased forward scatter (≥ 1 μM), and increased annexin V binding (≥ 5 μM) but did not significantly modify hemolysis. The effect of 15 μM apigenin on annexin V binding was blunted by Ca(2+) removal. The present observations reveal novel effects of apigenin, i.e. stimulation of Ca(2+) entry, ceramide formation and ATP depletion in erythrocytes with subsequent triggering of suicidal erythrocyte death, paralleled by cell shrinkage and phosphatidylserine exposure.
Collapse
Affiliation(s)
- Mohanad Zbidah
- Department of Physiology, University of Tuebingen, Gmelinstraße 5, 72076 Tuebingen, Germany
| | | | | | | | | | | | | |
Collapse
|
44
|
Sun QW, Jiang SM, Yang K, Zheng JM, Zhang L, Xu WD. Apigenin enhances the cytotoxic effects of tumor necrosis factor-related apoptosis-inducing ligand in human rheumatoid arthritis fibroblast-like synoviocytes. Mol Biol Rep 2011; 39:5529-35. [PMID: 22189539 DOI: 10.1007/s11033-011-1356-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Accepted: 12/12/2011] [Indexed: 12/29/2022]
Abstract
Activated rheumatoid arthritis (RA) fibroblast-like synoviocytes (RAFLSs) play a central role in both initiating and driving RA. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been documented to induce apoptosis only in a small proportion of RAFLSs, which is followed by an induction of proliferation in surviving cells. Apigenin, a chemopreventive bioflavonoid, exhibits proapoptotic activity in many types of cells. In the present study, we sought to determine whether apigenin could enhance the cytotoxic effect of TRAIL on activated RAFLSs. Human RAFLSs isolated from patients with RA were treated with TRAIL (1 nM), apigenin (20 μM), or their combination, and subjected to apoptosis analysis after a 24-h incubation and proliferation analysis after a 72-h incubation. Apoptosis assay revealed that TRAIL or apigenin alone induced a marked apoptosis in RAFLS and their combination yielded a synergistic increase in RAFLS apoptosis. Immunoblotting analysis of apoptosis regulators demonstrated that combined treatment with apigenin increased caspase-3 expression and activity and decreased the Bcl-2/Bax ratio relative to treatment with TRAIL alone. The presence of apigenin significantly restrained TRAIL-induced RAFLS proliferation, coupled with restoration of the expression of two cell-cycle inhibitors p21 and p27. Moreover, the combination with apigenin blunted TRAIL-induced activation of the phosphatidylinositol 3-kinase (PI3-K)/Akt pathway. Our data collectively demonstrate that apigenin sensitizes RAFLS to TRAIL-induced apoptosis and counteracts TRAIL-dependent RAFLS proliferation, which is likely mediated through inactivation of PI3-K/Akt signaling pathway.
Collapse
Affiliation(s)
- Qing-Wen Sun
- Central Laboratory of Shanghai Chest Hospital Affiliated to Shanghai Jiaotong University Medical College, Shanghai, China.
| | | | | | | | | | | |
Collapse
|