1
|
Lawson A, Annunziato M, Bashirova N, Eeza MNH, Matysik J, Alia A, Berry JP. High-Resolution Magic-Angle Spinning Nuclear Magnetic Resonance Identifies Impairment of Metabolism by T-2 Toxin, in Relation to Toxicity, in Zebrafish Embryo Model. Toxins (Basel) 2024; 16:424. [PMID: 39453200 PMCID: PMC11511446 DOI: 10.3390/toxins16100424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/26/2024] [Accepted: 09/28/2024] [Indexed: 10/26/2024] Open
Abstract
Among the widespread trichothecene mycotoxins, T-2 toxin is considered the most toxic congener. In the present study, we utilized high-resolution magic-angle spinning nuclear magnetic resonance (HRMAS NMR), coupled to the zebrafish (Danio rerio) embryo model, as a toxicometabolomics approach to elucidate the cellular, molecular and biochemical pathways associated with T-2 toxicity. Aligned with previous studies in the zebrafish embryo model, exposure to T-2 toxin was lethal in the high parts-per-billion (ppb) range, with a median lethal concentration (LC50) of 105 ppb. Exposure to the toxins was, furthermore, associated with system-specific alterations in the production of reactive oxygen species (ROS), including decreased ROS production in the liver and increased ROS in the brain region, in the exposed embryos. Moreover, metabolic profiling based on HRMAS NMR revealed the modulation of numerous, interrelated metabolites, specifically including those associated with (1) phase I and II detoxification, and antioxidant pathways; (2) disruption of the phosphocholine lipids of cell membranes; (3) mitochondrial energy metabolism, including apparent disruption of the tricarboxylic acid (TCA) cycle, and the electron transport chain of oxidative phosphorylation, as well as "upstream" effects on carbohydrate, i.e., glucose metabolism; and (4) several compensatory catabolic pathways. Taken together, these observations enabled development of an integrated, system-level model of T-2 toxicity in relation to human and animal health.
Collapse
Affiliation(s)
- Ariel Lawson
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33181, USA; (A.L.); (M.A.)
| | - Mark Annunziato
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33181, USA; (A.L.); (M.A.)
- Institute of Environment, Florida International University, Miami, FL 33181, USA
| | - Narmin Bashirova
- Institute for Analytical Chemistry, University of Leipzig, 04103 Leipzig, Germany; (N.B.); (M.N.H.E.); (J.M.)
- Institute for Medical Physics and Biophysics, University of Leipzig, 04107 Leipzig, Germany;
| | - Muhamed N. Hashem Eeza
- Institute for Analytical Chemistry, University of Leipzig, 04103 Leipzig, Germany; (N.B.); (M.N.H.E.); (J.M.)
- Institute for Medical Physics and Biophysics, University of Leipzig, 04107 Leipzig, Germany;
| | - Jörg Matysik
- Institute for Analytical Chemistry, University of Leipzig, 04103 Leipzig, Germany; (N.B.); (M.N.H.E.); (J.M.)
| | - A. Alia
- Institute for Medical Physics and Biophysics, University of Leipzig, 04107 Leipzig, Germany;
- Leiden Institute of Chemistry, Leiden University, 2333 Leiden, The Netherlands
| | - John. P. Berry
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33181, USA; (A.L.); (M.A.)
- Institute of Environment, Florida International University, Miami, FL 33181, USA
- Biomolecular Science Institute, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
2
|
Song M, Kang K, Wang S, Zhang C, Zhao X, Song F. Elevated intracellular Ca 2+ functions downstream of mitodysfunction to induce Wallerian-like degeneration and necroptosis in organophosphorus-induced delayed neuropathy. Toxicology 2024; 504:153812. [PMID: 38653376 DOI: 10.1016/j.tox.2024.153812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/06/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
Neurotoxic organophosphorus compounds can induce a type of delayed neuropathy in humans and sensitive animals, known as organophosphorus-induced delayed neuropathy (OPIDN). OPIDN is characterized by axonal degeneration akin to Wallerian-like degeneration, which is thought to be caused by increased intra-axonal Ca2+ concentrations. This study was designed to investigate that deregulated cytosolic Ca2+ may function downstream of mitodysfunction in activating Wallerian-like degeneration and necroptosis in OPIDN. Adult hens were administrated a single dosage of 750 mg/kg tri-ortho-cresyl phosphate (TOCP), and then sacrificed at 1 day, 5 day, 10 day and 21 day post-exposure, respectively. Sciatic nerves and spinal cords were examined for pathological changes and proteins expression related to Wallerian-like degeneration and necroptosis. In vitro experiments using differentiated neuro-2a (N2a) cells were conducted to investigate the relationship among mitochondrial dysfunction, Ca2+ influx, axonal degeneration, and necroptosis. The cells were co-administered with the Ca2+-chelator BAPTA-AM, the TRPA1 channel inhibitor HC030031, the RIPK1 inhibitor Necrostatin-1, and the mitochondrial-targeted antioxidant MitoQ along with TOCP. Results demonstrated an increase in cytosolic calcium concentration and key proteins associated with Wallerian degeneration and necroptosis in both in vivo and in vitro models after TOCP exposure. Moreover, co-administration with BATPA-AM or HC030031 significantly attenuated the loss of NMNAT2 and STMN2 in N2a cells, as well as the upregulation of SARM1, RIPK1 and p-MLKL. In contrast, Necrostatin-1 treatment only inhibited the TOCP-induced elevation of p-MLKL. Notably, pharmacological protection of mitochondrial function with MitoQ effectively alleviated the increase in intracellular Ca2+ following TOCP and mitigated axonal degeneration and necroptosis in N2a cells, supporting mitochondrial dysfunction as an upstream event of the intracellular Ca2+ imbalance and neuronal damage in OPIDN. These findings suggest that mitochondrial dysfunction post-TOCP intoxication leads to an elevated intracellular Ca2+ concentration, which plays a pivotal role in the initiation and development of OPIDN through inducing SARM1-mediated axonal degeneration and activating the necroptotic signaling pathway.
Collapse
Affiliation(s)
- Mingxue Song
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Kang Kang
- Qingdao Municipal Center for Disease Control & Prevention, Qingdao, Shandong 266033, PR China
| | - Shuai Wang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Cuiqin Zhang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Xiulan Zhao
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Fuyong Song
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China.
| |
Collapse
|
3
|
Phogat A, Singh J, Malik V, Kumar V. Neuroprotective potential of berberine against acetamiprid induced toxicity in rats: Implication of oxidative stress, mitochondrial alterations, and structural changes in brain regions. J Biochem Mol Toxicol 2023; 37:e23434. [PMID: 37350525 DOI: 10.1002/jbt.23434] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 05/10/2023] [Accepted: 06/12/2023] [Indexed: 06/24/2023]
Abstract
Acetamiprid (ACMP) is an extensively used neonicotinoid pesticide to control sucking and chewing insects and is known to cause nontarget toxicity. The present study aimed to evaluate the ameliorative potential of berberine (BBR)-a polyphenolic alkaloid- on ACMP-induced oxidative stress, mitochondrial dysfunctioning, and structural changes in different rat brain regions. The male Wistar rats were divided into four groups, that is, control, BBR-treated (150 mg/kg b.wt), ACMP-exposed (21.7 mg/kg b.wt) and BBR + ACMP co-treated; and were dosed intragastrically for 21 consecutive days. Results of the biochemical analysis showed that BBR significantly ameliorated ACMP-induced oxidative stress by decreasing lipid peroxidation and protein oxidation along with a marked increase in endogenous antioxidants and lowered AChE activity in rat brain regions. Inside mitochondria, BBR significantly attenuated the toxic effects of ACMP by increasing the activity of mitochondrial complexes. Findings of polymerase chain reaction also demonstrated the modulatory effects of BBR against ACMP-mediated downregulation of ND1, ND2, COX1, and COX4 subunits of mitochondrial complexes. The histopathological and ultrastructural examination also validated the biochemical and transcriptional alterations following toxicity of ACMP exposure and the protective potential of BBR against ACMP-induced neurotoxicity. Thus, the present study indicates the promising ameliorative potential of BBR against ACMP-induced neurotoxicity via its antioxidative and modulatory activities.
Collapse
Affiliation(s)
- Annu Phogat
- Department of Zoology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Jagjeet Singh
- Department of Zoology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Vinay Malik
- Department of Zoology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Vijay Kumar
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
4
|
van Renen J, Fischer A, Kolb N, Wielaender F, Zablotski Y, Nessler J, Tipold A, Cappello R, Flegel T, Loderstedt S, Gnirs K, Rentmeister K, Rupp S, von Klopmann T, Steffen F, Jurina K, Del Vecchio OV, Deutschland M, König F, Gandini G, Harcourt-Brown T, Kornberg M, Bianchi E, Gagliardo T, Menchetti M, Schenk H, Tabanez J, Matiasek K, Rosati M. Clinical Course and Diagnostic Findings of Biopsy Controlled Presumed Immune-Mediated Polyneuropathy in 70 European Cats. Front Vet Sci 2022; 9:875657. [PMID: 35664840 PMCID: PMC9156799 DOI: 10.3389/fvets.2022.875657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
There is a paucity of information on the clinical course and outcome of young cats with polyneuropathy. The aim of the study was to describe the clinical features, diagnostic investigations, and outcome of a large cohort of cats with inflammatory polyneuropathy from several European countries. Seventy cats with inflammatory infiltrates in intramuscular nerves and/or peripheral nerve biopsies were retrospectively included. Information from medical records and follow up were acquired via questionnaires filled by veterinary neurologists who had submitted muscle and nerve biopsies (2011-2019). Median age at onset was 10 months (range: 4-120 months). The most common breed was British short hair (25.7%), followed by Domestic short hair (24.3%), Bengal cat (11.4%), Maine Coon (8.6%) and Persian cat (5.7%), and 14 other breeds. Male cats were predominantly affected (64.3%). Clinical signs were weakness (98.6%) and tetraparesis (75.7%) in association with decreased withdrawal reflexes (83.6%) and, less commonly, cranial nerve signs (17.1%), spinal pain/hyperesthesia (12.9%), and micturition/defecation problems (14.3%). Onset was sudden (30.1%) or insidious (69.1%), and an initial progressive phase was reported in 74.3%. Characteristic findings on electrodiagnostic examination were presence of generalized spontaneous electric muscle activity (89.6%), decreased motor nerve conduction velocity (52.3%), abnormal F-wave studies (72.4%), pattern of temporal dispersion (26.1%) and unremarkable sensory tests. The clinical course was mainly described as remittent (49.2%) or remittent-relapsing (34.9%), while stagnation, progressive course or waxing and waning were less frequently reported. Relapses were common and occurred in 35.7% of the cats' population. An overall favorable outcome was reported in 79.4% of patients. In conclusion, young age at the time of diagnosis and sudden onset of clinical signs were significantly associated with recovery (p < 0.05). Clinical and electrodiagnostic features and the remittent-relapsing clinical course resembles juvenile chronic inflammatory demyelinating polyneuropathy (CIDP), as seen in human (children/adolescents), in many aspects.
Collapse
Affiliation(s)
- Jana van Renen
- Neurology Service, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians Universität München, Munich, Germany
| | - Andrea Fischer
- Neurology Service, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians Universität München, Munich, Germany
| | - Ninja Kolb
- Section of Clinical and Comparative Neuropathology, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians Universität München, Munich, Germany
| | - Franziska Wielaender
- Neurology Service, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians Universität München, Munich, Germany
| | - Yury Zablotski
- Clinic for Ruminants With Ambulatory and Herd Health Services, Ludwig-Maximilians Universität München, Munich, Germany
| | - Jasmin Nessler
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Andrea Tipold
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Rodolfo Cappello
- North Downs Specialist Referrals, The Brewerstreet Dairy Business Park, Bletchingley, United Kingdom
| | - Thomas Flegel
- Small Animal Department, University of Leipzig, Leipzig, Germany
| | | | - Kirsten Gnirs
- Section of Neurology and Neurosurgery, Advetia Clinic for Small Animal Medicine, Paris, France
| | - Kai Rentmeister
- Specialty Practice for Veterinary Neurology and Neurosurgery, Dettelbach, Germany
| | | | | | - Frank Steffen
- Neurology Service, Department of Small Animals, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | | | | | | | | | - Gualtiero Gandini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Italy
| | - Tom Harcourt-Brown
- Langford Veterinary Services, School of Veterinary Sciences, University of Bristol, Lower Langford, United Kingdom
| | | | - Ezio Bianchi
- Department of Veterinary Science, University of Parma, Parma, Italy
| | | | - Marika Menchetti
- Neurology and Neurosurgery Division, San Marco Veterinary Clinic, Veggiano, Italy
| | | | - Joana Tabanez
- Neurology Section, Fitzpatrick Referrals, Godalming, United Kingdom
| | - Kaspar Matiasek
- Section of Clinical and Comparative Neuropathology, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians Universität München, Munich, Germany
| | - Marco Rosati
- Section of Clinical and Comparative Neuropathology, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians Universität München, Munich, Germany
| |
Collapse
|
5
|
PNPLA6/NTE, an Evolutionary Conserved Phospholipase Linked to a Group of Complex Human Diseases. Metabolites 2022; 12:metabo12040284. [PMID: 35448471 PMCID: PMC9025805 DOI: 10.3390/metabo12040284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 12/27/2022] Open
Abstract
Patatin-like phospholipase domain-containing protein 6 (PNPLA6), originally called Neuropathy Target Esterase (NTE), belongs to a family of hydrolases with at least eight members in mammals. PNPLA6/NTE was first identified as a key factor in Organophosphate-induced delayed neuropathy, a degenerative syndrome that occurs after exposure to organophosphates found in pesticides and nerve agents. More recently, mutations in PNPLA6/NTE have been linked with a number of inherited diseases with diverse clinical symptoms that include spastic paraplegia, ataxia, and chorioretinal dystrophy. A conditional knockout of PNPLA6/NTE in the mouse brain results in age-related neurodegeneration, whereas a complete knockout causes lethality during embryogenesis due to defects in the development of the placenta. PNPLA6/NTE is an evolutionarily conserved protein that in Drosophila is called Swiss-Cheese (SWS). Loss of SWS in the fly also leads to locomotory defects and neuronal degeneration that progressively worsen with age. This review will describe the identification of PNPLA6/NTE, its expression pattern, and normal role in lipid homeostasis, as well as the consequences of altered NPLA6/NTE function in both model systems and patients.
Collapse
|
6
|
Huang L, Guo X, Liu P, Zhao Y, Wu C, Zhou C, Huang C, Li G, Zhuang Y, Cheng S, Cao H, Zhang C, Xu Z, Liu X, Hu G, Liu P. Correlation between acute brain injury and brain metabonomics in dichlorvos-poisoned broilers. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126849. [PMID: 34416688 DOI: 10.1016/j.jhazmat.2021.126849] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 07/17/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Dichlorvos (DDVP) is an insecticide with neurotoxicity that is widely used in agricultural production and life. However, the effects of acute DDVP poisoning on brain tissue remain underinvestigated. The purpose of this study was to evaluate the differences within 15 min-6 h in plasma biochemical indexes, brain histology and metabolites among three groups of commercial broilers orally administered different dosages of DDVP one time: (1) high-dose group (11.3 mg/kg), (2) low-dose group (2.48 mg/kg) and (3) control group (0 mg/kg). The results of biochemical indexes showed that acute DDVP poisoning could cause hyperglycemia and oxidative stress in poisoned broilers. Histological examination showed that DDVP could induce brain edema, abnormal expression of glial fibrillary acidic protein (GFAP) and neuronal mitochondrial damage in broilers. Whole-brain metabolism showed that DDVP could significantly change the secretion of neurotransmitters, energy metabolism, amino acid metabolism and nucleotide metabolism. Correlation analysis showed that metabolites such as hypoxanthine, acetylcarnitine and glucose 6-phosphate were significantly correlated with blood glucose, biomarkers of oxidative stress and brain injury pathology. The results of this study provide new insights into the molecular mechanism of brain tissue responses to acute DDVP exposure in broilers and deliver important information for clinical research on neurodegenerative diseases caused by acute DDVP poisoning.
Collapse
Affiliation(s)
- Lujia Huang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Pei Liu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yulan Zhao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Cong Wu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Changming Zhou
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Cheng Huang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Guyue Li
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yu Zhuang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Sufang Cheng
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Zheng Xu
- Department of Mathematics and Statistics, Wright State University, Dayton, OH 45435, United States
| | - Xin Liu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| | - Ping Liu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| |
Collapse
|
7
|
Farkhondeh T, Mehrpour O, Forouzanfar F, Roshanravan B, Samarghandian S. Oxidative stress and mitochondrial dysfunction in organophosphate pesticide-induced neurotoxicity and its amelioration: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:24799-24814. [PMID: 32358751 DOI: 10.1007/s11356-020-09045-z] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
Organophosphorus pesticides (OPs) are widely used for controlling pests worldwide. The inhibitory effects of these pesticides on acetylcholinesterase lead to neurotoxic damages. The oxidative stress is responsible for several neurological diseases, including Parkinson's disease, seizure, depression, and Alzheimer's disease. Strong evidence suggests that dysfunction of mitochondria and oxidative stress are involved in neurological diseases. OPs can disturb the function of mitochondria by inducing oxidative stress. In the present study, we tried to highlight the role of dysfunction of mitochondria and the induction of oxidative stress in the neurotoxicity induced by OPs. Additionally, the amelioration of OP-induced oxidative damage and mitochondrial dysfunctional through the chemical and natural antioxidants have been discussed.
Collapse
Affiliation(s)
- Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Omid Mehrpour
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences(BUMS), Birjand, Iran
- Rocky Mountain Poison and Drug Safety, Denver Health, Denver, CO, USA
| | - Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Babak Roshanravan
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
8
|
Richardson RJ, Fink JK, Glynn P, Hufnagel RB, Makhaeva GF, Wijeyesakere SJ. Neuropathy target esterase (NTE/PNPLA6) and organophosphorus compound-induced delayed neurotoxicity (OPIDN). ADVANCES IN NEUROTOXICOLOGY 2020; 4:1-78. [PMID: 32518884 PMCID: PMC7271139 DOI: 10.1016/bs.ant.2020.01.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Systemic inhibition of neuropathy target esterase (NTE) with certain organophosphorus (OP) compounds produces OP compound-induced delayed neurotoxicity (OPIDN), a distal degeneration of axons in the central nervous system (CNS) and peripheral nervous system (PNS), thereby providing a powerful model for studying a spectrum of neurodegenerative diseases. Axonopathies are important medical entities in their own right, but in addition, illnesses once considered primary neuronopathies are now thought to begin with axonal degeneration. These disorders include Alzheimer's disease, Parkinson's disease, and motor neuron diseases such as amyotrophic lateral sclerosis (ALS). Moreover, conditional knockout of NTE in the mouse CNS produces vacuolation and other degenerative changes in large neurons in the hippocampus, thalamus, and cerebellum, along with degeneration and swelling of axons in ascending and descending spinal cord tracts. In humans, NTE mutations cause a variety of neurodegenerative conditions resulting in a range of deficits including spastic paraplegia and blindness. Mutations in the Drosophila NTE orthologue SwissCheese (SWS) produce neurodegeneration characterized by vacuolization that can be partially rescued by expression of wild-type human NTE, suggesting a potential therapeutic approach for certain human neurological disorders. This chapter defines NTE and OPIDN, presents an overview of OP compounds, provides a rationale for NTE research, and traces the history of discovery of NTE and its relationship to OPIDN. It then briefly describes subsequent studies of NTE, including practical applications of the assay; aspects of its domain structure, subcellular localization, and tissue expression; abnormalities associated with NTE mutations, knockdown, and conventional or conditional knockout; and hypothetical models to help guide future research on elucidating the role of NTE in OPIDN.
Collapse
Affiliation(s)
- Rudy J. Richardson
- Molecular Simulations Laboratory, Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, United States,Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, United States,Center for Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, United States,Michigan Institute for Computational Discovery and Engineering, University of Michigan, Ann Arbor, MI, United States,Corresponding author:
| | - John K. Fink
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, United States,Ann Arbor Veterans Affairs Medical Center, Ann Arbor, MI, United States
| | - Paul Glynn
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - Robert B. Hufnagel
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Galina F. Makhaeva
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka, Russia
| | - Sanjeeva J. Wijeyesakere
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
9
|
Mouse (Mus Musculus) Embryonic Cerebral Cortex Cell Death Caused by Carbofuran Insecticide Exposure. J Vet Res 2019; 63:413-421. [PMID: 31572823 PMCID: PMC6749746 DOI: 10.2478/jvetres-2019-0040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 07/02/2019] [Indexed: 11/27/2022] Open
Abstract
Introduction The aim of the study was to describe the process of neuron death in the cerebral cortex caused by embryonic carbofuran exposure. Material and Methods 81 mouse foetuses from 27 breeding mice were used in the study. Carbofuran was administered by gavage from the 6th to the 15th day of gestation to two groups: one at 0.0208 and the other at 0.0417 mg/kg b.w. On the 17th day, the mice were sacrificed and the foetuses were taken to measure the ROS (malondialdehyde/MDA and superoxide dismutase/SOD) activity in brain tissue, the number of apoptotic embryonic cerebral cortex neurons using a TUNEL assay, and necrotic cells using HE staining. Examination of p53 and caspase 3 expression was done by immunohistochemistry. Data were analysed using analysis of variance (ANOVA) and Duncan’s test. Results Increased activity of cerebral ROS characterised by significant elevation of the MDA level (P < 0.05), decreased SOD (P < 0.01), increased p53 and caspase 3 expression, and cerebral cortical neuron death either by necrosis or apoptosis (P < 0.05) were found. At the low dose carbofuran increased expression of p53, caspase 3, and apoptosis. At the high dose it increased levels of MDA and necrosis. Conclusion Increased expression of p53 and caspase 3 and apoptosis indicated that carbofuran may cause apoptosis through the intrinsic pathway. The increased apoptosis grants an opportunity to prevent and treat the effect of ROS due to gestational carbofuran exposure.
Collapse
|
10
|
Moreira DRM, Santos DS, Espírito Santo RFD, Santos FED, de Oliveira Filho GB, Leite ACL, Soares MBP, Villarreal CF. Structural improvement of new thiazolidinones compounds with antinociceptive activity in experimental chemotherapy-induced painful neuropathy. Chem Biol Drug Des 2017; 90:297-307. [DOI: 10.1111/cbdd.12951] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/13/2017] [Accepted: 01/17/2017] [Indexed: 01/27/2023]
Affiliation(s)
| | | | - Renan Fernandes do Espírito Santo
- Centro de Pesquisas Gonçalo Moniz; FIOCRUZ; Salvador Bahia Brazil
- Faculdade de Farmácia; Universidade Federal da Bahia; Salvador Bahia Brazil
| | | | | | - Ana Cristina Lima Leite
- Departamento de Ciências Farmacêuticas; Centro de Ciências da Saúde; Universidade Federal de Pernambuco; Recife PE Brazil
| | - Milena Botelho Pereira Soares
- Centro de Pesquisas Gonçalo Moniz; FIOCRUZ; Salvador Bahia Brazil
- Centro de Biotecnologia e Terapia Celular; Hospital São Rafael; Salvador Bahia Brazil
| | - Cristiane Flora Villarreal
- Centro de Pesquisas Gonçalo Moniz; FIOCRUZ; Salvador Bahia Brazil
- Faculdade de Farmácia; Universidade Federal da Bahia; Salvador Bahia Brazil
| |
Collapse
|
11
|
Apelin-13 Prevents the Delayed Neuropathy Induced by Tri-ortho-cresyl Phosphate Through Regulation the Autophagy Flux in Hens. Neurochem Res 2015; 40:2374-82. [PMID: 26453045 DOI: 10.1007/s11064-015-1725-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 09/16/2015] [Accepted: 09/21/2015] [Indexed: 12/16/2022]
Abstract
Organophosphate-induced delayed neuropathy (OPIDN) is pathologically characterized by the swollen axon containing aggregations of microtubules, neurofilaments, smooth endoplasmic reticulum and multivesicular vesicles. At present, the exact mechanism of OPIDN is unclear and the effective therapeutic methods is not available to counter this syndrome. Recent studies had shown that the autophagy was involved in OPIDN. The adipocytokine Apelin is a peptide, Apelin and its receptor are abundantly expressed in the nervous system. Recent researches illuminated that Apelin was neuroprotective factor and Apelin could regulate the autophagy in vivo and vitro model. So we investigated the effect of Apelin-13 on the OPIDN induced by Tri-ortho-cresyl phosphate (TOCP) in hens and explored the role of autophagy in Apelin-13 preventing OPIDN. Adult Roman hens were given a single dose of 750 mg/kg TOCP by gavage for 21 days to induce OPIDN, and neural dysfunction were detected, and the formation of autophagosomes in spinal cord neurons was observed by transmission electron microscopy, and the molecular markers of autophagy microtubule-associated protein light chain-3 (LC3) and the autophagy substrates p62/SQSTM1 were determined by Western blot analysis. The results demonstrated that the obvious neurological dysfunction such as hindlimb paralysis and paralysis of gait was present, the number of autophagosomes in the neurons of spinal cords was significantly increased, the level of LC3-II and p62 expressions and the ratio of LC3-II/LC3-I in spinal cords and sciatic nerve were significantly increased in the OPIDN model group compared with the control group. Compared with the OPIDN model group, the neurological dysfunction of tens was obviously reduced, the clinical signs scores was significantly decreased, the number of autophagosomes in the neurons of hen spinal cords was significantly decreased, the level of LC3-II and p62 expressions and the ratio of LC3-II/LC3-I in spinal cords and sciatic nerve were significantly decreased in Apelin-13 treatment group. Our results suggested that Apelin-13 prevented against the OPIDN induced by TOCP in hens, which the mechanism might be associated with regulation autophagy flux by Apelin-13.
Collapse
|
12
|
Abstract
Acephate is a commercial organophosphate pesticide formerly used in households and now used primarily for agriculture. Poisoning symptoms include salivation, lacrimation, urination, defecation, gastrointestinal illness, and emesis. In addition to these classic symptoms, neurodegeneration can result from increased and continued exposure of organophosphates. This 55-year-old woman presented with organophosphate-induced delayed neuropathy in the form of quadriplegia due to the commonly used pesticide acephate. She was exposed to this pesticide through multiple sprayings in her work office with underrecognized poisoning symptoms. She presented to her primary care physician with neuropathic pain and paralysis in her arm following the sprayings and eventual complete paralysis. The patient lived for 2 years following her toxic exposure and quadriplegia. A complete autopsy after her death confirmed a transverse myelitis in her spinal cord. We conclude that in susceptible individuals, acephate in excessive amounts can produce severe delayed neurotoxicity as demonstrated in animal studies.
Collapse
|
13
|
Oxaliplatin neurotoxicity involves peroxisome alterations. PPARγ agonism as preventive pharmacological approach. PLoS One 2014; 9:e102758. [PMID: 25036594 PMCID: PMC4103888 DOI: 10.1371/journal.pone.0102758] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 06/23/2014] [Indexed: 02/07/2023] Open
Abstract
The development of neuropathic syndromes is an important, dose limiting side effect of anticancer agents like platinum derivates, taxanes and vinca alkaloids. The causes of neurotoxicity are still unclear but the impairment of the oxidative equilibrium is strictly related to pain. Two intracellular organelles, mitochondria and peroxisomes cooperate to the maintaining of the redox cellular state. Whereas a relationship between chemotherapy-dependent mitochondrial alteration and neuropathy has been established, the role of peroxisome is poor explored. In order to study the mechanisms of oxaliplatin-induced neurotoxicity, peroxisomal involvement was evaluated in vitro and in vivo. In primary rat astrocyte cell culture, oxaliplatin (10 µM for 48 h or 1 µM for 5 days) increased the number of peroxisomes, nevertheless expression and functionality of catalase, the most important antioxidant defense enzyme in mammalian peroxisomes, were significantly reduced. Five day incubation with the selective Peroxisome Proliferator Activated Receptor-γ (PPAR-γ) antagonist G3335 (30 µM) induced a similar peroxisomal impairment suggesting a relationship between PPARγ signaling and oxaliplatin neurotoxicity. The PPARγ agonist rosiglitazone (10 µM) reduced the harmful effects induced both by G3335 and oxaliplatin. In vivo, in a rat model of oxaliplatin induced neuropathy, a repeated treatment with rosiglitazone (3 and 10 mg kg−1 per os) significantly reduced neuropathic pain evoked by noxious (Paw pressure test) and non-noxious (Cold plate test) stimuli. The behavioral effect paralleled with the prevention of catalase impairment induced by oxaliplatin in dorsal root ganglia. In the spinal cord, catalase protection was showed by the lower rosiglitazone dosage without effect on the astrocyte density increase induced by oxaliplatin. Rosiglitazone did not alter the oxaliplatin-induced mortality of the human colon cancer cell line HT-29. These results highlight the role of peroxisomes in oxaliplatin-dependent nervous damage and suggest PPARγ stimulation as a candidate to counteract oxaliplatin neurotoxicity.
Collapse
|
14
|
Razavi BM, Hosseinzadeh H, Abnous K, Imenshahidi M. Protective effect of crocin on diazinon induced vascular toxicity in subchronic exposure in rat aortaex-vivo. Drug Chem Toxicol 2014; 37:378-83. [DOI: 10.3109/01480545.2013.866139] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
15
|
Naltrexone prevents delayed encephalopathy in rats poisoned with the sarin analogue diisopropylflurophosphate. Am J Emerg Med 2013; 31:676-9. [PMID: 23380104 DOI: 10.1016/j.ajem.2012.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 11/28/2012] [Accepted: 12/02/2012] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Acute poisoning with organophosphate compounds can cause chronic neuropsychological disabilities not prevented by standard antidotes of atropine and pralidoxime. We determine the efficacy of naltrexone in preventing delayed encephalopathy after poisoning with the sarin analogue diisofluorophosphate (DFP) in rats. METHODS A randomized controlled experiment was conducted. Rats were randomly assigned to receive a single intraperitoneal (IP) injection of 5 mg/kg DFP (n = 12) or vehicle control (isopropyl alcohol, n = 5). Rats were observed for cholinesterase toxicity and treated with IP atropine (2 mg/kg) and pralidoxime (25 mg/kg) as needed. After resolution of acute toxicity, rats injected with DFP were again randomized to receive daily injections of naltrexone (5 mg/kg per day) or saline (vehicle control). Control animals also received daily injections of saline. For 4 weeks after acute poisoning, rats underwent neurologic testing with the Morris Water Maze for assessment of spatial learning and reference memory. Comparisons on each test day were made across groups using analysis of variance followed by Fisher's least significant difference. Comparisons of changes in performance between first and last test day within each group were made using a paired t test. Significance was determined at P < .05. RESULTS All rats receiving DFP developed toxicity requiring rescue. Spatial learning was significantly worse in the DFP-only group compared with the naltrexone-treated and control groups at day 10 (P = .0078), day 13 (P = .01), day 24 (P = .034), and day 31 (P = .03). No significant differences in reference memory were detected at any time point. CONCLUSION Naltrexone protected against impairment of spatial learning from acute poisoning with DFP in rats.
Collapse
|