1
|
Chen Z, Huo X, Chen G, Luo X, Xu X. Lead (Pb) exposure and heart failure risk. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:28833-28847. [PMID: 33840028 DOI: 10.1007/s11356-021-13725-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/25/2021] [Indexed: 02/08/2023]
Abstract
Lead (Pb) is a heavy metal with widespread industrial use, but it is also a widespread environmental contaminant with serious toxicological consequences to many species. Pb exposure adversely impacts the cardiovascular system in humans, leading to cardiac dysfunction, but its effects on heart failure risk remain poorly elucidated. To better understand the pathophysiological effects of Pb, we review potential mechanisms by which Pb exposure leads to cardiac dysfunction. Adverse effects of Pb exposure on cardiac function include heart failure risk, pressure overload, arrhythmia, myocardial ischemia, and cardiotoxicity. The data reviewed clearly establish that Pb exposure can play an important role in the occurrence and development of heart failure. Future epidemiological and mechanistic studies should be developed to better understand the involvement of Pb exposure in heart failure.
Collapse
Affiliation(s)
- Zihan Chen
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, 22 Xinling Rd, Shantou, 515041, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China
| | - Guangcan Chen
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, 22 Xinling Rd, Shantou, 515041, Guangdong, China
| | - Xiuli Luo
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, 22 Xinling Rd, Shantou, 515041, Guangdong, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, 22 Xinling Rd, Shantou, 515041, Guangdong, China.
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, China.
| |
Collapse
|
2
|
Wildemann TM, Weber LP, Siciliano SD. Combined exposure to lead, inorganic mercury and methylmercury shows deviation from additivity for cardiovascular toxicity in rats. J Appl Toxicol 2014; 35:918-26. [PMID: 25523840 DOI: 10.1002/jat.3092] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 10/17/2014] [Accepted: 10/24/2014] [Indexed: 11/11/2022]
Abstract
Environmental exposure to metal mixtures in the human population is common. Mixture risk assessments are often challenging because of a lack of suitable data on the relevant mixture. A growing number of studies show an association between lead or mercury exposure and cardiovascular effects. We investigated the cardiovascular effects of single metal exposure or co-exposure to methylmercury [MeHg(I)], inorganic mercury [Hg(II)] and lead [Pb(II)]. Male Wistar rats received four different metal mixtures for 28 days through the drinking water. The ratios of the metals were based on reference and environmental exposure values. Blood and pulse pressure, cardiac output and electrical activity of the heart were selected as end-points. While exposure to only MeHg(I) increased the systolic blood pressure and decreased cardiac output, the effects were reversed with combined exposures (antagonism). In contrast to these effects, combined exposures negatively affected the electrical activity of the heart (synergism). Thus, it appears that estimates of blood total Hg levels need to be paired with estimates of what species of mercury dominate exposure as well as whether lead co-exposure is present to link total blood Hg levels to cardiovascular effects. Based on current human exposure data and our results, there may be an increased risk of cardiac events as a result of combined exposures to Hg(II), MeHg(I) and Pb(II). This increased risk needs to be clarified by analyzing lead and Hg exposure data in relation to cardiac electrical activity in epidemiological studies.
Collapse
Affiliation(s)
- Tanja M Wildemann
- Toxicology Graduate Program, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, Canada, S7N 5B3.,Department of Soil Science, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, Canada, S7N 5A8
| | - Lynn P Weber
- Toxicology Graduate Program, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, Canada, S7N 5B3.,Department of Veterinary Biomedical Sciences, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, Canada, S7N 5B4
| | - Steven D Siciliano
- Toxicology Graduate Program, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, Canada, S7N 5B3.,Department of Soil Science, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, Canada, S7N 5A8
| |
Collapse
|