1
|
Kowalczyk T, Piekarski J, Merecz-Sadowska A, Muskała M, Sitarek P. Investigation of the molecular mechanisms underlying the anti-inflammatory and antitumour effects of isorhapontigenin: Insights from in vitro and in vivo studies. Biomed Pharmacother 2024; 180:117479. [PMID: 39326106 DOI: 10.1016/j.biopha.2024.117479] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024] Open
Abstract
Isorhapontigenin (ISO), a naturally-occurring stilbene derivative, has garnered significant attention due to its potent anticancer and anti-inflammatory properties. This review synthesizes current knowledge regarding the mechanisms of action, efficacy, and potential therapeutic applications of Isorhapontigenin acquired in vitro and in vivo. It systematically analyzes its effects on various cancer cell lines, tumor models, and inflammatory conditions, examining its impact on cell proliferation, apoptosis, metastasis, and inflammatory mediators. In vitro studies reveal that Isorhapontigenin induces cell cycle arrest, promotes apoptosis, and inhibits cancer cell migration through modulation of key signaling pathways, including EGFR-PI3K-Akt and NF-κB. It also demonstrates potent antioxidant and anti-inflammatory effects by enhancing Nrf2 signaling and suppressing pro-inflammatory cytokine production. These findings are corroborated by in vivo studies confirming its ability to inhibit tumor growth in xenograft models and attenuate inflammatory responses in various disease models. Notably, Isorhapontigenin exhibits superior pharmacokinetic profiles then resveratrol, with higher oral bioavailability. Isorhapontigenin demonstrates multi-target actions, including epigenetic modulation through microRNA regulation, which highlight its potential as a versatile therapeutic agent. This review also identifies current limitations in Isorhapontigenin research that require further investigation. Overall, Isorhapontigenin offers promise as a multi-faceted compound for the treatment of cancer, inflammatory diseases, and metabolic disorders, providing a solid foundation for future research and potential clinical applications.
Collapse
Affiliation(s)
- Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, Lodz 90-237, Poland
| | - Janusz Piekarski
- Department of Surgical Oncology, Medical University in Lodz, 251 Pomorska St. Lodz 93-513, Poland
| | - Anna Merecz-Sadowska
- Department of Allergology and Respiratory Rehabilitation, Medical University of Lodz, Lodz 90-725, Poland
| | - Martyna Muskała
- Students Research Group, Department of Medical Biology, Medical University of Lodz, Lodz 90-151, Poland
| | - Przemysław Sitarek
- Department of Medical Biology, Medical University of Lodz, Muszyńskiego 1, Lodz 90-151, Poland.
| |
Collapse
|
2
|
Roshani M, Jafari A, Loghman A, Sheida AH, Taghavi T, Tamehri Zadeh SS, Hamblin MR, Homayounfal M, Mirzaei H. Applications of resveratrol in the treatment of gastrointestinal cancer. Biomed Pharmacother 2022; 153:113274. [PMID: 35724505 DOI: 10.1016/j.biopha.2022.113274] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/28/2022] [Accepted: 06/08/2022] [Indexed: 12/15/2022] Open
Abstract
Natural product compounds have lately attracted interest in the scientific community as a possible treatment for gastrointestinal (GI) cancer, due to their anti-inflammatory and anticancer properties. There are many preclinical, clinical, and epidemiological studies, suggesting that the consumption of polyphenol compounds, which are abundant in vegetables, grains, fruits, and pulses, may help to prevent various illnesses and disorders from developing, including several GI cancers. The development of GI malignancies follows a well-known path, in which normal gastrointestinal cells acquire abnormalities in their genetic composition, causing the cells to continuously proliferate, and metastasize to other sites, especially the brain and liver. Natural compounds with the ability to affect oncogenic pathways might be possible treatments for GI malignancies, and could easily be tested in clinical trials. Resveratrol is a non-flavonoid polyphenol and a natural stilbene, acting as a phytoestrogen with anti-cancer, cardioprotective, anti-oxidant, and anti-inflammatory properties. Resveratrol has been shown to overcome resistance mechanisms in cancer cells, and when combined with conventional anticancer drugs, could sensitize cancer cells to chemotherapy. Several new resveratrol analogs and nanostructured delivery vehicles with improved anti-GI cancer efficacy, absorption, and pharmacokinetic profiles have already been developed. This present review focuses on the in vitro and in vivo effects of resveratrol on GI cancers, as well as the underlying molecular mechanisms of action.
Collapse
Affiliation(s)
- Mohammad Roshani
- Internal Medicine and Gastroenterology, Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ameneh Jafari
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran; Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Amir Hossein Sheida
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | | | | | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Mina Homayounfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
3
|
Pecyna P, Wargula J, Murias M, Kucinska M. More Than Resveratrol: New Insights into Stilbene-Based Compounds. Biomolecules 2020; 10:E1111. [PMID: 32726968 PMCID: PMC7465418 DOI: 10.3390/biom10081111] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023] Open
Abstract
The concept of a scaffold concerns many aspects at different steps on the drug development path. In medicinal chemistry, the choice of relevant "drug-likeness" scaffold is a starting point for the design of the structure dedicated to specific molecular targets. For many years, the chemical uniqueness of the stilbene structure has inspired scientists from different fields such as chemistry, biology, pharmacy, and medicine. In this review, we present the outstanding potential of the stilbene-based derivatives. Naturally occurring stilbenes, together with powerful synthetic chemistry possibilities, may offer an excellent approach for discovering new structures and identifying their therapeutic targets. With the development of scientific tools, sophisticated equipment, and a better understanding of the disease pathogenesis at the molecular level, the stilbene scaffold has moved innovation in science. This paper mainly focuses on the stilbene-based compounds beyond resveratrol, which are particularly attractive due to their biological activity. Given the "fresh outlook" about different stilbene-based compounds starting from stilbenoids with particular regard to isorhapontigenin and methoxy- and hydroxyl- analogues, the update about the combretastatins, and the very often overlooked and underestimated benzanilide analogues, we present a new story about this remarkable structure.
Collapse
Affiliation(s)
- Paulina Pecyna
- Department of Genetics and Pharmaceutical Microbiology, University of Medical Sciences, Swiecickiego 4 Street, 60-781 Poznan, Poland;
| | - Joanna Wargula
- Department of Organic Chemistry, University of Medical Sciences, Grunwaldzka 6 Street, 60-780 Poznan, Poland;
| | - Marek Murias
- Department of Toxicology, University of Medical Sciences, Dojazd 30 Street, 60-631 Poznan, Poland;
| | - Malgorzata Kucinska
- Department of Toxicology, University of Medical Sciences, Dojazd 30 Street, 60-631 Poznan, Poland;
| |
Collapse
|
4
|
Abstract
The concept of a scaffold concerns many aspects at different steps on the drug development path. In medicinal chemistry, the choice of relevant "drug-likeness" scaffold is a starting point for the design of the structure dedicated to specific molecular targets. For many years, the chemical uniqueness of the stilbene structure has inspired scientists from different fields such as chemistry, biology, pharmacy, and medicine. In this review, we present the outstanding potential of the stilbene-based derivatives. Naturally occurring stilbenes, together with powerful synthetic chemistry possibilities, may offer an excellent approach for discovering new structures and identifying their therapeutic targets. With the development of scientific tools, sophisticated equipment, and a better understanding of the disease pathogenesis at the molecular level, the stilbene scaffold has moved innovation in science. This paper mainly focuses on the stilbene-based compounds beyond resveratrol, which are particularly attractive due to their biological activity. Given the "fresh outlook" about different stilbene-based compounds starting from stilbenoids with particular regard to isorhapontigenin and methoxy- and hydroxyl- analogues, the update about the combretastatins, and the very often overlooked and underestimated benzanilide analogues, we present a new story about this remarkable structure.
Collapse
|
5
|
Dusek J, Skoda J, Holas O, Horvatova A, Smutny T, Linhartova L, Hirsova P, Kucera O, Micuda S, Braeuning A, Pavek P. Stilbene compound trans-3,4,5,4´-tetramethoxystilbene, a potential anticancer drug, regulates constitutive androstane receptor (Car) target genes, but does not possess proliferative activity in mouse liver. Toxicol Lett 2019; 313:1-10. [PMID: 31170421 DOI: 10.1016/j.toxlet.2019.05.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/21/2019] [Accepted: 05/29/2019] [Indexed: 01/06/2023]
Abstract
The constitutive androstane receptor(CAR) activation is connected with mitogenic effects leading to liver hyperplasia and tumorigenesis in rodents. CAR activators, including phenobarbital, are considered rodent non-genotoxic carcinogens. Recently, trans-3,4,5,4´-tetramethoxystilbene(TMS), a potential anticancer drug (DMU-212), have been shown to alleviate N-nitrosodiethylamine/phenobarbital-induced liver carcinogenesis. We studied whether TMS inhibits mouse Car to protect from the PB-induced tumorigenesis. Unexpectedly, we identified TMS as a murine CAR agonist in reporter gene experiments, in mouse hepatocytes, and in C57BL/6 mice in vivo. TMS up-regulated Car target genes Cyp2b10, Cyp2c29 and Cyp2c55 mRNAs, but down-regulated expression of genes involved in gluconeogenesis and lipogenesis. TMS did not change or down-regulate genes involved in liver proliferation or apoptosis such as Mki67, Foxm1, Myc, Mcl1, Pcna, Bcl2, or Mdm2, which were up-regulated by another Car ligand TCPOBOP. TMS did not increase liver weight and had no significant effect on Ki67 and Pcna labeling indices in mouse liver in vivo. In murine hepatic AML12 cells, we confirmed a Car-independent proapoptotic effect of TMS. We conclude that TMS is a Car ligand with limited effects on hepatocyte proliferation, likely due to promoting apoptosis in mouse hepatic cells, while controlling Car target genes involved in xenobiotic and endobiotic metabolism.
Collapse
Affiliation(s)
- Jan Dusek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, Hradec Kralove, 500 05, Czech Republic
| | - Josef Skoda
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, Hradec Kralove, 500 05, Czech Republic
| | - Ondrej Holas
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, Hradec Kralove, 500 05, Czech Republic
| | - Alzbeta Horvatova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, Hradec Kralove, 500 05, Czech Republic
| | - Tomas Smutny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, Hradec Kralove, 500 05, Czech Republic
| | - Lenka Linhartova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, Hradec Kralove, 500 05, Czech Republic
| | - Petra Hirsova
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA
| | - Otto Kucera
- Department of Physiology, Charles University, Faculty of Medicine in Hradec Kralove, Simkova 870, 500 03 Hradec Kralove, Czech Republic
| | - Stanislav Micuda
- Department of Pharmacology, Charles University, Faculty of Medicine in Hradec Kralove, Simkova 870, 500 03 Hradec Kralove, Czech Republic
| | - Albert Braeuning
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany; Department of Toxicology, University of Tübingen, Wilhelmstr. 56, 72074, Tübingen, Germany
| | - Petr Pavek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, Hradec Kralove, 500 05, Czech Republic.
| |
Collapse
|
6
|
Waiba S, Das A, Barman MK, Maji B. Base Metal-Catalyzed Direct Olefinations of Alcohols with Sulfones. ACS OMEGA 2019; 4:7082-7087. [PMID: 31459819 PMCID: PMC6648817 DOI: 10.1021/acsomega.9b00567] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/09/2019] [Indexed: 05/20/2023]
Abstract
Herein, a base-metal nickel-catalyzed direct olefination of alcohols with sulfones is reported. The reaction operates under low catalyst loading and does not require an external redox reagent. A wide range of trans-stilbenes and styrenes were synthesized in good yields and selectivities. Biologically active stilbene DMU-212 could also be synthesized in a single step under these conditions. Mechanistic studies involving kinetic isotope effect, deuterium labeling experiments, and catalytic and stoichiometric reactions with possible catalytic intermediates were performed to elucidate a plausible mechanism.
Collapse
|
7
|
Ho GM, Sommer H, Marek I. Highly E-Selective, Stereoconvergent Nickel-Catalyzed Suzuki-Miyaura Cross-Coupling of Alkenyl Ethers. Org Lett 2019; 21:2913-2917. [PMID: 30942604 PMCID: PMC7025807 DOI: 10.1021/acs.orglett.9b00946] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
An improved method
for the nickel-catalyzed Suzuki–Miyaura
cross-coupling of alkenyl ethers is reported. This stereoconvergent
protocol allows for the utilization of a wide range of alkenyl ethers
and aryl boronic esters for the synthesis of variously substituted
styrene derivatives. An olefinic mixture with respect to the alkenyl
ethers can be employed, thereby circumventing the stereodefined synthesis
of starting materials. Preliminary mechanistic investigations indicate
a nickel-catalyzed olefin isomerization following initial stereoretentive
cross-coupling.
Collapse
Affiliation(s)
- Guo-Ming Ho
- Schulich Faculty of Chemistry , Technion-Israel Institute of Technology , Technion City, Haifa , 3200009 , Israel
| | - Heiko Sommer
- Schulich Faculty of Chemistry , Technion-Israel Institute of Technology , Technion City, Haifa , 3200009 , Israel
| | - Ilan Marek
- Schulich Faculty of Chemistry , Technion-Israel Institute of Technology , Technion City, Haifa , 3200009 , Israel
| |
Collapse
|
8
|
Progress to Improve Oral Bioavailability and Beneficial Effects of Resveratrol. Int J Mol Sci 2019; 20:ijms20061381. [PMID: 30893846 PMCID: PMC6471659 DOI: 10.3390/ijms20061381] [Citation(s) in RCA: 190] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/08/2019] [Accepted: 03/13/2019] [Indexed: 12/12/2022] Open
Abstract
Resveratrol (3,5,4'-trihydroxystilbene; RSV) is a natural nonflavonoid polyphenol present in many species of plants, particularly in grapes, blueberries, and peanuts. Several in vitro and in vivo studies have shown that in addition to antioxidant, anti-inflammatory, cardioprotective and neuroprotective actions, it exhibits antitumor properties. In mammalian models, RSV is extensively metabolized and rapidly eliminated and therefore it shows a poor bioavailability, in spite it of its lipophilic nature. During the past decade, in order to improve RSV low aqueous solubility, absorption, membrane transport, and its poor bioavailability, various methodological approaches and different synthetic derivatives have been developed. In this review, we will describe the strategies used to improve pharmacokinetic characteristics and then beneficial effects of RSV. These methodological approaches include RSV nanoencapsulation in lipid nanocarriers or liposomes, nanoemulsions, micelles, insertion into polymeric particles, solid dispersions, and nanocrystals. Moreover, the biological results obtained on several synthetic derivatives containing different substituents, such as methoxylic, hydroxylic groups, or halogens on the RSV aromatic rings, will be described. Results reported in the literature are encouraging but require additional in vivo studies, to support clinical applications.
Collapse
|