1
|
Ito CNA, dos Santos Procopio E, Balsalobre NDM, Machado LL, Silva-Filho SE, Pedroso TF, de Lourenço CC, Oliveira RJ, Arena AC, Salvador MJ, Kassuya CAL. Analgesic and Anti-Arthritic Potential of Methanolic Extract and Palmatine Obtained from Annona squamosa Leaves. Pharmaceuticals (Basel) 2024; 17:1331. [PMID: 39458972 PMCID: PMC11510468 DOI: 10.3390/ph17101331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Annona squamosa is used in folk medicine to treat pain and arthritis. Palmatine is an alkaloid isolated from several plants, including A. squamosa leaves. The aim of the present study was to investigate the analgesic, anti-arthritic, and anti-inflammatory potential of the methanolic extract of A. squamosa (EMAS) and palmatine. Methods: The chemical profile of EMAS was evaluated by ultra high-performance liquid chromatography with electrospray ionization coupled to mass spectrometry (UHPLC-ESI/MS). EMAS and palmatine were evaluated in carrageenan-induced pleurisy, zymosan-induced joint inflammation, formalin-induced nociception, and tumor necrosis factor (TNF)-induced mechanical hyperalgesia in experimental models in mice. A cytotoxicity test of EMAS and palmatine was performed using a methylthiazolidiphenyl-tetrazolium (MTT) bromide assay. Results: The analysis of the chemical profile of the extract showed the presence of palmatine, liriodenine, and anonaine. Oral administration of EMAS and palmatine significantly reduced leukocyte migration and oxide nitric production in the carrageenan-induced pleurisy model. EMAS and palmatine reduced mechanical hyperalgesia, leukocyte migration, and edema formation in the joint inflammation induced by zymosan. In the formalin test, palmatine was effective against the second-phase nociceptive response, mechanical hyperalgesia, and cold allodynia. In addition, palmatine reduced mechanical hyperalgesia induced by TNF. EMAS and palmatine did not demonstrate cytotoxicity. Conclusions: The present study showed that A. squamosa and palmatine are analgesic and anti-inflammatory agents, and that the anti-hyperalgesic properties of palmatine may involve the TNF pathway. Palmatine may be one of the compounds responsible for the anti-hyperalgesic and/or anti-arthritic properties of this medicinal plant.
Collapse
Affiliation(s)
- Caren Naomi Aguero Ito
- Health Sciences College, Federal University of Grande Dourados (UFGD), Dourados 79804-970, MS, Brazil; (C.N.A.I.); (E.d.S.P.); (N.d.M.B.)
| | - Elisangela dos Santos Procopio
- Health Sciences College, Federal University of Grande Dourados (UFGD), Dourados 79804-970, MS, Brazil; (C.N.A.I.); (E.d.S.P.); (N.d.M.B.)
| | - Natália de Matos Balsalobre
- Health Sciences College, Federal University of Grande Dourados (UFGD), Dourados 79804-970, MS, Brazil; (C.N.A.I.); (E.d.S.P.); (N.d.M.B.)
| | - Lucas Luiz Machado
- Pharmaceutical Sciences, Food and Nutrition College, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil;
| | - Saulo Euclides Silva-Filho
- Pharmaceutical Sciences, Food and Nutrition College, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil;
| | - Taíse Fonseca Pedroso
- Institute of Biology, Department of Plant Biology, University of Campinas (UNICAMP), Campinas 13083-862, SP, Brazil; (T.F.P.); (C.C.d.L.); (M.J.S.)
| | - Caroline Caramano de Lourenço
- Institute of Biology, Department of Plant Biology, University of Campinas (UNICAMP), Campinas 13083-862, SP, Brazil; (T.F.P.); (C.C.d.L.); (M.J.S.)
| | - Rodrigo Juliano Oliveira
- Stem Cell, Cell Therapy and Toxicological Genetics Research Centre (CeTroGen), Medical School, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil;
| | - Arielle Cristina Arena
- Institute of Biosciences of Botucatu, Department of Structural and Functional Biology, São Paulo State University (UNESP), Botucatu 18618-970, SP, Brazil;
| | - Marcos José Salvador
- Institute of Biology, Department of Plant Biology, University of Campinas (UNICAMP), Campinas 13083-862, SP, Brazil; (T.F.P.); (C.C.d.L.); (M.J.S.)
| | - Cândida Aparecida Leite Kassuya
- Health Sciences College, Federal University of Grande Dourados (UFGD), Dourados 79804-970, MS, Brazil; (C.N.A.I.); (E.d.S.P.); (N.d.M.B.)
| |
Collapse
|
2
|
Chenyao Z, Haiyin H, Menglong S, Yucong M, Fauci AJ, Lee MS, Xiaolei W, Junhua Z, Zhaochen J. Commercial Chinese polyherbal preparation: current status and future perspectives. Front Pharmacol 2024; 15:1404259. [PMID: 39119615 PMCID: PMC11306874 DOI: 10.3389/fphar.2024.1404259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/01/2024] [Indexed: 08/10/2024] Open
Abstract
Objective With the modernization of traditional Chinese medicine (TCM) industry, the investment in research and development of new commercial Chinese polyherbal preparations (CCPPs) is increasing, and the varieties of CCPPs are growing. CCPPs play an increasingly important role in the TCM industry. This study has comprehensively summarized and analyzed the current situation of CCPPs that has been on the market in China, and provided suggestions for the research and promotion of CCPPs. Methods This study took the CCPPs approved for marketing in domestic drug database of the National Medical Products Administration (NMPA) as the research object, and combined with the publication of related randomized controlled trials (RCTs) of CCPPs in 2020-2022 and the sales of CCPPs in domestic chain pharmacies, statistical analysis was carried out on the drug name, pharmaceutical companies, dosage form, number of flavors, CBDs, ICD-11 classification of diseases treated, etc. Results Currently, 58,409 approvals for CCPPs have been issued in China, involving 9,986 varieties of CCPPs, 2,896 pharmaceutical companies and 39 dosage forms. The number of flavors of prescriptions of CCPPs varies from 1 to 90, among which Glycyrrhiza glabra L. [Fabaceae; Glycyrrhizae radix et rhizoma] and Angelica sinensis (Oliv.) Diels [Apiaceae; Angelicae sinensis radix] are the most widely used. The study found that the CCPPs with the most diverse variety is CCPPs for the treatment of respiratory diseases, some CCPPs can treat multiple system diseases. According to the survey, the sales of CCPPs for respiratory diseases in the chain pharmacies account for more than 1/3 of the total sales of the chain pharmacies, while the number of published randomized controlled trials (RCTs) on CCPPs for circulatory diseases was the largest. Conclusion The approval process of CCPPs should be further standardized, and the transformation of TCM prescriptions into CCPPs should be promoted. In the approval process of CCPPs, it is suggested to strengthen the supervision of drug names to clarify the differences between the CCPPs of same name but different prescriptions. Improve the effectiveness and safety of CCPPs by improving the quality of CBDs. It is suggested to optimize the design of new drug research program of CCPPs to avoid waste of research resources.
Collapse
Affiliation(s)
- Zhang Chenyao
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hu Haiyin
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Shi Menglong
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ma Yucong
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Alice Josephine Fauci
- Italian National Institute of Health, Rome, Italy
- Joint Sino-Italian Laboratory of Traditional Chinese Medicine, Italian National Institute of Health, Rome, Italy
| | - Myeong Soo Lee
- Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Wu Xiaolei
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhang Junhua
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ji Zhaochen
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Joint Sino-Italian Laboratory of Traditional Chinese Medicine, Italian National Institute of Health, Rome, Italy
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
3
|
Shan Q, Yu W, Xu Q, Liu R, Ying S, Dong J, Bao Y, Lyu Q, Shi C, Xia J, Tang J, Kuang H, Wang K, Tian G, Cao G. Detoxification and underlying mechanisms towards toxic alkaloids by Traditional Chinese Medicine processing: A comprehensive review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155623. [PMID: 38703661 DOI: 10.1016/j.phymed.2024.155623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/29/2024] [Accepted: 04/09/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND Alkaloids have attracted enduring interest worldwide due to their remarkable therapeutic effects, including analgesic, anti-inflammatory, and anti-tumor properties, thus offering a rich source for lead compound design and new drug discovery. However, some of these alkaloids possess intrinsic toxicity. Processing (Paozhi) is a pre-treatment step before the application of herbal medicines in traditional Chinese medicine (TCM) clinics, which has been employed for centuries to mitigate the toxicity of alkaloid-rich TCMs. PURPOSE To explore the toxicity phenotypes, chemical basis, mode of action, detoxification processing methods, and underlying mechanisms, we can gain crucial insights into the safe and rational use of these toxic alkaloid-rich herbs. Such insights have the great potential to offer new strategies for drug discovery and development, ultimately improving the quality of life for millions of people. METHODS Literatures published or early accessed until December 31, 2023, were retrieved from databases including PubMed, Web of Science, and CNKI. The following keywords, such as "toxicity", "alkaloid", "detoxification", "processing", "traditional Chinese medicine", "medicinal plant", and "plant", were used in combination or separately for screening. RESULTS Toxicity of alkaloids in TCM includes hepatotoxicity, nephrotoxicity, neurotoxicity, cardiotoxicity, and other forms of toxicity, primarily induced by pyrrolizidines, quinolizidines, isoquinolines, indoles, pyridines, terpenoids, and amines. Factors such as whether the toxic-alkaloid enriched part is limited or heat-sensitive, and whether toxic alkaloids are also therapeutic components, are critical for choosing appropriate detoxification processing methods. Mechanisms of alkaloid detoxification includes physical removal, chemical decomposition or transformation, as well as biological modifications. CONCLUSION Through this exploration, we review toxic alkaloids and the mechanisms underlying their toxicity, discuss methods to reduce toxicity, and unravel the intricate mechanisms behind detoxification. These offers insights into the quality control of herbs containing toxic alkaloids, safe and rational use of alkaloid-rich TCMs in clinics, new strategies for drug discovery and development, and ultimately helping improve the quality of life for millions of people.
Collapse
Affiliation(s)
- Qiyuan Shan
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Wei Yu
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China; Clinical Research Unit, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Qiongfang Xu
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ruina Liu
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Shuye Ying
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jie Dong
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yini Bao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Qiang Lyu
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Changcheng Shi
- Department of Clinical Pharmacy, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Junjie Xia
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jing Tang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Haodan Kuang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Kuilong Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Gang Tian
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
4
|
Lv S, Zhang G, Lu Y, Zhong X, Huang Y, Ma Y, Yan W, Teng J, Wei S. Pharmacological mechanism of natural antidepressants: The role of mitochondrial quality control. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155669. [PMID: 38696923 DOI: 10.1016/j.phymed.2024.155669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/15/2024] [Accepted: 04/21/2024] [Indexed: 05/04/2024]
Abstract
BACKGROUND Depression is a mental illness characterized by persistent sadness and a reduced capacity for pleasure. In clinical practice, SSRIs and other medications are commonly used for therapy, despite their various side effects. Natural products present distinct advantages, including synergistic interactions among multiple components and targeting multiple pathways, suggesting their tremendous potential in depression treatment. Imbalance in mitochondrial quality control (MQC) plays a significant role in the pathology of depression, emphasizing the importance of regulating MQC as a potential intervention strategy in addressing the onset and progression of depression. However, the role and mechanism through which natural products regulate MQC in depression treatments still need to be comprehensively elucidated, particularly in clinical and preclinical settings. PURPOSE This review was aimed to summarize the findings of recent studies and outline the pharmacological mechanisms by which natural products modulate MQC to exert antidepressant effects. Additionally, it evaluated current research limitations and proposed new strategies for future preclinical and clinical applications in the depression domain. METHODS To study the main pharmacological mechanisms underlying the regulation of MQC by natural products in the treatment of depression, we conducted a thorough search across databases such as PubMed, Web of Science, and ScienceDirect databases to classify and summarize the relationship between MQC and depression, as well as the regulatory mechanisms of natural products. RESULTS Numerous studies have shown that irregularities in the MQC system play an important role in the pathology of depression, and the regulation of the MQC system is involved in antidepressant treatments. Natural products mainly regulate the MQC system to induce antidepressant effects by alleviating oxidative stress, balancing ATP levels, promoting mitophagy, maintaining calcium homeostasis, optimizing mitochondrial dynamics, regulating mitochondrial membrane potential, and enhancing mitochondrial biogenesis. CONCLUSIONS We comprehensively summarized the regulation of natural products on the MQC system in antidepressants, providing a unique perspective for the application of natural products within antidepressant therapy. However, extensive efforts are imperative in clinical and preclinical investigations to delve deeper into the mechanisms underlying how antidepressant medications impact MQC, which is crucial for the development of effective antidepressant treatments.
Collapse
Affiliation(s)
- Shimeng Lv
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Guangheng Zhang
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Yitong Lu
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Xia Zhong
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China
| | - Yufei Huang
- Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Yuexiang Ma
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355,China
| | - Wei Yan
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Jing Teng
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Sheng Wei
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; High Level Key Disciplines of Traditional Chinese Medicine: Basic Theory of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Shandong Provincial Engineering Research Center for the Prevention and Treatment of Major Brain Diseases with Traditional Chinese Medicine (PTMBD), Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
5
|
Lin S, Zhang S, Zhan A, Feng J, Yang Q, Li T, Liu Z, Mo Q, Fan H, Wang K, Wang L. Palmatine alleviates cardiac fibrosis by inhibiting fibroblast activation through the STAT3 pathway. Eur J Pharmacol 2024; 967:176395. [PMID: 38350592 DOI: 10.1016/j.ejphar.2024.176395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 02/15/2024]
Abstract
Cardiac fibrosis, the hallmark of cardiovascular disease, is characterized by excessive deposition of extracellular matrix in the heart. Emerging evidence indicates that cardiac fibroblasts (CFs) play pivotal roles in driving cardiac fibrosis. However, due to incomplete insights into CFs, there are limited effective approaches to prevent or reverse cardiac fibrosis currently. Palmatine, a protoberberine alkaloid extracted from traditional Chinese botanical remedies, possesses diverse biological effects. This study investigated the potential therapeutic value and mechanism of palmatine against cardiac fibrosis. Adult male C57BL/6 mice were treated with vehicle, isoproterenol (ISO), or ISO plus palmatine for one week. After echocardiography assessment, mice hearts were collected for histopathology, real-time polymerase chain reaction, and Western blot analyses. Primary rat CFs were utilized in vitro. Compared to control, ISO-treated mice exhibited cardiac hypertrophy and structural abnormalities; however, treatment with palmatine ameliorated these effects of ISO. Moreover, palmatine treatment mitigated ISO-induced cardiac fibrosis. Network pharmacology and molecular docking analysis showed that palmatine strongly binds the regulators of cardiac fibrosis including signal transducer and activator of transcription 3 (STAT3) and mammalian target of rapamycin. Furthermore, palmatine reduced the elevated fibrotic factor expressions and overactivated STAT3 induced by ISO, Transformed growth factor β1 (TGF-β1), or interleukin-6 both in vivo and in vitro. Additionally, blocking STAT3 suppressed the TGF-β1-induced CF activation. Collectively, these data demonstrated that palmatine attenuated cardiac fibrosis partly by inhibiting fibroblast activation through the STAT3 pathway. This provides an experimental basis for the clinical treatment of cardiac fibrosis with palmatine.
Collapse
Affiliation(s)
- Shaoling Lin
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glycolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Key Unit of Modulating Liver to Treat Hyperlipemia, State Administration of Traditional Chinese Medicine, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Shengxi Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glycolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Key Unit of Modulating Liver to Treat Hyperlipemia, State Administration of Traditional Chinese Medicine, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Hydropower Group Hospital, Guangzhou, 511340, China
| | - Angyu Zhan
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glycolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Key Unit of Modulating Liver to Treat Hyperlipemia, State Administration of Traditional Chinese Medicine, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jiaojiao Feng
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glycolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Key Unit of Modulating Liver to Treat Hyperlipemia, State Administration of Traditional Chinese Medicine, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Qianqian Yang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glycolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Key Unit of Modulating Liver to Treat Hyperlipemia, State Administration of Traditional Chinese Medicine, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Tongjun Li
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glycolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Key Unit of Modulating Liver to Treat Hyperlipemia, State Administration of Traditional Chinese Medicine, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zijian Liu
- Department of Emergency, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China; NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Guangzhou, 510080, China
| | - Quqian Mo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glycolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Key Unit of Modulating Liver to Treat Hyperlipemia, State Administration of Traditional Chinese Medicine, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Hui Fan
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glycolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Key Unit of Modulating Liver to Treat Hyperlipemia, State Administration of Traditional Chinese Medicine, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Keke Wang
- Department of Emergency, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China; NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Guangzhou, 510080, China.
| | - Lexun Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glycolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Key Unit of Modulating Liver to Treat Hyperlipemia, State Administration of Traditional Chinese Medicine, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
6
|
Zheng Y, Zhang M, Wu X, Tan R, Jiang H. Coptis Chinensis Franch: Substance Basis, Mechanism of Action and Quality Control Standard Revealed Based on the Q-marker Concept and New Strategy of Systemic Pharmacology and Biosynthesis Research. Curr Top Med Chem 2024; 24:2013-2032. [PMID: 39136504 DOI: 10.2174/0115680266305274240723120426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/20/2024] [Accepted: 06/04/2024] [Indexed: 10/22/2024]
Abstract
Coptis chinensis Franch. (Ranunculaceae, Coptis), a traditional Chinese medicine (TCM) with thousands of years of clinical use history, also a natural medicine available in many countries, has wide pharmacological mechanisms and significant bioactivity according to its traditional efficacy combined with modern scientific research. The quality marker (Q-marker) of C. chinensis Franch. is predicted in this paper based on the chemical composition and pharmacological effects of the plant, as well as the current system pharmacology, plant relatedness, biosynthetic pathways and quantitative analysis of multi-components (QAMS). Natural medicine has the advantage of being multi-component, multi-pathway and multi-target. However, there are few reports on safety evaluation. This review predicts the Q-marker of C. chinensis, the safety and efficacy of C. chinensis is provided. Studies from 1975 to 2023 were reviewed from PubMed, Elsevier, ScienceDirect, Web of Science, SpringerLink, and Google Scholar. Alkaloids and organic acids are the two main component categories of Q-Markers. The specific alkaloids identified through predictive results include berberine, coptisine, palmatine, epiberberine, jatrorrhizine, columbamine, and berberrubine. Quinic acid and malic acid, due to their influence on the content of alkaloids and their ability to aid in identifying the active components of C. chinensis, are also considered Q-markers. The research strategy of "exploring chemical components, exploring pharmacological activities, constructing pharmacological mechanism network and locating biosynthetic pathways" was used to accurately screen the quality markers of C. chinensis in this review and summarise the quality evaluation methods and criteria. In addition, we updated the biosynthetic pathway of C. chinensis and refined the specific synthetic pathways of jatrorrhizine (quality markers) and epiberberine (quality markers). Finally, we summarised the quality evaluation methods of C. chinensis, which provide an important reference for resource evaluation and provide a key reference for the discovery of new functional chemical entities for natural medicines.
Collapse
Affiliation(s)
- Yating Zheng
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 613100, P.R. China
| | - Mengyu Zhang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 613100, P.R. China
| | - Xiaoqing Wu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 613100, P.R. China
| | - Rui Tan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 613100, P.R. China
| | - Hezhong Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 613100, P.R. China
| |
Collapse
|
7
|
Liang Z, He Y, Hu X. Cardio-Oncology: Mechanisms, Drug Combinations, and Reverse Cardio-Oncology. Int J Mol Sci 2022; 23:10617. [PMID: 36142538 PMCID: PMC9501315 DOI: 10.3390/ijms231810617] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Chemotherapy, radiotherapy, targeted therapy, and immunotherapy have brought hope to cancer patients. With the prolongation of survival of cancer patients and increased clinical experience, cancer-therapy-induced cardiovascular toxicity has attracted attention. The adverse effects of cancer therapy that can lead to life-threatening or induce long-term morbidity require rational approaches to prevention and treatment, which requires deeper understanding of the molecular biology underpinning the disease. In addition to the drugs used widely for cardio-protection, traditional Chinese medicine (TCM) formulations are also efficacious and can be expected to achieve "personalized treatment" from multiple perspectives. Moreover, the increased prevalence of cancer in patients with cardiovascular disease has spurred the development of "reverse cardio-oncology", which underscores the urgency of collaboration between cardiologists and oncologists. This review summarizes the mechanisms by which cancer therapy induces cardiovascular toxicity, the combination of antineoplastic and cardioprotective drugs, and recent advances in reverse cardio-oncology.
Collapse
Affiliation(s)
| | | | - Xin Hu
- China–Japan Union Hospital of Jilin University, Jilin University, Changchun 130033, China
| |
Collapse
|
8
|
Cheng H, Liu J, Tan Y, Feng W, Peng C. Interactions between gut microbiota and berberine, a necessary procedure to understand the mechanisms of berberine. J Pharm Anal 2022; 12:541-555. [PMID: 36105164 PMCID: PMC9463479 DOI: 10.1016/j.jpha.2021.10.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 09/23/2021] [Accepted: 10/19/2021] [Indexed: 02/06/2023] Open
Abstract
Berberine (BBR), an isoquinoline alkaloid, has been found in many plants, such as Coptis chinensis Franch and Phellodendron chinense Schneid. Although BBR has a wide spectrum of pharmacological effects, its oral bioavailability is extremely low. In recent years, gut microbiota has emerged as a cynosure to understand the mechanisms of action of herbal compounds. Numerous studies have demonstrated that due to its low bioavailability, BBR can interact with the gut microbiota, thereby exhibiting altered pharmacological effects. However, no systematic and comprehensive review has summarized these interactions and their corresponding influences on pharmacological effects. Here, we describe the direct interactive relationships between BBR and gut microbiota, including regulation of gut microbiota composition and metabolism by BBR and metabolization of BBR by gut microbiota. In addition, the complex interactions between gut microbiota and BBR as well as the side effects and personalized use of BBR are discussed. Furthermore, we provide our viewpoint on future research directions regarding BBR and gut microbiota. This review not only helps to explain the mechanisms underlying BBR activity but also provides support for the rational use of BBR in clinical practice.
Collapse
Affiliation(s)
| | | | - Yuzhu Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wuwen Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
9
|
Zhu Y, Xie N, Chai Y, Nie Y, Liu K, Liu Y, Yang Y, Su J, Zhang C. Apoptosis Induction, a Sharp Edge of Berberine to Exert Anti-Cancer Effects, Focus on Breast, Lung, and Liver Cancer. Front Pharmacol 2022; 13:803717. [PMID: 35153781 PMCID: PMC8830521 DOI: 10.3389/fphar.2022.803717] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is the leading cause of death and one of the greatest barriers to increased life expectancy worldwide. Currently, chemotherapy with synthetic drugs remains one of the predominant ways for cancer treatment, which may lead to drug resistance and normal organ damage. Increasing researches have suggested that apoptosis, a type of programmed cell death, is a promising way for cancer therapy. Furthermore, natural products are important sources for finding new drugs with high availability, low cost and low toxicity. As a well-known isoquinoline alkaloid, accumulating evidence has revealed that berberine (BBR) exerts potential pro-apoptotic effects on multiple cancers, including breast, lung, liver, gastric, colorectal, pancreatic, and ovarian cancers. The related potential signal pathways are AMP-activated protein kinase, mitogen-activated protein kinase, and protein kinase B pathways. In this review, we provide a timely and comprehensive summary of the detailed molecular mechanisms of BBR in treating three types of cancer (breast, lung and liver cancer) by inducing apoptosis. Furthermore, we also discuss the existing challenges and strategies to improve BBR’s bioavailability. Hopefully, this review provides valuable information for the comprehension of BBR in treating three types of cancer and highlight the pro-apoptotic effects of BBR, which would be beneficial for the further development of this natural compound as an effective clinical drug for treating cancers.
Collapse
Affiliation(s)
- Yi Zhu
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Na Xie
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yilu Chai
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yisen Nie
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ke Liu
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yufei Liu
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yang Yang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinsong Su
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuantao Zhang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
10
|
Pharmacokinetics, tissue distribution and plasma protein binding rate of palmatine following intragastric and intravenous administration in rats using liquid chromatography tandem mass spectrometry. J Pharm Biomed Anal 2021; 203:114226. [PMID: 34182412 DOI: 10.1016/j.jpba.2021.114226] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 10/21/2022]
Abstract
Palmatine is a natural isoquinoline alkaloid widely found in traditional Chinese medicines. In this study, a simple, sensitive and rapid ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method was developed and validated for the quantification of palmatine in the plasma and tissue samples in rats. Sample preparation involved a simple protein precipitation extraction technique using acetonitrile as the precipitating solvent. Chromatographic separation was accomplished on an ACQUITY UPLC BEH C18 column with a mobile phase of acetonitrile-5 mM ammonium acetate solution (70:30, v/v) at a flow rate of 0.3 mL/min. Coptisine was selected as the internal standard. The protonated analytes were determined with MRM in the positive ion mode. The assay exhibited a linear dynamic range of 1.0-1000 ng/mL for palmatine in each biological matrix and the low limit of quantification was 1.0 ng/mL. Non-compartmental pharmacokinetic parameters indicated that there is a significant difference in the apparent distribution volume and half-life between intragastric and intravenous administration modes. Palmatine could be detected in different tissues and the content in liver and kidney is relatively high, suggesting that liver and kidney might be the targeting organs of palmatine. The plasma protein binding rate test showed that the percent binding of palmatine is medium, and was found to be higher in human than in rats.
Collapse
|
11
|
Zhou J, Peng F, Cao X, Xie X, Chen D, Yang L, Rao C, Peng C, Pan X. Risk Compounds, Preclinical Toxicity Evaluation, and Potential Mechanisms of Chinese Materia Medica-Induced Cardiotoxicity. Front Pharmacol 2021; 12:578796. [PMID: 33867974 PMCID: PMC8044783 DOI: 10.3389/fphar.2021.578796] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 01/29/2021] [Indexed: 02/05/2023] Open
Abstract
Chinese materia medica (CMM) has been applied for the prevention and treatment of diseases for thousands of years. However, arrhythmia, myocardial ischemia, heart failure, and other cardiac adverse reactions during CMM application were gradually reported. CMM-induced cardiotoxicity has aroused widespread attention. Our review aimed to summarize the risk compounds, preclinical toxicity evaluation, and potential mechanisms of CMM-induced cardiotoxicity. All relevant articles published on the PubMed, Embase, and China National Knowledge Infrastructure (CNKI) databases for the latest twenty years were searched and manually extracted. The risk substances of CMM-induced cardiotoxicity are relatively complex. A single CMM usually contains various risk compounds, and the same risk substance may exist in various CMM. The active and risk substances in CMM may be transformed into each other under different conditions, such as drug dosage, medication methods, and body status. Generally, the risk compounds of CMM-induced cardiotoxicity can be classified into alkaloids, terpenoids, steroids, heavy metals, organic acids, toxic proteins, and peptides. Traditional evaluation methods of chemical drug-induced cardiotoxicity primarily include cardiac function monitoring, endomyocardial biopsy, myocardial zymogram, and biomarker determination. In the preclinical stage, CMM-induced cardiotoxicity should be systematically evaluated at the overall, tissue, cellular, and molecular levels, including cardiac function, histopathology, cytology, myocardial zymogram, and biomarkers. Thanks to the development of systematic biology, the higher specificity and sensitivity of biomarkers, such as genes, proteins, and metabolic small molecules, are gradually applied for evaluating CMM-induced cardiotoxicity. Previous studies on the mechanisms of CMM-induced cardiotoxicity focused on a single drug, monomer or components of CMM. The interaction among ion homeostasis (sodium, potassium, and calcium ions), oxidative damage, mitochondrial injury, apoptosis and autophagy, and metabolic disturbance is involved in CMM-induced cardiotoxicity. Clarification on the risk compounds, preclinical toxicity evaluation, and potential mechanisms of CMM-induced cardiotoxicity must be beneficial to guide new CMM development and post-marketed CMM reevaluation.
Collapse
Affiliation(s)
- Jie Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Fu Peng
- West China School of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoyu Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dayi Chen
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lian Yang
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chaolong Rao
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoqi Pan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
12
|
Yang Y, Vong CT, Zeng S, Gao C, Chen Z, Fu C, Wang S, Zou L, Wang A, Wang Y. Tracking evidences of Coptis chinensis for the treatment of inflammatory bowel disease from pharmacological, pharmacokinetic to clinical studies. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113573. [PMID: 33181286 DOI: 10.1016/j.jep.2020.113573] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/20/2020] [Accepted: 11/05/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Coptis chinensis (C. chinensis, Huanglian in Chinese), a famous traditional herbal medicine used for clearing heat and detoxification since thousands of years ago, is widely and traditionally used for clinical treatment of stomach inflammation, duodenum and digestive tract ulcers alone or through combing with other herbs in compound formulations. AIM OF THE REVIEW Through literature reviews of C. chinensis and berberine (one of the most important bioactive compounds derived from this plant) for the treatment of inflammatory bowel disease (IBD), this review aims to provide beneficial information for further exploration of the potent bioactive constituents from C. chinensis, deep investigation on the molecular mechanisms for the treatment of IBD, as well as further research and development of brand new products from C. chinensis for clinical therapy of IBD. METHODS "C. chinensis" and "IBD" were selected as the main keywords, and various online search engines, such as Google Scholar, PubMed, Web of Science, China National Knowledge Infrastructure database (CNKI) and other publication resources, were used for searching literatures. RESULTS To present, C. chinensis together with other herbs are involved in plenty of Chinese herbal prescriptions for the treatment of IBD, but little research focused on the single therapeutic effects of C. chinensis or extracts from this herb for the treatment of this disease. Berberine, one of important and representative bioactive compound isolated from C. chinensis, was reported to treat IBD effectively at a big arising speed in recent years. However, systematically and comprehensively reviews on the research of C. chinensis and berberine for the treatment of IBD from the aspects of chemical constituents, pharmacological effects, pharmacokinetics as well as clinical studies are seldom accomplished by researchers. Bioactive components from C. chinensis exert therapeutic effects for the treatment of IBD mainly through the inhibition of oxidative stress, antinociception, protection of intestinal mucosal epithelial barrier, regulation of T helper cells, as well as antibacterial activity. Although numerous studies on bioactive compounds from C. chinense have been performed by clinical investigators in recent years, most of them should be performed in a more strict and standard way to ensure the safety and efficacy of these compounds. CONCLUSIONS Berberine is considered as the representative and effective component from C. chinensis, but many other chemical components isolated from C. chinensis also have therapeutic effects for the treatment of IBD, which need deep research and further exploration. To accelerate research and development of C. chinensis and its bioactive components for the treatment of IBD, clinical trials are needed to clarify the effectiveness and safety of these chemical components from C. chinensis, as well as their molecular mechanisms for IBD treatment in vitro and in vivo. It is believed that continuous research and exploration on C. chinensis together with its bioactive compounds will bring great hope to the treatment of IBD.
Collapse
Affiliation(s)
- Yuhan Yang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu, 611137, China.
| | - Chi Teng Vong
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Shan Zeng
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, 610052, China.
| | - Caifang Gao
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Zhejie Chen
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Chaomei Fu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu, 611137, China.
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, 610106, China.
| | - Anqi Wang
- School of Medicine, Chengdu University, Chengdu, 610106, China.
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| |
Collapse
|
13
|
Luo YR, Goodnough R, Yun C, Wu AHB, Lynch KL. Establishment of a High-Resolution Liquid Chromatography-Mass Spectrometry Spectral Library for Screening Toxic Natural Products. J Anal Toxicol 2021; 46:303-321. [PMID: 33506876 DOI: 10.1093/jat/bkab015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/24/2021] [Accepted: 01/27/2021] [Indexed: 11/14/2022] Open
Abstract
Many natural products have biological effects on humans and animals. Poisoning caused by natural products is common in clinical toxicology cases. Liquid chromatography-high-resolution-mass spectrometry (LC-HRMS) has recently emerged as a powerful analytical tool for large-scale target screening, and the application of LC-HRMS can be expanded to evaluate potential natural product poisoning in clinical cases. We report the construction of an LC-HRMS spectral library of 95 natural products commonly implicated in poisoning, and an LC-HRMS assay was validated for definitive detection of natural products in urine and serum samples. For each compound, the limit of detection (LOD) was determined in the analytical range of 1.0 - 1000 ng/mL for urine samples and 0.50 - 500 ng/mL for serum samples. The mean (SD) of matrix effects for urine samples and that for serum samples were both -21% (22%), and the mean (SD) of recovery for serum samples was 89% (26%). The LC-HRMS assay was successfully applied to identify natural products in clinical cases. The spectral library parameters of each compound are provided in the supplementary material to aid other laboratories in identification of unknown natural toxins and development of similar methods on different mass spectrometry platforms.
Collapse
Affiliation(s)
- Yiqi Ruben Luo
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Robert Goodnough
- Department of Emergency Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Cassandra Yun
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Alan H B Wu
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Kara L Lynch
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
14
|
Tarabasz D, Kukula-Koch W. Palmatine: A review of pharmacological properties and pharmacokinetics. Phytother Res 2019; 34:33-50. [PMID: 31496018 DOI: 10.1002/ptr.6504] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/18/2019] [Accepted: 08/19/2019] [Indexed: 12/11/2022]
Abstract
The aim of this review is to collect together the results of the numerous studies over the last two decades on the pharmacological properties of palmatine published in scientific databases like Scopus and PubMed, which are scattered across different publications. Palmatine, an isoquinoline alkaloid from the class of protoberberines, is a yellow compound present in the extracts from different representatives of Berberidaceae, Papaveraceae, Ranunculaceae, and Menispermaceae. It has been extensively used in traditional medicine of Asia in the treatment of jaundice, liver-related diseases, hypertension, inflammation, and dysentery. New findings describe its possible applications in the treatment of civilization diseases like central nervous system-related problems. This review intends to let this alkaloid come out from the shade of a more frequently described alkaloid: berberine. The toxicity, pharmacokinetics, and biological activities of this protoberberine alkaloid will be developed in this work.
Collapse
Affiliation(s)
| | - Wirginia Kukula-Koch
- Chair and Department of Pharmacognosy with Medicinal Plants Unit, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
15
|
Zhang MY, Guo FF, Wu HW, Yu YY, Wei JY, Wang SF, Zhang YX, Xian MH, Wu QH, Zhao BC, Li SY, Yang HJ. DanHong injection targets endothelin receptor type B and angiotensin II receptor type 1 in protection against cardiac hypertrophy. Oncotarget 2017; 8:103393-103409. [PMID: 29262570 PMCID: PMC5732736 DOI: 10.18632/oncotarget.21900] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 09/23/2017] [Indexed: 12/16/2022] Open
Abstract
Cardiac hypertrophy (CH) is an independent risk factor for cardiovascular diseases (CVDs). Mitigating or preventing CH is the most effective strategy for the treatment of CVDs. DanHong injection (DH) is a Chinese herbal medicine preparation (CHMP) widely used in clinical treatment of several CVDs in China. However, the direct targets and cellular mechanisms for these protective effects remain unclear. This study was designed to illustrate the direct targets of DH in protecting against CH and investigate CH molecular pathogenesis. A hypertrophic cell model was induced by endothelin-1 (ET-1) on human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs). Real time cellular analysis (RTCA) cardio system and high content analysis (HCA) were used to detect the changes in contractile function, morphology and protein level of hypertrophic hiPS-CMs. Agonist and antagonist assay on receptors were performed using calcium mobilization high-throughput screening (HTS). DH significantly attenuated CH by modulating myocardial contractility, suppressing cell area enlargement and down-regulating ET-1-induced brain natriuretic peptide (BNP), actinin alpha 2 (ACTN2) and cardiac muscle troponin T (TNNT2) protein expression (P < 0.05). Endothelin receptor type B (ETBR) and angiotensin II receptor type 1 (AT1R) were DH direct targets, with IC50 value of 25.67 μL/mL and 1.10 μL/mL, respectively. Proteomics analysis showed that proteins involved in cell cycle inhibition, RNA processing, mitochondrial translation and cytoskeleton are significant regulated by DH treatment. These data revealed that ETBR and AT1R are DH direct targets on protecting against CH, providing a strategy to explore direct targets of CHMPs.
Collapse
Affiliation(s)
- Min-Yu Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.,Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Fei-Fei Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hong-Wei Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yang-Yang Yu
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Jun-Ying Wei
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shi-Feng Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yu-Xin Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Ming-Hua Xian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qing-Hua Wu
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | | | - Shi-You Li
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Hong-Jun Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|