1
|
Abdelshaheed MM, El Subbagh HI, Tantawy MA, Attia RT, Youssef KM, Fawzy IM. Discovery of new pyridine heterocyclic hybrids; design, synthesis, dynamic simulations, and in vitro and in vivo breast cancer biological assays. RSC Adv 2023; 13:15689-15703. [PMID: 37235111 PMCID: PMC10206482 DOI: 10.1039/d3ra02875e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Pyridine is a nitrogen bearing heterocyclic scaffold that shows a wide range of biological activities. The pyridine nucleus has become an interesting target for medicinal chemistry researchers worldwide. Several pyridine derivatives exhibited good anticancer effects against diverse cell lines. Therefore, to explore new anticancer pyridine entities, novel pyridine derivatives were designed and synthesized and evaluated for their anticancer abilities in vitro and in vivo. All of the target compounds were evaluated against three different human cancer cell lines (Huh-7, A549 and MCF-7) via MTT assay. Most of the compounds exhibited significant cytotoxic activities. Compounds 3a, 3b, 5a and 5b showed superior antiproliferative activities to Taxol. Where, compound 3b showed IC50 values of 6.54, 15.54 and 6.13 μM compared to Taxol (6.68, 38.05, 12.32 μM) against Huh-7, A549 and MCF-7, respectively. Also, tubulin polymerization assay was carried out. The most potent compounds 3a, 3b, 5a and 5b could significantly inhibit tubulin polymerization with IC50 values of 15.6, 4.03, 6.06 and 12.61 μM, respectively. Compound 3b exhibited the highest tubulin polymerization inhibitory effect with an IC50 value of 4.03 μM compared to combretastatin (A-4) (1.64 μM). Molecular modeling studies of the designed compounds confirmed that most of the compounds made the essential binding interactions compared to the reference compound which assisted in the prediction of the structure requirements for the detected anticancer activity. Finally, in vivo studies showed that compound 3b could significantly inhibit breast cancer.
Collapse
Affiliation(s)
- Menna M Abdelshaheed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University in Egypt New Damietta Egypt
| | - Hussein I El Subbagh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University P.O. Box 35516 Mansoura Egypt
| | - Mohamed A Tantawy
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre Dokki Giza Egypt
- Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre Dokki Cairo Egypt
- Department of Orthopaedics and Rehabilitation, CORTS, Penn State University, College of Medicine 500 University Drive Hershey PA 17033-0850 USA
| | - Reem T Attia
- Department of Pharmacology and Toxicology and Biochemistry, Faculty of Pharmacy, Future University in Egypt 11835 Cairo Egypt
| | - Khairia M Youssef
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Future University in Egypt 11835 Cairo Egypt +201006064161
| | - Iten M Fawzy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Future University in Egypt 11835 Cairo Egypt +201006064161
| |
Collapse
|
2
|
de Castro Alves CE, Koidan G, Hurieva AN, de Freitas Gomes A, Costa de Oliveira R, Guimarães Costa A, Ribeiro Boechat AL, Correa de Oliveira A, Zahorulko S, Kostyuk A, Soares Pontes G. Cytotoxic and immunomodulatory potential of a novel [2-(4-(2,5-dimethyl-1H-pyrrol-1-yl)-1H-pyrazol-3-yl)pyridine] in myeloid leukemia. Biomed Pharmacother 2023; 162:114701. [PMID: 37062222 DOI: 10.1016/j.biopha.2023.114701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/31/2023] [Accepted: 04/10/2023] [Indexed: 04/18/2023] Open
Abstract
Cancer ranks among the leading causes of mortality worldwide. However, the efficacy of commercially available anticancer drugs is compromised by the emerging challenge of drug resistance. This study aimed to investigate the anticancer and immunomodulatory potential of a recently developed a novel [2-(4-(2,5-dimethyl-1 H-pyrrol-1-yl)- 1 H-pyrazol-3-yl) pyridine]. The cytotoxic potential of the compound was assessed using the MTT assay on both cancerous HL60 (acute myeloid leukemia) and K562 (chronic myeloid leukemia) cell lines, as well as non-cancerous Vero cells and human peripheral blood mononuclear cells (PBMCs). A clonogenic assay was employed to evaluate the anticancer efficacy of the compound, while flow cytometry was utilized to investigate its effect on cell cycle arrest. Furthermore, the immunomodulatory potential of the compound was assessed by quantifying inflammatory and anti-inflammatory biomarkers in the supernatant of PBMCs previously treated with the compound. Our study revealed that the novel pyridine ensemble exhibits selective cytotoxicity against HL60 (IC50 = 25.93 µg/mL) and K562 (IC50 = 10.42 µg/mL) cell lines, while displaying no significant cytotoxic effect on non-cancerous cells. In addition, the compound induced a decrease of 18% and 19% in the overall activity of COX-1 and COX-2, respectively. Concurrently, it upregulated the expression of cytokines including IL4, IL6, IL10, and IL12/23p40, while downregulating INFγ expression. These findings suggest that the compound has the potential to serve as a promising candidate for the treatment of acute and chronic myeloid leukemias due to its effective antiproliferative and immunomodulatory activities, without causing cytotoxicity in non-cancerous cells.
Collapse
Affiliation(s)
- Carlos Eduardo de Castro Alves
- Post-Graduate Program in Basic and Applied Immunology, Institute of Biological Science, Federal University of Amazonas, Manaus 69077-000, AM, Brazil; Laboratory of Virology and Immunology, National Institute of Amazonian Research (INPA), Manaus 69067-375, AM, Brazil
| | - Georgyi Koidan
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska 5, 02660 Kyiv 94, Ukraine
| | - Anastasiia N Hurieva
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska 5, 02660 Kyiv 94, Ukraine
| | - Alice de Freitas Gomes
- Laboratory of Virology and Immunology, National Institute of Amazonian Research (INPA), Manaus 69067-375, AM, Brazil; Post-Graduate Program in Hematology, The State University of Amazon, Foundation of Hematology and Hemotherapy of Amazonas, Manaus 69050-010, AM, Brazil
| | - Regiane Costa de Oliveira
- Post-Graduate Program in Basic and Applied Immunology, Institute of Biological Science, Federal University of Amazonas, Manaus 69077-000, AM, Brazil; Post-Graduate Program in Hematology, The State University of Amazon, Foundation of Hematology and Hemotherapy of Amazonas, Manaus 69050-010, AM, Brazil
| | - Allyson Guimarães Costa
- Post-Graduate Program in Basic and Applied Immunology, Institute of Biological Science, Federal University of Amazonas, Manaus 69077-000, AM, Brazil; Post-Graduate Program in Hematology, The State University of Amazon, Foundation of Hematology and Hemotherapy of Amazonas, Manaus 69050-010, AM, Brazil
| | - Antônio Luiz Ribeiro Boechat
- Post-Graduate Program in Basic and Applied Immunology, Institute of Biological Science, Federal University of Amazonas, Manaus 69077-000, AM, Brazil
| | - André Correa de Oliveira
- Laboratory of Virology and Immunology, National Institute of Amazonian Research (INPA), Manaus 69067-375, AM, Brazil
| | - Serhii Zahorulko
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska 5, 02660 Kyiv 94, Ukraine
| | - Aleksandr Kostyuk
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska 5, 02660 Kyiv 94, Ukraine
| | - Gemilson Soares Pontes
- Post-Graduate Program in Basic and Applied Immunology, Institute of Biological Science, Federal University of Amazonas, Manaus 69077-000, AM, Brazil; Laboratory of Virology and Immunology, National Institute of Amazonian Research (INPA), Manaus 69067-375, AM, Brazil; Post-Graduate Program in Hematology, The State University of Amazon, Foundation of Hematology and Hemotherapy of Amazonas, Manaus 69050-010, AM, Brazil.
| |
Collapse
|
3
|
Tarasiuk J, Kostrzewa-Nowak D, Żwierełło W. Antitumour Effects of Selected Pyridinium Salts on Sensitive Leukaemia HL60 Cells and Their Multidrug Resistant Topoisomerase II-Defective HL60/MX2 Counterparts. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165138. [PMID: 36014378 PMCID: PMC9415637 DOI: 10.3390/molecules27165138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/30/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022]
Abstract
Multidrug resistance (MDR), having a multifactorial nature, is one of the major clinical problems causing the failure of anticancer therapy. The aim of this study was to examine the antitumour effects of selected pyridinium salts, 1-methyl-3-nitropyridine chloride (MNP) and 3,3,6,6,10-pentamethyl-3,4,6,7-tetrahydro-[1,8(2H,5H)-dion]acridine chloride (MDION), on sensitive leukaemia HL60 cells and resistant topoisomerase II-defective HL60/MX2 cells. Cell growth was determined by the MTT test. Intracellular ROS level was measured with the aid of 2′,7′-DCF-DA. The cell cycle distribution was investigated by performing PI staining. DSB formation was examined using the γ-H2AX histone phosphorylation assay. The activity of caspase-3 and caspase-8 was measured with the use of the FLICA test. The assays for examining the lysosome membrane permeabilization were carried out with the aid of LysoTracker Green DND-26. Both studied compounds exerted very similar cytotoxic activities towards sensitive HL60 cells and their MDR counterparts. They modulated the cellular ROS level in a dose-dependent and time-dependent manner and significantly increased the percentage of sensitive HL60 and resistant HL60/MX2 cells with sub-diploid DNA (sub-G1 fraction). However, the induction of DSB formation was not a significant mechanism of action of these pyridinium salts in studied cells. Both examined compounds triggered caspase-3/caspase-8-dependent apoptosis of sensitive HL60 cells and their MDR counterparts. Additionally, the findings of the study indicate that lysosomes may also participate in the programmed death of HL60 as well as HL60/MX2 cells induced by MDION. The data obtained in this work showed that both examined pyridinium salts, MNP and MDION, are able to retain high antileukaemic effects against multidrug resistant topoisomerase II-defective HL60/MX2 cells.
Collapse
|
6
|
Sarkar MK, Mahapatra SK, Vadivel V. Oxidative stress mediated cytotoxicity in leukemia cells induced by active phyto-constituents isolated from traditional herbal drugs of West Bengal. JOURNAL OF ETHNOPHARMACOLOGY 2020; 251:112527. [PMID: 31891796 DOI: 10.1016/j.jep.2019.112527] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 11/11/2019] [Accepted: 12/25/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In search of safe and effective therapeutic agents as alternative to synthetic chemotherapeutics for the treatment of leukemia, the herbal drugs (Leaf of Madhuca longifolia, leaf of Prosopis cineraria and bark of Flacourtia indica) with long traditional use in West Bengal have received our attention. AIM OF THE STUDY Present work was conducted to isolate and identify the active compounds of the selected herbal drugs using bio-assay guided fractionation and also to investigate their anticancer mechanism in leukemia cell lines. MATERIALS AND METHODS Bio-assay guided fractionation was used for the isolation of active constituents such as myricitrin, vitexin and vanillin from the aqueous extracts of M. longifolia, P. cineraria and F. indica, respectively using liquid partitioning and column chromatography and the compounds were characterized by HPLC, MS and NMR. Dose and time-dependent cytotoxicity of isolated compounds were studied against leukemia cells and their anticancer mechanism such as cell wall damage, nuclear damage, ROS and NO generation, SOD level, LDH release and lipid peroxidation were investigated. RESULTS Aqueous extract of M. longifolia, P. cineraria and F. indica exhibited maximum anti-proliferative activity against HL-60 (Acute myeloid leukemia, AML, 72.06%), K-562 (Chronic myeloid leukemia, CML, 42.14%) and Jurkat (Acute lymphoblastic leukemia, ALL, 51.71%) cells. Myricitrin, vitexin and vanillin exhibited dose-dependent (IC-50 values 164.4, 147 & 29.22 μg/ml) and time-dependent activity with maximum cytotoxicity at 48 h. All these three compounds caused apoptosis in leukemia cells by inducing free radicals such as ROS (1.33-2.65 Arbitrary units) and NO (11.17-18.53 μM), cell membrane damage and nuclear condensation which were evidenced by increased release of LDH (1326-1439 U/L), improved lipid peroxidation (10.19-14.41 nM/mg protein) and reduced SOD level (6.2-9.21 U/mg protein) in leukemia cells. CONCLUSIONS Based on anti-proliferative activity, the isolated phyto-compounds myrcitrin, vitexin and vanillin from M. longifolia, P. cineraria and F. indica could be developed as natural drugs for treating AML, CML and ALL leukemia types, respectively.
Collapse
Affiliation(s)
- Monaj Kumar Sarkar
- Chemical Biology Lab (ASK-II-409), School of Chemical and Biotechnology (SCBT), SASTRA Deemed University, Thanjavur, Tamilnadu, India
| | - Santanu Kar Mahapatra
- Medicinal Chemistry and Immunology Lab (ASK-II-406), School of Chemical and Biotechnology (SCBT), SASTRA Deemed University, Thanjavur, Tamil Nadu, India.
| | - Vellingiri Vadivel
- Chemical Biology Lab (ASK-II-409), School of Chemical and Biotechnology (SCBT), SASTRA Deemed University, Thanjavur, Tamilnadu, India.
| |
Collapse
|