1
|
Wang D, Xu R, Wang Z. Protective Role of Sphingosine-1-Phosphate During Radiation-Induced Testicular Injury. Antioxidants (Basel) 2024; 13:1322. [PMID: 39594464 PMCID: PMC11591009 DOI: 10.3390/antiox13111322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
The impact of ionizing radiation on the male reproductive system is gaining increasing attention, particularly when it comes to testicular damage, which may result in decreased sperm quality and hormonal imbalances. Finding effective protective measures to mitigate testicular damage caused by radiation has become a focal point in the biomedical field. S1P, an essential biological signaling molecule, has garnered significant interest due to its multiple roles in regulating cellular functions and its protective effects against radiation-induced testicular injury. S1P not only effectively reduces the generation of ROS induced by radiation but also alleviates oxidative stress by enhancing the activity of antioxidant enzymes. Furthermore, S1P inhibits radiation-induced cell apoptosis by regulating the expression of anti-apoptotic and pro-apoptotic proteins. Additionally, S1P alleviates radiation-induced inflammation by inhibiting the production of inflammatory factors, thereby further protecting testicular tissue. In summary, S1P effectively reduces radiation-induced testicular damage through multiple mechanisms, offering a promising therapeutic approach to safeguard male reproductive health. Future research should explore the specific mechanisms of action and clinical application potential of S1P, aiming to contribute significantly to the prevention and treatment of radiation damage.
Collapse
Affiliation(s)
- Defan Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen 361102, China;
| | - Renfeng Xu
- Fujian Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou 350007, China;
| | - Zhengchao Wang
- Fujian Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou 350007, China;
| |
Collapse
|
2
|
Li W, Mi S, Zhang J, Liu X, Chen S, Liu S, Feng X, Tang Y, Li Y, Liu L, Fang L, Zhang S, Yu Y. Integrating sperm cell transcriptome and seminal plasma metabolome to analyze the molecular regulatory mechanism of sperm motility in Holstein stud bulls. J Anim Sci 2023; 101:skad214. [PMID: 37366074 PMCID: PMC10355371 DOI: 10.1093/jas/skad214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 06/26/2023] [Indexed: 06/28/2023] Open
Abstract
Considering that artificial insemination is the most widely used assisted reproductive technique in the dairy industry, the semen quality of bulls is very important for selecting excellent stud bulls. Sperm motility is one of the important traits of semen quality, and related genes may be regulated by environmental factors. Seminal plasma can affect sperm cell transcriptome and further affect sperm motility through exosome or other processes. However, the molecular regulation mechanism of bull sperm motility has not been studied by combining the sperm cell transcriptome with seminal plasma metabolome. The number of motile sperm per ejaculate (NMSPE) is an integrated indicator for assessing sperm motility in stud bulls. In the present study, we selected 7 bulls with higher NMSPE (5,698.55 million +/- 945.40 million) as group H and 7 bulls with lower NMSPE (2,279.76 million +/- 1,305.69 million) as group L from 53 Holstein stud bulls. The differentially expressed genes (DEGs) in sperm cells were evaluated between the two groups (H vs. L). We conducted gene co-expression network analysis (WGCNA) on H and L groups of bulls, as well as two monozygotic twin Holstein bulls with different NMSPE values, to screen candidate genes for NMSPE. The regulatory effect of seminal plasma metabolome on the candidate genes of NMSPE was also investigated. A total of 1,099 DEGs were identified in the sperm cells of H and L groups. These DEGs were primarily concentrated in energy metabolism and sperm cell transcription. The significantly enriched Kyoto encyclopedia of genes and genomes (KEGG) pathways of the 57 differential metabolites were the aminoacyl-tRNA biosynthesis pathway and vitamin B6 metabolism pathway. Our study discovered 14 genes as the potential candidate markers for sperm motility, including FBXO39. We observed a broad correlation between transcriptome of sperm cells and seminal plasma metabolome, such as three metabolites, namely, mesaconic acid, 2-coumaric acid, and 4-formylaminoantipyrine, might regulate FBXO39 expression through potential pathways. The genes related to seminal plasma metabolites expressed in sperm cells are not only located near the quantitative trait loci of reproductive traits, but also enriched in the genome-wide association study signal of sire conception rate. Collectively, this study was the first to investigate the interplays among transcriptome of sperm cells and seminal plasma metabolome from Holstein stud bulls with different sperm motility.
Collapse
Affiliation(s)
- Wenlong Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, Department of Animal Breeding and Genetics, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Siyuan Mi
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, Department of Animal Breeding and Genetics, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jinning Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, Department of Animal Breeding and Genetics, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xueqin Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, Department of Animal Breeding and Genetics, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Siqian Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, Department of Animal Breeding and Genetics, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shuli Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, Department of Animal Breeding and Genetics, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Xia Feng
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, Department of Animal Breeding and Genetics, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yongjie Tang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, Department of Animal Breeding and Genetics, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yanhua Li
- Beijing Dairy Cattle Center, Qinghe’nanzhen Deshengmenwai Road, Beijing 100192, China
| | - Lin Liu
- Beijing Dairy Cattle Center, Qinghe’nanzhen Deshengmenwai Road, Beijing 100192, China
| | - Lingzhao Fang
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
- Center for Quantitative Genetics and Genomics (QGG), Aarhus University, Aarhus, Denmark
| | - Shengli Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, Department of Animal Breeding and Genetics, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ying Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, Department of Animal Breeding and Genetics, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
3
|
Voggenreiter T, Laport E, Kahn-Schapowal B, Lang J, Schenkel J. Simulation of Air Travel-Related Irradiation Exposure of Cryopreserved Mouse Germplasm Samples. Biopreserv Biobank 2021; 19:280-286. [PMID: 33646019 DOI: 10.1089/bio.2020.0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cryopreservation of genetically modified mouse lines prevents the loss of specific mutants that are of enormous scientific value for both basic and applied research. Cryopreservation of spermatozoa or preimplantation embryos enables discontinuation of breeding as well as archiving of specific lines for future studies. Regarding active inter-laboratory exchange of mutants, cryopreserved material is more advantageous to transport than live animals. However, transportation stress should not be trivialized. Security scanning of transport boxes at airports and customs, in particular, as well as additional cosmic radiation, pose a threat to undefined dosages of irradiation exposure. To simulate this, cryopreserved samples of mouse spermatozoa and preimplantation embryos were exposed to an X-ray dosage of 1 mGy in an X-ray machine. For subsequent investigation of the cell integrity of irradiated spermatozoa and embryos, spermatozoa forward motility as well as embryo developmental capacity and apoptosis values were examined and compared with nonirradiated control samples. The percentage of forward-moving spermatozoa per sample appears to be significantly reduced after irradiation exposure. The in vitro developmental capacity of preimplantation embryos as well as their relative share of apoptotic cells do not seem to be influenced by irradiation exposure. This leads to the assumption that, at least in preimplantation embryos, X-ray dosages of 1 mGy do not induce sudden severe cellular harm. Nevertheless, stochastic effects of ionizing irradiation, such as mutations, do not have a dosage threshold and always represent the potential danger of alterations to cells and cellular components, especially the DNA. This could lead to undefined mutations inducing genetic drift, in the worst case to the loss of a mutant line. We therefore strongly recommend minimizing "transportation stress," in particular by irradiation exposure, to keep its potential consequences in mind, and to standardize shipping procedures.
Collapse
Affiliation(s)
| | - Elke Laport
- German Cancer Research Center (DKFZ), Cryopreservation, Heidelberg, Germany
| | - Barbara Kahn-Schapowal
- German Cancer Research Center (DKFZ), Radiation Protection and Dosimetry, Heidelberg, Germany
| | - Jens Lang
- German Cancer Research Center (DKFZ), Radiation Protection and Dosimetry, Heidelberg, Germany
| | - Johannes Schenkel
- German Cancer Research Center (DKFZ), Cryopreservation, Heidelberg, Germany.,Department of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
4
|
Chen Y, Sun T, Niu Y, Wang D, Xiong Z, Li C, Liu K, Qiu Y, Sun Y, Gong J, Wang T, Wang S, Xu H, Liu J. Correlations Among Genotype and Outcome in Chinese Male Patients With Congenital Hypogonadotropic Hypogonadism Under HCG Treatment. J Sex Med 2020; 17:645-657. [PMID: 32171629 DOI: 10.1016/j.jsxm.2020.01.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Congenital hypogonadotropic hypogonadism (CHH) is a genetically heterogeneous disorder characterized by absent or incomplete puberty and infertility, and heterogeneous responses are often observed during treatment. AIM To investigate the role of CHH-associated variants in patients with CHH with poor responses to human chorionic gonadotropin (hCG). METHODS This retrospective study investigated 110 Chinese male patients with CHH undergoing genetic analysis and hCG treatment. CHH-associated rare sequence variants (RSVs) were identified by using a tailored next-generation sequencing panel and were interpreted in accordance with the American College of Medical Genetics and Genomics criteria. Clinical characteristics were recorded, and Kyoto Encyclopedia of Genes and Genomes analysis was conducted to assess pathways enriched in protein networks implicated in poor responses. OUTCOMES The outcomes include testicular volume, serum hormonal profiles, parameters of semen analysis, pathogenicity classification, and pathway enrichment. RESULTS Among the 110 patients, 94.55% achieved normal serum testosterone and 54.55% achieved seminal spermatozoa appearance (SSA). PLXNB1, ROBO3, LHB, NRP2, CHD7, and PLXNA1 RSVs were identified in patients who had an abnormal serum testosterone level during treatment. In spermatogenesis, the number of CHH-associated RSVs was not significantly strongly associated with delayed SSA. After pathogenicity classification, pathogenic/likely pathogenic (P/LP) RSVs were identified in 30% (33/110) of patients. Patients with P/LP RSVs showed delayed SSA compared with noncarriers, and P/LP PROKR2 RSVs showed the strongest association (48, 95% CI: 34.1-61.9 months, P = .043). Enriched pathways implicated in delayed SSA included neuroactive ligand-receptor interaction; Rap1, MAPK, PI3K-Akt signaling; and regulation of actin cytoskeleton. CLINICAL IMPLICATIONS Male patients with CHH harboring P/LP PROKR2 RSVs should be aware of a high probability of poor responses to hCG; If these patients desire fertility, it might be better to recommend hCG/human menopausal gonadotropin, hCG/recombinant follicle-stimulating hormone, or pulsatile GnRH administration before treatments start or as early as possible. STRENGTHS & LIMITATIONS Strengths are the standardized regimen and extensive follow-up (median time of 40 months). However, included patients in the study voluntarily chose hCG treatment because of the burden of drug cost and/or little fertility desire. Therefore, human menopausal gonadotropin or follicle-stimulating hormone was not added to this cohort. Our observed correlations should be further verified in patients with CHH undergoing other treatments. CONCLUSION Among all P/LP RSVs, P/LP PROKR2 RSVs might correlate with poor responses in CHH under hCG treatment; our study supports the pathogenicity assessment of American College of Medical Genetics and Genomics criteria in genetic counseling, to improve management of patients with CHH. Chen Y, Sun T, Niu Y, et al. Correlations AmongGenotype and Outcome in Chinese Male Patients WithCongenital Hypogonadotropic Hypogonadism Under HCG Treatment. J Sex Med 2020;17:645-657.
Collapse
Affiliation(s)
- Yinwei Chen
- Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Taotao Sun
- Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yonghua Niu
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Daoqi Wang
- Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhiyong Xiong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chuanzhou Li
- Department of Medical Genetics, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kang Liu
- Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Youlan Qiu
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and technology, Wuhan, Hubei, China
| | - Yi Sun
- Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jianan Gong
- Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tao Wang
- Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shaogang Wang
- Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hao Xu
- Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Jihong Liu
- Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|