1
|
Alaouna M, Hull R, Molefi T, Khanyile R, Mbodi L, Luvhengo TE, Chauke-Malinga N, Phakathi B, Penny C, Dlamini Z. Exploring Water-Soluble South African Tulbaghia violacea Harv Extract as a Therapeutic Approach for Triple-Negative Breast Cancer Metastasis. Curr Issues Mol Biol 2024; 46:10806-10828. [PMID: 39451522 PMCID: PMC11506433 DOI: 10.3390/cimb46100642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 10/26/2024] Open
Abstract
Triple-negative breast cancer (TNBC) accounts for approximately 20% of all breast cancer cases and is characterized by a lack of estrogen, progesterone, and human epidermal growth factor 2 receptors. Current targeted medicines have been unsuccessful due to this absence of hormone receptors. This study explored the efficacy of Tulbaghia violacea, a South African medicinal plant, for the treatment of TNBC metastasis. Extracts from T. violacea leaves were prepared using water and methanol. However, only the water-soluble extract showed anti-cancer activity and the effects of this water-soluble extract on cell adhesion, invasion, and migration, and its antioxidant activity were assessed using MCF-10A and MDA-MB-231 cells. The T. violacea extract that was soluble in water effectively decreased the movement and penetration of MDA-MB-231 cells through the basement membrane in scratch and invasion tests, while enhancing their attachment to a substance resembling an extracellular matrix. The sample showed mild-to-low antioxidant activity in the antioxidant assy. Nuclear magnetic resonance spectroscopy revealed 61 chemical components in the water-soluble extract, including DDMP, 1,2,4-triazine-3,5(2H,4H)-dione, vanillin, schisandrin, taurolidine, and α-pinene, which are known to have anti-cancer properties. An in-depth examination of the transcriptome showed alterations in genes linked to angiogenesis, metastasis, and proliferation post-treatment, with reduced activity in growth receptor signaling, angiogenesis, and cancer-related pathways, such as the Wnt, Notch, and PI3K pathways. These results indicate that T. violacea may be a beneficial source of lead chemicals for the development of potential therapeutic medicines that target TNBC metastasis. Additional studies are required to identify the precise bioactive chemical components responsible for the observed anti-cancer effects.
Collapse
Affiliation(s)
- Mohammed Alaouna
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa; (M.A.); (C.P.)
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria 0084, South Africa; (R.H.); (T.M.); (R.K.); (N.C.-M.)
| | - Rodney Hull
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria 0084, South Africa; (R.H.); (T.M.); (R.K.); (N.C.-M.)
| | - Thulo Molefi
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria 0084, South Africa; (R.H.); (T.M.); (R.K.); (N.C.-M.)
- Department of Medical Oncology, Steve Biko Academic Hospital, University of Pretoria, Pretoria 0084, South Africa
| | - Richard Khanyile
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria 0084, South Africa; (R.H.); (T.M.); (R.K.); (N.C.-M.)
- Department of Medical Oncology, Steve Biko Academic Hospital, University of Pretoria, Pretoria 0084, South Africa
| | - Langanani Mbodi
- Gynaecologic Oncology Unit, Department of Obstetrics and Gynaecology, Charlotte Maxeke Johannesburg Academic Hospital, University of the Witwatersrand, Johannesburg 2193, South Africa;
| | - Thifhelimbilu Emmanuel Luvhengo
- Department of Surgery, Charlotte Maxeke Johannesburg Academic Hospital, University of the Witwatersrand, Parktown, Johannesburg 2193, South Africa;
| | - Nkhensani Chauke-Malinga
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria 0084, South Africa; (R.H.); (T.M.); (R.K.); (N.C.-M.)
- Papillon Plastic Surgery, Suite 203B, 24 12th Avenue, Linksfield West, Johannesburg 2192, South Africa
| | - Boitumelo Phakathi
- Department of Surgery, Faculty of Health Sciences, University of Kwa-Zulu Natal, Durban 4041, South Africa;
| | - Clement Penny
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa; (M.A.); (C.P.)
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria 0084, South Africa; (R.H.); (T.M.); (R.K.); (N.C.-M.)
| |
Collapse
|
2
|
Khurshid A, Saeed A, Shabir G, Gil DM, Bolte M, Erben MF. Synthesis of phenazone based carboxamide under thiourea reaction conditions. Molecular and crystal structure, Hirshfeld surface analysis and intermolecular interaction energies. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
3
|
Experimental and Hirshfeld Surface Investigations for Unexpected Aminophenazone Cocrystal Formation under Thiourea Reaction Conditions via Possible Enamine Assisted Rearrangement. CRYSTALS 2022. [DOI: 10.3390/cryst12050608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Considering the astounding biomedicine properties of pharmaceutically active drug, 4-aminophenazone, also known as 4-aminoantipyrine, the work reported in this manuscript details the formation of novel cocrystals of rearranged 4-aminophenazone and 4-nitro-N-(4-nitrobenzoyl) benzamide in 1:1 stoichiometry under employed conditions for thiourea synthesis by exploiting the use of its active amino component. However, detailed analysis via various characterization techniques such as FT-IR, nuclear magnetic resonance spectroscopy and single crystal XRD, for this unforeseen, but useful cocrystalline synthetic adduct (4 and 5) prompted us to delve into its mechanistic pathway under provided reaction conditions. The coformer 4-nitro-N-(4-nitrobenzoyl) benzamide originates via nucleophilic addition reaction following tetrahedral mechanism between para-nitro substituted benzoyl amide and its acid halide (1). While the enamine nucleophilic addition reaction by 4-aminophenazone on 4-nitrosubstituted aroyl isothiocyanates under reflux temperature suggests the emergence of rearranged counterpart of cocrystal named N-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazole-4-carbonothioyl)-4-nitrobenzamide. Crystallographic studies reveal triclinic system P-1 space group for cocrystal (4 and 5) and depicts two different crystallographically independent molecules with prominent C–H···O and N–H···O hydrogen bonding effective for structure stabilization. Hirshfeld surface analysis also displays hydrogen bonding and van der Waals interactions as dominant interactions in crystal packing. Further insight into the cocrystal synthetic methodologies supported the occurrence of solution-based evaporation/cocrystallization methodology in our case during purification step, promoting the synthesis of this first-ever reported novel cocrystal of 4-aminophenazone with promising future application in medicinal industry.
Collapse
|
4
|
Marinescu M. Synthesis of Antimicrobial Benzimidazole-Pyrazole Compounds and Their Biological Activities. Antibiotics (Basel) 2021; 10:1002. [PMID: 34439052 PMCID: PMC8389006 DOI: 10.3390/antibiotics10081002] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 12/17/2022] Open
Abstract
The synthesis of new compounds with antimicrobial and antiviral properties is a central objective today in the context of the COVID-19 pandemic. Benzimidazole and pyrazole compounds have remarkable biological properties, such as antimicrobial, antiviral, antitumor, analgesic, anti-inflammatory, anti-Alzheimer's, antiulcer, antidiabetic. Moreover, recent literature mentions the syntheses and antimicrobial properties of some benzimidazole-pyrazole hybrids, as well as other biological properties thereof. In this review, we aim to review the methods of synthesis of these hybrids, the antimicrobial activities of the compounds, their correlation with various groups present on the molecule, as well as their pharmaceutical properties.
Collapse
Affiliation(s)
- Maria Marinescu
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, Soseaua Panduri, 030018 Bucharest, Romania
| |
Collapse
|
5
|
Potential Therapeutic Effects of New Ruthenium (III) Complex with Quercetin: Characterization, Structure, Gene Regulation, and Antitumor and Anti-Inflammatory Studies (RuIII/Q Novel Complex Is a Potent Immunoprotective Agent). CRYSTALS 2021. [DOI: 10.3390/cryst11040367] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The aim of this study was to evaluate the antioxidant and anti-inflammatory effects of the new [Ru(Q)(Cl)2(H2O)2] complex (RuIII/Q). A new vital complex containing quercetin flavonoid compound (Q) with ruthenium (III) ions was synthesized. The molar conductivity of the RuIII/Q complex was measured in dimethylsulfoxide (DMSO) with value 12 (Ω−1 mol−1 cm−1, indicating their non-electrolytic nature. Infrared (FTIR) spectroscopic investigation of the RuIII/Q complex indicated that Q is coordinated as a bidentate with Ru metal ions through the oxygen of carbonyl C(4)=O group and oxygen of phenolic C(3)−O group based on the wavenumber shifts at 1654 and 1335 cm−1 respectively. The electronic (UV−Vis) spectra and the magnetic susceptibility value (1.85 B.M.) revealed that the Ru(III) complex has an octahedral geometry. The average diameter of the RuIII/Q nanoparticles was approximately 7–15 nm according to the transmission electron microscopy. The thermogravimetric study (TG/DTG) indicates that the RuIII/Q compound is quite stable until 300 °C. To assess biological activity, 60 male rats were allocated to six groups, namely control, DG (D-galactose), Q, RuIII/Q, DG plus Q, and DG plus RuIII/Q. Antioxidant enzymes (SOD, CAT, GPx, and GRx), markers of lipid peroxidation (such as MDA), expression of genes (namely Nrf2, Cu-ZnSOD, CAT, GPx, cyto c, P53, Bax, BCl2, caspase-3, and caspase-9 in testicular tissue), glutamate, 4-hydroxynonenal (HNE), GSH, HCY, amyloid beta, and GABA levels were evaluated in brain tissues. Cytokines, such as IL-6 and TNF-α, histological and ultrastructural studies were estimated in both the brain and testicular tissues, while the comet assay was performed in the brain tissue. RuIII/Q administration either alone or combined with DG reduced oxidative injury to normal levels and decreased apoptotic activities. Thus, RuIII/Q inhibited injury in both the testis and brain and reduced oxidative stress in male rats. The (RuIII/Q) complex has a potent ameliorative effect against aging neurotoxicity, reproductive toxicity, and antihepatic cancer activity induced by D-galactose (DG).
Collapse
|
6
|
Utilizing of (Zinc Oxide Nano-Spray) for Disinfection against “SARS-CoV-2” and Testing Its Biological Effectiveness on Some Biochemical Parameters during (COVID-19 Pandemic)—”ZnO Nanoparticles Have Antiviral Activity against (SARS-CoV-2)”. COATINGS 2021. [DOI: 10.3390/coatings11040388] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A newly synthesized zinc (II) oxide nanoparticle (ZnO-NPs) has been used as a disinfectant Nano-spray for the emerging corona virus (SARS-CoV-2). The synthesized obtained nanomaterial of (ZnO) was fully chemically characterized by using different spectroscopic analysis (FT-IR, UV and XRD) and surface analysis techniques. ZnO-Nps surface morphology and chemical purity has been investigated by transmission electron microscope (TEM), high resolution transmission electron microscope (HR-TEM), scanning electron microscopy (SEM) as well as energy dispersive X-ray analysis (EDX), Additionally Zeta potential and Zeta size distribution were measured and evaluated to confirm its nano-range scale. The synthesized Zno-NPs have been tested using 10% DMSO and ddH2O for estimation of antiviral activity against (SARS-CoV-2) by using cytotoxicity assay (CC50) and inhibitory concentration (IC50). The results revealed that (Zno-NPs) has high anti-SARS-CoV-2 activity at cytotoxic concentrations in vitro with non-significant selectivity index (CC50/IC50 ≤ 1). The current study results demonstrated the (ZnO-NPs) has potent antiviral activity at low concentration (IC50 = 526 ng/mL) but with some cytotoxic effect to the cell host by (CC50 = 292.2 ng/mL). We recommend using of (ZnO-NPs) as potent disinfectant against (SARS-Cov-2), but there are slight side effects on the cellular host, so we recommend more prospective studies on complexation of other compounds with (ZnO-NPs) in different concentrations to reduce its cellular toxicity and elevate its antiviral activity against SARS-CoV-2 activities.
Collapse
|
7
|
Hamza RZ, Al-Salmi FA, El-Shenawy NS. Chitosan and Lecithin Ameliorate Osteoarthritis Symptoms Induced by Monoiodoacetate in a Rat Model. Molecules 2020; 25:molecules25235738. [PMID: 33291821 PMCID: PMC7730914 DOI: 10.3390/molecules25235738] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/28/2020] [Accepted: 11/28/2020] [Indexed: 01/08/2023] Open
Abstract
The present work aimed to assess the chondroprotective influence of chitosan and lecithin in a monoiodoacetate (MIA)-induced experimental osteoarthritis (OA) model. Forty male rats weighing 180–200 g were randomly distributed among the following five experimental groups (eight per group): control, MIA-induced OA, MIA-induced OA + chitosan, MIA-induced OA + lecithin, and MIA-induced OA + chitosan + lecithin. The levels of TNF-α, IL6, RF, ROS, and CRP, as well as mitochondrial markers such as mitochondrial swelling, cytochrome C oxidase (complex IV), MMP, and serum oxidative/antioxidant status (MDA level) (MPO and XO activities) were elevated in MIA-induced OA. Also, SDH (complex II) activity in addition to the levels of ATP, glutathione (GSH), and thiol was markedly diminished in the MIA-induced OA group compared to in control rats. These findings show that mitochondrial function is associated with OA pathophysiology and suggest that chitosan and lecithin could be promising potential ameliorative agents in OA animal models. Lecithin was more effective than chitosan in ameliorating all of the abovementioned parameters.
Collapse
Affiliation(s)
- Reham Z. Hamza
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Department of Zoology, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
- Correspondence: ; Tel.: +96-6531-355470 or +20-111-8500-586
| | - Fawziah A. Al-Salmi
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Nahla S. El-Shenawy
- Department of Zoology, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|