1
|
Wang J, Lin C, Li X, Wei J, Wang Y, Li R, Ming Y, Tang J, Liu J, Zhang M, Ji H. Polydopamine nanoparticles loaded with sodium ferulate for targeted therapy of myocardial infarction in endothelial cells. Int J Pharm 2025; 671:125187. [PMID: 39855278 DOI: 10.1016/j.ijpharm.2025.125187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/16/2024] [Accepted: 01/05/2025] [Indexed: 01/27/2025]
Abstract
Myocardial infarction (MI) is a leading cause of heart failure and death in cardiovascular diseases. Most drug trials currently fail due to inadequate local drug activity and side effects. In this study, we developed a novel polydopamine (PDA) nano delivery system that carries sodium ferulate (SF) and is modified with RGD peptides (SF/RGD-PDA NPs) for precise targeted delivery. SF is a clinical adjuvant for cardiovascular and cerebrovascular diseases but lacks targeting and has a short half-life. PDA, known for its excellent biocompatibility and surface modifiability, serves as an effective carrier. SF was loaded onto PDA through π-π stacking, while RGD was attached via a Michael addition reaction, resulting in stable SF/RGD-PDA NPs with an average particle size of 206.13 nm. In vitro and in vivo studies indicate that this targeted formulation has good safety. Targeting studies showed a 2.19-fold increase in nanoparticle accumulation in the heart and a 5.94-fold increase in cellular uptake efficiency. Pharmacodynamic studies revealed a 1.45-fold increase in endothelial cell proliferation, a 1.46-fold increase in angiogenesis rate, and a significant reduction in MI area. These findings suggest that SF/RGD-PDA NPs can improve endothelial cell function and reduce MI area through targeted delivery.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pharmacy, the Second Affiliated Hospital, Harbin Medical University (Key Laboratory of Medications Research, College of Heilongjiang Province), Harbin 150086, China; Department of Pharmaceutics, School of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Congcong Lin
- Department of Pharmacy, the Second Affiliated Hospital, Harbin Medical University (Key Laboratory of Medications Research, College of Heilongjiang Province), Harbin 150086, China; Department of Pharmaceutics, School of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Xiaoyang Li
- Department of Pharmacy, the Second Affiliated Hospital, Harbin Medical University (Key Laboratory of Medications Research, College of Heilongjiang Province), Harbin 150086, China; Department of Pharmaceutics, School of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Junyao Wei
- Department of Pharmacy, the Second Affiliated Hospital, Harbin Medical University (Key Laboratory of Medications Research, College of Heilongjiang Province), Harbin 150086, China; Department of Pharmaceutics, School of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Yihua Wang
- Department of Pharmaceutics, School of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Rongtao Li
- Department of Pharmacy, the Second Affiliated Hospital, Harbin Medical University (Key Laboratory of Medications Research, College of Heilongjiang Province), Harbin 150086, China; Department of Pharmaceutics, School of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Yan Ming
- Department of Pharmacy, the Second Affiliated Hospital, Harbin Medical University (Key Laboratory of Medications Research, College of Heilongjiang Province), Harbin 150086, China; Department of Pharmaceutics, School of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Jingling Tang
- Department of Pharmaceutics, School of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Jiaxin Liu
- Department of Pharmaceutics, School of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Manjie Zhang
- Department of Pharmacy, the Second Affiliated Hospital, Harbin Medical University (Key Laboratory of Medications Research, College of Heilongjiang Province), Harbin 150086, China; Department of Pharmaceutics, School of Pharmacy, Harbin Medical University, Harbin 150086, China.
| | - Hongyu Ji
- Department of Pharmacy, the Second Affiliated Hospital, Harbin Medical University (Key Laboratory of Medications Research, College of Heilongjiang Province), Harbin 150086, China; Department of Pharmaceutics, School of Pharmacy, Harbin Medical University, Harbin 150086, China.
| |
Collapse
|
2
|
Zhao Y, Yang C, Liu Y, Qin M, Sun J, Liu G. Effects of sodium ferulate for injection on anticoagulation of warfarin in rats in vivo. BMC Complement Med Ther 2024; 24:87. [PMID: 38355450 PMCID: PMC10865636 DOI: 10.1186/s12906-024-04389-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/03/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Herb-drug interactions may result in increased adverse drug reactions or diminished drug efficacy, especially for drugs with a narrow therapeutic index such as warfarin. The current study investigates the effects of sodium ferulate for injection (SFI) on anticoagulation of warfarin from aspects of pharmacodynamics and pharmacokinetics in rats and predicts the risk of the combination use. METHODS Rats were randomly divided into different groups and administered single- or multiple-dose of warfarin (0.2 mg/kg) with or without SFI of low dose (8.93 mg/kg) or high dose (26.79 mg/kg). Prothrombin time (PT) and activated partial thromboplastin time (APTT) were detected by a blood coagulation analyzer, and international normalized ratio (INR) values were calculated. UPLC-MS/MS was conducted to measure concentrations of warfarin enantiomers and pharmacokinetic parameters were calculated by DAS2.0 software. RESULTS The single-dose study demonstrated that SFI alone had no effect on coagulation indices, but significantly decreased PT and INR values of warfarin when the two drugs were co-administered (P < 0.05 or P < 0.01), while APTT values unaffected (P > 0.05). Cmax and AUC of R/S-warfarin decreased but CL increased significantly in presence of SFI (P < 0.01). The multiple-dose study showed that PT, APTT, INR, and concentrations of R/S-warfarin decreased significantly when SFI was co-administered with warfarin (P < 0.01). Warfarin plasma protein binding rate was not significantly changed by SFI (P > 0.05). CONCLUSIONS The present study implied that SFI could accelerate warfarin metabolism and weaken its anticoagulation intensity in rats.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Pharmacy, The Second Affiliated Hospital, Harbin Medical University, The Heilongjiang Key Laboratory of Drug Research, Harbin, 150086, P.R. China
| | - Chunjuan Yang
- College of Pharmacy, Harbin Medical University, Harbin, 150086, P.R. China
| | - Yan Liu
- Department of Pharmacy, The Second Affiliated Hospital, Harbin Medical University, The Heilongjiang Key Laboratory of Drug Research, Harbin, 150086, P.R. China
| | - Mengnan Qin
- Department of Pharmacy, The Second Affiliated Hospital, Harbin Medical University, The Heilongjiang Key Laboratory of Drug Research, Harbin, 150086, P.R. China
| | - Jiahui Sun
- College of Pharmacy, Harbin Medical University, Harbin, 150086, P.R. China
| | - Gaofeng Liu
- Department of Pharmacy, The Second Affiliated Hospital, Harbin Medical University, The Heilongjiang Key Laboratory of Drug Research, Harbin, 150086, P.R. China.
| |
Collapse
|
3
|
Shen Z, Wu Y, Zhou L, Wang Q, Tang Y, Sun Y, Zheng F, Li Y. The efficacy of sodium ferulate combination therapy in coronary heart disease: A systematic review and meta-analysis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154829. [PMID: 37116387 DOI: 10.1016/j.phymed.2023.154829] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/05/2023] [Accepted: 04/16/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Sodium ferulate (SF), a derivative of ferulic acid, is one of the active constituents in medicinal plants thought to be useful in fighting cardiovascular diseases. However, there still lacks a systematic review of the efficacy and safety of SF in treating coronary heart disease (CHD). It is therefore the purpose of this study to comprehensively review all clinical randomized controlled trials (RCTs) of SF in CHD to assess its efficacy and safety. METHODS All analysis is based on 8 databases as of February 2023, which includes 35 outcomes of RCTs that investigate the effect of SF combination therapy in CHD. The present study evaluates the quality and bias of selected literature by the Jadad scale and Cochrane Collaboration's tools, and also the quality of evidence by GRADE Profiler. Furthermore, it applies sensitivity analysis to assess the high heterogeneity impact of outcomes and conducted subgroup analysis to estimate the influence factors in these studies. The study protocol was set documented, and published beforehand in PROSPERO (Registration No.CRD42022348841). RESULTS The meta-analysis of 36 studies (with 3207 patients) shows that SF combined with conventional drugs has improved clinical effectiveness for patients with CHD [RR: 1.21 (95% CI 1.17,1.26); p < 0.00001]. Statistically significant results of meta-analyses are also seen in electrocardiography (ECG) efficacy, frequency of angina attacks, endothelium-dependent flow-mediated vasodilation (FMD), nitric oxide (NO), endothelin (ET), whole Blood low shear rate (LS), platelet aggregation test (PAgT), C-reactive protein (CRP), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL6), triglyceride (TG). Adverse events are reported in 6 RCTs. By GRADE approaches, 2 outcomes (clinical efficacy, CRP) indicate a moderate quality of evidence, 17 outcomes indicate low quality of evidence, with the other 16 very low-quality. CONCLUSION SF combination therapy has a better curative effect than conventional therapy. However, due to items with low-quality evidence demonstrated in the study, the presence of clinical heterogeneity, and imprecision in partial outcome measures, all these led to limitations in the evidence of this study. Thus, the conclusion needs to be further verified by more in-depth research.
Collapse
Affiliation(s)
- Zinuo Shen
- School of Traditional Chinese Medicine, Liangxiang Campus of Beijing University of Chinese Medicine, Fangshan District, Beijing 102488, China
| | - Yang Wu
- Clinical College of Chinese Medicine, Hubei University of Chinese Medicine, Hubei, China
| | - Lu Zhou
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Henan, China
| | - Qian Wang
- School of Traditional Chinese Medicine, Liangxiang Campus of Beijing University of Chinese Medicine, Fangshan District, Beijing 102488, China
| | - Yang Tang
- School of Traditional Chinese Medicine, Liangxiang Campus of Beijing University of Chinese Medicine, Fangshan District, Beijing 102488, China
| | - Yan Sun
- School of Traditional Chinese Medicine, Liangxiang Campus of Beijing University of Chinese Medicine, Fangshan District, Beijing 102488, China.
| | - Fengjie Zheng
- School of Traditional Chinese Medicine, Liangxiang Campus of Beijing University of Chinese Medicine, Fangshan District, Beijing 102488, China.
| | - Yuhang Li
- School of Traditional Chinese Medicine, Liangxiang Campus of Beijing University of Chinese Medicine, Fangshan District, Beijing 102488, China.
| |
Collapse
|
4
|
Chen M, Wu Q. Roles and mechanisms of natural drugs on sinus node dysfunction. Biomed Pharmacother 2023; 164:114777. [PMID: 37229801 DOI: 10.1016/j.biopha.2023.114777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/18/2023] [Accepted: 04/23/2023] [Indexed: 05/27/2023] Open
Abstract
Sinus node dysfunction is a common arrhythmia disorder with a high incidence and significant social and economic burden. Currently, there are no effective drugs for treating chronic sinus node dysfunction. The disease is associated with ion channel disturbances caused by aging, fibrosis, inflammation, oxidative stress, and autonomic dysfunction. Natural active substances and Chinese herbal medicines have been widely used and extensively studied in the medical community for the treatment of arrhythmias. Multiple studies have demonstrated that various active ingredients and Chinese herbal medicines, such as astragaloside IV, quercetin, and ginsenosides, exhibit antioxidant effects, reduce fibrosis, and maintain ion channel stability, providing promising drugs for treating sinus node dysfunction. This article summarizes the research progress on natural active ingredients and Chinese herbal formulas that regulate sick sinoatrial node function, providing valuable references for the treatment of sinus node dysfunction.
Collapse
Affiliation(s)
- Meilian Chen
- Quanzhou Hospital of Traditional Chinese Medicine, Fujian 362000, China
| | - Qiaomin Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
5
|
Glutathione system enhancement for cardiac protection: pharmacological options against oxidative stress and ferroptosis. Cell Death Dis 2023; 14:131. [PMID: 36792890 PMCID: PMC9932120 DOI: 10.1038/s41419-023-05645-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/17/2023]
Abstract
The glutathione (GSH) system is considered to be one of the most powerful endogenous antioxidant systems in the cardiovascular system due to its key contribution to detoxifying xenobiotics and scavenging overreactive oxygen species (ROS). Numerous investigations have suggested that disruption of the GSH system is a critical element in the pathogenesis of myocardial injury. Meanwhile, a newly proposed type of cell death, ferroptosis, has been demonstrated to be closely related to the GSH system, which affects the process and outcome of myocardial injury. Moreover, in facing various pathological challenges, the mammalian heart, which possesses high levels of mitochondria and weak antioxidant capacity, is susceptible to oxidant production and oxidative damage. Therefore, targeted enhancement of the GSH system along with prevention of ferroptosis in the myocardium is a promising therapeutic strategy. In this review, we first systematically describe the physiological functions and anabolism of the GSH system, as well as its effects on cardiac injury. Then, we discuss the relationship between the GSH system and ferroptosis in myocardial injury. Moreover, a comprehensive summary of the activation strategies of the GSH system is presented, where we mainly identify several promising herbal monomers, which may provide valuable guidelines for the exploration of new therapeutic approaches.
Collapse
|