1
|
Karimi M, Shirsalimi N, Sedighi E. Apelin-13 as a novel diagnostic laboratory biomarker in thromboembolic disorders: a review of literature with prospective insights. Int J Emerg Med 2024; 17:190. [PMID: 39695958 DOI: 10.1186/s12245-024-00774-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 11/27/2024] [Indexed: 12/20/2024] Open
Abstract
Thromboembolic disorders, including deep vein thrombosis (DVT) and pulmonary embolism (PE), are major global health concerns, causing significant morbidity and mortality. Early diagnosis is crucial for effective treatment and improved patient outcomes. Recent research has identified Apelin-13, a bioactive peptide in the apelin family, as a promising diagnostic biomarker for Thromboembolic disorders. Apelin-13 supports vascular health by regulating protease balance through plasminogen activator inhibitors and modulating endothelial cell function. Additionally, it plays a vital role in coagulation, with elevated levels associated with an increased risk of clot formation, suggesting its utility in predicting thrombosis risk, particularly in preoperative evaluations. Findings indicate that the Apelin-13 pathway shows significant promise as a biomarker for Thromboembolic disorders, underscoring its potential therapeutic applications and the need for further investigation. This review synthesizes current literature on thromboembolic disorders and associated laboratory biomarkers, with a particular focus on Apelin-13. It examines Apelin-13's role in disease mechanisms, its physiological functions, and its potential as a diagnostic biomarker in thromboembolic conditions.
Collapse
Affiliation(s)
- Mehdi Karimi
- Faculty of Medicine, Bogomolets National Medical University (NMU), Kyiv, Ukraine.
| | - Niyousha Shirsalimi
- Faculty of Medicine, Bogomolets National Medical University (NMU), Kyiv, Ukraine
| | - Eshagh Sedighi
- Faculty of Medicine, Hamadan University of Medical Science (UMSHA), Hamadan, Iran
- Department of Veterinary Medicine, Islamic Azad University Branch of Urmia, Urmia, Iran
| |
Collapse
|
2
|
Gholampour F, Masjedi F, Janfeshan S, Karimi Z. Remote limb ischemic pre-conditioning prevents renal Ischemia/reperfusion injury in rats by modulating oxidative stress and TNF-α/NF-κB/TGF-/βapelin signaling pathway. Mol Biol Rep 2024; 52:4. [PMID: 39570475 DOI: 10.1007/s11033-024-10109-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/12/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Remote limb ischemic pre-conditioning (RIPreC) can invoke potent renal protection. The involvement of oxidative stress and inflammatory pathways in renal ischemia/reperfusion injury (I/RI) was also confirmed. This study was designed to investigate the RIPreC effects on IRI-induced kidney dysfunction in rats through NFĸB/TNF-α/TGF-ꞵ/apelin signaling pathway. METHODS Renal I/RI was induced by occluding the kidney arteries for 45 min, then reperfusion for 24 h. Four similar cycles of left femoral artery ischemia (2 min)/reperfusion (3 min) before the onset of kidney ischemia were performed to create RIPreC. Animals were randomly divided into three groups: sham, I/R, and RIPreC + I/R. Following the reperfusion phase, urine and blood samples were taken, and the kidney was removed for functional, molecular, and histological examination. RESULTS When compared to sham rats, renal IRI resulted in decreased creatinine clearance and increased sodium fractional excretion, lower antioxidant enzyme activities, higher malondialdehyde content and higher nuclear factor-kappa B (NF-κB), tumor necrosis factor-alpha (TNF-α), transforming growth factor-betta (TGF-β), and Apelin expression levels, and histologically damaged kidney tissue. All of the alterations, as mentioned earlier, were alleviated using the RIPreC treatment. CONCLUSION Thus, RIPreC can protect against renal dysfunction after renal I/RI via modulation of the TNF-α/NF-κB/TGF-ꞵ/Apelin signaling pathway and strengthening the antioxidant defense system.
Collapse
Affiliation(s)
| | - Fatemeh Masjedi
- Nephro-Urology Research Center, Shiraz University of Medical Sciences, Research Tower, Khalili Avenue, Shiraz, 7193635899, Iran
| | - Sahar Janfeshan
- Nephro-Urology Research Center, Shiraz University of Medical Sciences, Research Tower, Khalili Avenue, Shiraz, 7193635899, Iran
| | - Zeinab Karimi
- Nephro-Urology Research Center, Shiraz University of Medical Sciences, Research Tower, Khalili Avenue, Shiraz, 7193635899, Iran.
| |
Collapse
|
3
|
Li X, Gu C, Hu Q, Wang L, Zhang Y, Yu L. Protective effect of apelin-13 in lens epithelial cells via inhibiting oxidative stress-induced apoptosis. BMC Ophthalmol 2024; 24:479. [PMID: 39497115 PMCID: PMC11533313 DOI: 10.1186/s12886-024-03746-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 10/24/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND It is widely accepted that glaucoma-induced oxidative stress expedites cataracts' process. Therefore, we examined the effects of apelin-13 against oxidative stress-induced damage in human lens epithelial cells (HLECs) and investigated the potential pathogenic mechanism of acute primary angle-closure glaucoma. METHODS This experiment included five groups: control, H2O2, apelin-13 + H2O2, ML221 + H2O2, and apelin-13 + ML221 + H2O2. ML221 was employed in rescue experiments as an APJ antagonist. HLECs were pretreated with or without apelin-13 and subsequently exposed to H2O2. HLECs' viability was assessed by CCK8. Cell apoptosis was determined using Annexin V-FITC/PI staining. The mitochondrial membrane potential was assessed by fluorescent probe JC-1. Intracellular G6PD activity, NADPH/NADP+, and GSH/GSSG ratios were detected to assess the cells' oxidative damage. RESULT Apelin-13 reversed the H2O2-induced decrease in cell viability. The increased expression of G6PD and GLTU1, the G6PD, GSH/GSSG and NADPH/NADP + levels showed that apelin-13 can mitigate the H2O2-induced inhibition of the pentose phosphate pathway and dysregulation of cell redox status in the apelin-13 + H2O2 group compared with the H2O2 group. In H2O2-treated HLECs, apelin-13 can mitigate cell apoptosis, promote Bcl-2 expression, and suppress the Bax and Caspase-3 expression. In addition, H2O2 substantially reduced the mitochondrial membrane potential in HLECs, which was reversed by apelin-13. Notably, the inhibition of APJ intensified oxidative damage in H2O2-induced HLECs, demonstrating that the effects of apelin-13 were hindered by ML221. CONCLUTIONS Apelin-13 reduced oxidative damage and apoptosis in HLECs through APJ. These results demonstrate that apelin-13 can be employed as a potential drug for glaucoma with cataracts to delay the progression of cataracts.
Collapse
Affiliation(s)
- Xue Li
- Department of Ophthalmology, Daping Hospital, Army Medical Center, Army Medical University, Chongqing, 400042, China
| | - Chao Gu
- Department of Ophthalmology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Qiumei Hu
- Department of Ophthalmology, Daping Hospital, Army Medical Center, Army Medical University, Chongqing, 400042, China
| | - Liqin Wang
- Department of Ophthalmology, Daping Hospital, Army Medical Center, Army Medical University, Chongqing, 400042, China
| | - Ya Zhang
- Department of Ophthalmology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Ling Yu
- Department of Ophthalmology, Daping Hospital, Army Medical Center, Army Medical University, Chongqing, 400042, China.
- Department of Ophthalmology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China.
| |
Collapse
|
4
|
Wei X, Luo L, Lu H, Li S, Deng X, Li Z, Gong D, Chen B. Apelin-13's Actions in Controlling Hypertension-Related Cardiac Hypertrophy and the Expressions of Inflammatory Cytokines. Chem Biol Drug Des 2024; 104:e14628. [PMID: 39396917 DOI: 10.1111/cbdd.14628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/28/2024] [Accepted: 07/23/2024] [Indexed: 10/15/2024]
Abstract
As a key molecule for improving cardiovascular diseases, Apelin-13 was surveyed in this work to explain its actions in controlling inflammation, pyroptosis, and myocardial hypertrophy. First, mouse models with myocardial hypertrophy were established. Then, assessments were made on the pathological variation in the heart of mouse, on the cardiac functions, as well as on the expressions of cardiac hypertrophy markers (β-MHC, ANP, and BNP), inflammatory factors (TNF-α, COX2, IL-6, ICAM-1, and VCAM-1), myocardial cell pyroptosis markers (NLRP3, ASC, c-caspase-1, and GSDMD-N), and Hippo pathway proteins (p-YAP, YAP, LATS1, and p-LATS1) by HE staining, echocardiography scanning, and western blot tests separately. The expressions of such inflammatory factors as in myocardial tissue were acquired by ELISA. After inducing the phenotype of H9c2 cell hypertrophy by noradrenaline, we used CCK-8 kits to know about the activity of H9c2 cells treated with Apelin-13, and performed ɑ-actinin staining to measure the changes in volumes of such cells. As unraveled through this work, Apelin-13 refrained the activation of the Hippo pathway, which in turn attenuated the hypertrophy, inflammation, and pyroptosis of myocardial tissue and H9c2 cells. Hence, Apelin-13 can be considered as a target for hypertension treatment.
Collapse
Affiliation(s)
- Xiaoliang Wei
- Department of Cardiovascular Disease IV, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Liyun Luo
- Department of Cardiovascular Disease I, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Huifang Lu
- Department of Cardiovascular Disease IV, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Songbiao Li
- Department of Cardiovascular Disease IV, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Xinlian Deng
- Department of Cardiovascular Disease IV, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Zhihui Li
- Department of Cardiovascular Disease IV, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Dong Gong
- Department of Cardiovascular Disease IV, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Bairong Chen
- Department of Cardiovascular Disease IV, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China
| |
Collapse
|
5
|
Mohammed SM, Al-Saedi HFS, Mohammed AQ, Amir AA, Radi UK, Sattar R, Ahmad I, Ramadan MF, Alshahrani MY, Balasim HM, Alawadi A. Mechanisms of Bleomycin-induced Lung Fibrosis: A Review of Therapeutic Targets and Approaches. Cell Biochem Biophys 2024; 82:1845-1870. [PMID: 38955925 DOI: 10.1007/s12013-024-01384-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2024] [Indexed: 07/04/2024]
Abstract
Pulmonary toxicity is a serious side effect of some specific anticancer drugs. Bleomycin is a well-known anticancer drug that triggers severe reactions in the lungs. It is an approved drug that may be prescribed for the treatment of testicular cancers, Hodgkin's and non-Hodgkin's lymphomas, ovarian cancer, head and neck cancers, and cervical cancer. A large number of experimental studies and clinical findings show that bleomycin can concentrate in lung tissue, leading to massive oxidative stress, alveolar epithelial cell death, the proliferation of fibroblasts, and finally the infiltration of immune cells. Chronic release of pro-inflammatory and pro-fibrotic molecules by immune cells and fibroblasts leads to pneumonitis and fibrosis. Both fibrosis and pneumonitis are serious concerns for patients who receive bleomycin and may lead to death. Therefore, the management of lung toxicity following cancer therapy with bleomycin is a critical issue. This review explains the cellular and molecular mechanisms of pulmonary injury following treatment with bleomycin. Furthermore, we review therapeutic targets and possible promising strategies for ameliorating bleomycin-induced lung injury.
Collapse
Affiliation(s)
- Shaimaa M Mohammed
- Department of Pharmacy, Al- Mustaqbal University College, 51001, Hilla, Babylon, Iraq
| | | | | | - Ahmed Ali Amir
- Department of Medical Laboratories Technology, Al-Nisour University College, Baghdad, Iraq
| | - Usama Kadem Radi
- College of Pharmacy, National University of Science and Technology, Nasiriyah, Dhi Qar, Iraq
| | - Ruaa Sattar
- Al-Hadi University College, Baghdad, 10011, Iraq
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.
| | - Halah Majeed Balasim
- Department of Medical Laboratory Technologies, Al Rafidain University College, Bagdad, Iraq
| | - Ahmed Alawadi
- College of technical engineering, the Islamic University, Najaf, Iraq
- College of technical engineering, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of technical engineering, the Islamic University of Babylon, Hilla, Iraq
| |
Collapse
|
6
|
Zeng GG, Tang SS, Jiang WL, Yu J, Nie GY, Tang CK. Apelin-13: A Protective Role in Vascular Diseases. Curr Probl Cardiol 2024; 49:102088. [PMID: 37716542 DOI: 10.1016/j.cpcardiol.2023.102088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/18/2023]
Abstract
Vascular disease is a common problem with high mortality all over the world. Apelin-13, a key subtype of apelin, takes part in many physiological and pathological responses via regulating many target genes and target molecules or participating in many signaling pathways. More and more studies have demonstrated that apelin-13 is implicated in the onset and progression of vascular disease in recent years. It has been shown that apelin-13 could ameliorate vascular disease by inhibiting inflammation, restraining apoptosis, suppressing oxidative stress, and facilitating autophagy. In this article, we sum up the progress of apelin-13 in the occurrence and development of vascular disease and offer some insightful views about the treatment and prevention strategies of vascular disease.
Collapse
Affiliation(s)
- Guang-Gui Zeng
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, China; 2020 Grade Excellent Doctor Class of Hengyang Medical College, University of South China, Hengyang, Hunan, China; The Seventh Affiliated Hospital University of South China/ Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan, People's Republic of China
| | - Shang-Shu Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, China; 2020 Grade Excellent Doctor Class of Hengyang Medical College, University of South China, Hengyang, Hunan, China; The Seventh Affiliated Hospital University of South China/ Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan, People's Republic of China
| | - Wan-Li Jiang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, China; 2020 Grade Excellent Doctor Class of Hengyang Medical College, University of South China, Hengyang, Hunan, China; The Seventh Affiliated Hospital University of South China/ Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan, People's Republic of China
| | - Jiang Yu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, China; 2020 Grade Excellent Doctor Class of Hengyang Medical College, University of South China, Hengyang, Hunan, China; The Seventh Affiliated Hospital University of South China/ Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan, People's Republic of China
| | - Gui-Ying Nie
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, China; 2020 Grade Excellent Doctor Class of Hengyang Medical College, University of South China, Hengyang, Hunan, China; The Seventh Affiliated Hospital University of South China/ Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan, People's Republic of China
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, China; 2020 Grade Excellent Doctor Class of Hengyang Medical College, University of South China, Hengyang, Hunan, China; The Seventh Affiliated Hospital University of South China/ Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan, People's Republic of China.
| |
Collapse
|
7
|
Lu ZL, Song CK, Zou SS, Pan SZ, Lai K, Li N, Geng Q. Hydroxycitric Acid Alleviated Lung Ischemia-Reperfusion Injury by Inhibiting Oxidative Stress and Ferroptosis through the Hif-1α Pathway. Curr Issues Mol Biol 2023; 45:9868-9886. [PMID: 38132462 PMCID: PMC10742043 DOI: 10.3390/cimb45120616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023] Open
Abstract
Lung ischemia-reperfusion injury (LIRI) is a prevalent occurrence in various pulmonary diseases and surgical procedures, including lung resections and transplantation. LIRI can result in systemic hypoxemia and multi-organ failure. Hydroxycitric acid (HCA), the primary acid present in the peel of Garcinia cambogia, exhibits anti-inflammatory, antioxidant, and anticancer properties. However, the effects of HCA on LIRI remain unknown. To investigate the impact of HCA on LIRI in mice, the mice were randomly divided into four groups: the control group, the I/R model group, and the I/R + low- or high-dose HCA groups. Human umbilical vein endothelial cells (HUVECs) were subjected to hypoxia for 12 h followed by reoxygenation for 6 h to simulate in vitro LIRI. The results demonstrated that administration of HCA effectively attenuated lung injury, inflammation, and edema induced by ischemia reperfusion. Moreover, HCA treatment significantly reduced malondialdehyde (MDA) and reactive oxygen species (ROS) levels while decreasing iron content and increasing superoxide dismutase (SOD) levels after ischemia-reperfusion insult. Mechanistically, HCA administration significantly inhibited Hif-1α and HO-1 upregulation both in vivo and in vitro. We found that HCA could also alleviate endothelial barrier damage in H/R-induced HUVECs in a concentration-dependent manner. In addition, overexpression of Hif-1α counteracted HCA-mediated inhibition of H/R-induced endothelial cell ferroptosis. In summary, these results indicate that HCA alleviated LIRI by inhibiting oxidative stress and ferroptosis through the Hif-1α pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430000, China
| |
Collapse
|
8
|
Wen R, Huang R, Xu K, Cheng Y, Yi X. Beneficial effects of Apelin-13 on metabolic diseases and exercise. Front Endocrinol (Lausanne) 2023; 14:1285788. [PMID: 38089606 PMCID: PMC10714012 DOI: 10.3389/fendo.2023.1285788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
Apelin, a novel endogenous ligand of the G-protein-coupled receptor APJ, is encoded by the APLN gene and can be hydrolyzed into multiple subtypes, with Apelin-13 being one of the most active subtypes of the Apelin family. Recent studies have revealed that Apelin-13 functions as an adipokine that participates in the regulation of different biological processes, such as oxidative stress, inflammation, apoptosis, and energy metabolism, thereby playing an important role in the prevention and treatment of various metabolic diseases. However, the results of recent studies on the association between Apelin-13 and various metabolic states remain controversial. Furthermore, Apelin-13 is regulated or influenced by various forms of exercise and could therefore be categorized as a new type of exercise-sensitive factor that attenuates metabolic diseases. Thus, in this review, our purpose was to focus on the relationship between Apelin-13 and related metabolic diseases and the regulation of response movements, with particular reference to the establishment of a theoretical basis for improving and treating metabolic diseases.
Collapse
Affiliation(s)
- Ruiming Wen
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Ruiqi Huang
- School of Physical Education, Liaoning Normal University, Dalian, Liaoning, China
| | - Ke Xu
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Yang Cheng
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Xuejie Yi
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
| |
Collapse
|
9
|
Sun N, Xing Y, Jiang J, Wu P, Qing L, Tang J. Knowledge mapping and emerging trends of ferroptosis in ischemia reperfusion injury research: A bibliometric analysis (2013-2022). Heliyon 2023; 9:e20363. [PMID: 37767486 PMCID: PMC10520329 DOI: 10.1016/j.heliyon.2023.e20363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/31/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
Objective Ischemia/reperfusion (I/R) injury is an inevitable dilemma when previously ischemic multiple organs and tissues are returned to a state of blood flow, with confirming a critical role of ferroptosis in molecular, pathway mechanisms, subcellular structure. Discovering the potential relationship may provide useful approaches for the clinical treatment and prognosis of the pathophysiological status of IRI. Therefore, a comprehensive visualization and scientometric analysis were conducted to systematically summarize and discuss the "ferroptosis in ischemia reperfusion injury" research to demonstrate directions for scholars in this field. Methods We retrieved all publications focusing on I/R injury and ferroptosis from the Web of Science Core Collection (WoSCC), published from 2013 to October 2022. Next, scientometric analysis of different items was performed using various bibliometrics softwares to explore the annual trends, countries/regions, institutions, journals, authors and their multi-dimensional relationship pointing to current hotspots and future advancement in this field. Results We included a total of 421 English articles in set timespan. The number of publications increased steadily annually. China produced the highest number of publications, followed by the United States. Most publications were from Central South University, followed by Sichuan University and Wuhan University. The most authoritative academic journal was Oxidative Medicine and Cellular Longevity. Cell occupied the first rank of co-cited journal list. Andreas Linkermann and Scott J Dixon may have the highest influence in this intersected field with the highest number of citations and co-cited references respectively. The essential biological reactions such as oxidative stress response, lipid peroxidation metabolism, anti-inflammmatory and pro-inflammatory procedure, and related molecular pathways were knowledge base and current hotspots. Molecules pathways exploration, effective inhibition of I/R injury and promising strategy of improving allografts may become future trends and focuses. Conclusions Research on ferroptosis in I/R injury had aroused great interest recently. This first bibliometric study comprehensively analyzed the research landscape of ferroptosis and I/R injury, and also provided a reliable reference for related scholars to facilitate further advancement in this field.
Collapse
Affiliation(s)
- Nianzhe Sun
- Department of Orthopedics, Hand & Microsurgery, National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Yixuan Xing
- Department of Emergency, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Junjie Jiang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Panfeng Wu
- Department of Orthopedics, Hand & Microsurgery, National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Liming Qing
- Department of Orthopedics, Hand & Microsurgery, National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Juyu Tang
- Department of Orthopedics, Hand & Microsurgery, National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| |
Collapse
|
10
|
Yin H, Sun Y, Ya B, Guo Y, Zhao H, Zhang L, Wang F, Zhang W, Yang Q. Apelin-13 protects against cisplatin-induced ototoxicity by inhibiting apoptosis and regulating STAT1 and STAT3. Arch Toxicol 2023; 97:2477-2493. [PMID: 37395757 DOI: 10.1007/s00204-023-03544-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/06/2023] [Indexed: 07/04/2023]
Abstract
The ototoxic side effect of cisplatin is a main cause of sensorineural hearing loss. This side effect limits the clinical application of cisplatin and affects patients' quality of life. This study was designed to investigate the effect of apelin-13 on cisplatin-induced C57BL/6 mice hearing loss model and explore the potential underlying molecular mechanisms. Mice were intraperitoneally injected with 100 μg/kg apelin-13 2 h before 3 mg/kg cisplatin injection for 7 consecutive days. Cochlear explants cultured in vitro were pretreated with 10 nM apelin-13 2 h prior to 30 μM cisplatin treatment for another 24 h. Hearing test and morphology results showed that apelin-13 attenuated cisplatin-induced mice hearing loss and protected cochlear hair cells and spiral ganglion neurons from damage. In vivo and in vitro experimental results showed that apelin-3 reduced cisplatin-induced apoptosis of hair cells and spiral ganglion neurons. In addition, apelin-3 preserved mitochondrial membrane potential and inhibited ROS production in cultured cochlear explants. Mechanistic studies showed that apelin-3 decreased cisplatin-induced cleaved caspase 3 expression but increased Bcl-2; inhibited the expression of pro-inflammatory factors TNF-a and IL-6; and increased STAT1 phosphorylation but decreased STAT3 phosphorylation. In conclusion, our results indicate that apelin-13 could be a potential otoprotective agent to prevent cisplatin-induced ototoxicity by inhibiting apoptosis, ROS production, TNF-α and IL-6 expression, and regulating phosphorylation of STAT1 and STAT3 transcription factors.
Collapse
Affiliation(s)
- Haiyan Yin
- Jining Key Laboratory of Pharmacology, School of Basic Medical Science, Jining Medical University, No. 133, Hehua Road, Jining, 272067, Shandong, China.
| | - Yinuo Sun
- Jining Key Laboratory of Pharmacology, School of Basic Medical Science, Jining Medical University, No. 133, Hehua Road, Jining, 272067, Shandong, China
| | - Bailiu Ya
- Jining Key Laboratory of Pharmacology, School of Basic Medical Science, Jining Medical University, No. 133, Hehua Road, Jining, 272067, Shandong, China
| | - Yan Guo
- Jining Key Laboratory of Pharmacology, School of Basic Medical Science, Jining Medical University, No. 133, Hehua Road, Jining, 272067, Shandong, China
| | - Hao Zhao
- Department of Otolaryngology, Head and Neck Surgery, People's Hospital, Peking University, Beijing, China
| | - Lili Zhang
- Department of Otolaryngology-Head and Neck Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, Shandong, China
| | - Fan Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Weiwei Zhang
- Department of Otolaryngology-Head and Neck Surgery, Tengzhou Central People's Hospital, Tengzhou, Shandong, China
| | - Qianqian Yang
- Department of Pathology, The First Affiliated Hospital of Soochow University, No. 899, Pinghai Road, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
11
|
Rossin D, Vanni R, Lo Iacono M, Cristallini C, Giachino C, Rastaldo R. APJ as Promising Therapeutic Target of Peptide Analogues in Myocardial Infarction- and Hypertension-Induced Heart Failure. Pharmaceutics 2023; 15:pharmaceutics15051408. [PMID: 37242650 DOI: 10.3390/pharmaceutics15051408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/22/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
The widely expressed G protein-coupled apelin receptor (APJ) is activated by two bioactive endogenous peptides, apelin and ELABELA (ELA). The apelin/ELA-APJ-related pathway has been found involved in the regulation of many physiological and pathological cardiovascular processes. Increasing studies are deepening the role of the APJ pathway in limiting hypertension and myocardial ischaemia, thus reducing cardiac fibrosis and adverse tissue remodelling, outlining APJ regulation as a potential therapeutic target for heart failure prevention. However, the low plasma half-life of native apelin and ELABELA isoforms lowered their potential for pharmacological applications. In recent years, many research groups focused their attention on studying how APJ ligand modifications could affect receptor structure and dynamics as well as its downstream signalling. This review summarises the novel insights regarding the role of APJ-related pathways in myocardial infarction and hypertension. Furthermore, recent progress in designing synthetic compounds or analogues of APJ ligands able to fully activate the apelinergic pathway is reported. Determining how to exogenously regulate the APJ activation could help to outline a promising therapy for cardiac diseases.
Collapse
Affiliation(s)
- Daniela Rossin
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy
| | - Roberto Vanni
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy
| | - Marco Lo Iacono
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy
| | - Caterina Cristallini
- Institute for Chemical and Physical Processes, IPCF ss Pisa, CNR, 56126 Pisa, Italy
| | - Claudia Giachino
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy
| | - Raffaella Rastaldo
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy
| |
Collapse
|
12
|
Fibbi B, Marroncini G, Naldi L, Peri A. The Yin and Yang Effect of the Apelinergic System in Oxidative Stress. Int J Mol Sci 2023; 24:4745. [PMID: 36902176 PMCID: PMC10003082 DOI: 10.3390/ijms24054745] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
Apelin is an endogenous ligand for the G protein-coupled receptor APJ and has multiple biological activities in human tissues and organs, including the heart, blood vessels, adipose tissue, central nervous system, lungs, kidneys, and liver. This article reviews the crucial role of apelin in regulating oxidative stress-related processes by promoting prooxidant or antioxidant mechanisms. Following the binding of APJ to different active apelin isoforms and the interaction with several G proteins according to cell types, the apelin/APJ system is able to modulate different intracellular signaling pathways and biological functions, such as vascular tone, platelet aggregation and leukocytes adhesion, myocardial activity, ischemia/reperfusion injury, insulin resistance, inflammation, and cell proliferation and invasion. As a consequence of these multifaceted properties, the role of the apelinergic axis in the pathogenesis of degenerative and proliferative conditions (e.g., Alzheimer's and Parkinson's diseases, osteoporosis, and cancer) is currently investigated. In this view, the dual effect of the apelin/APJ system in the regulation of oxidative stress needs to be more extensively clarified, in order to identify new potential strategies and tools able to selectively modulate this axis according to the tissue-specific profile.
Collapse
Affiliation(s)
- Benedetta Fibbi
- “Pituitary Diseases and Sodium Alterations” Unit, AOU Careggi, 50139 Florence, Italy
- Endocrinology, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy
| | - Giada Marroncini
- “Pituitary Diseases and Sodium Alterations” Unit, AOU Careggi, 50139 Florence, Italy
| | - Laura Naldi
- “Pituitary Diseases and Sodium Alterations” Unit, AOU Careggi, 50139 Florence, Italy
| | - Alessandro Peri
- “Pituitary Diseases and Sodium Alterations” Unit, AOU Careggi, 50139 Florence, Italy
- Endocrinology, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy
| |
Collapse
|
13
|
Li A, Zhao Q, Chen L, Li Z. Apelin/APJ system: an emerging therapeutic target for neurological diseases. Mol Biol Rep 2023; 50:1639-1653. [PMID: 36378421 PMCID: PMC9665010 DOI: 10.1007/s11033-022-08075-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022]
Abstract
Apelin, an endogenous ligand for the G protein-coupled receptor APJ, is extensively expressed in various systems, especially the nervous system. This article reviews the role of apelin/APJ system in neurological diseases. In detail, apelin/APJ system can relieve acute brain injury including subarachnoid hemorrhage, traumatic brain injury, and ischemic stroke. Also, apelin/APJ system has therapeutic effects on chronic neurodegenerative disease models, involving the regulation of neurotrophic factors, neuroendocrine, oxidative stress, neuroinflammation, neuronal apoptosis, and autophagy. In addition, through different routes of administration, apelin/APJ system has a biphasic effect on depression, epilepsy, and pain. However, apelin/APJ system exacerbates the proliferation and invasion of glioblastoma. Thus, apelin/APJ system is expected to be a therapeutic target for the treatment of nervous system diseases.
Collapse
Affiliation(s)
- Ao Li
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Qun Zhao
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Zhiyue Li
- Department of Orthopedics, Third Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
14
|
Keskin-Aktan A, Kutlay Ö. Exogenous Apelin-13 Administration Ameliorates Cyclophosphamide- Induced Oxidative Stress, Inflammation, and Apoptosis in Rat Lungs. Protein Pept Lett 2023; 30:743-753. [PMID: 37622713 DOI: 10.2174/0929866530666230824142516] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 07/04/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND Apelin-13 is an endogenous adipocytokine known for its antioxidant, antiinflammatory, and antiapoptotic properties. OBJECTIVE We aimed to investigate the possible protective effects of exogenous Apelin-13 administration on oxidative stress, inflammation, and apoptosis induced by the cytotoxic agent cyclophosphamide (CP) in the lungs. METHODS Twenty-four male Wistar albino rats were divided into four groups: Control (saline), CP (200 mg/kg), Apelin-13 (10 μg/kg/day), and CP+Apelin-13. CP was administered as a single dose on the fifth day, and apelin-13 was administered intraperitoneally for five days. Total oxidant status (TOS), total antioxidant status (TAS), and lipid peroxidation were determined with spectrophotometry, TNFα and IL1β were determined with ELISA, APJ, Sirt1, NF-κB, and p53 mRNA expressions were determined with qRT-PCR, cytochrome (Cyt) C and caspase-3 protein expressions were studied with western blotting in lung tissues. The oxidative stress index (OSI) was also calculated. Furthermore, serum surfactant protein-D (SP-D) and Krebs von den Lungen-6 (KL-6) levels were measured with ELISA. RESULTS Compared to the control group, TOS, OSI, lipid peroxidation, TNFα, IL1β, cyt C, caspase-3, APJ, NF-κB, and p53 were higher, and Sirt1 was lower in the lung tissue of rats in the CP group. Serum KL-6 and SP-D levels were higher in the CP group. Co-administration of CP with Apelin-13 completely reversed the changes induced by CP administration. CONCLUSION Exogenous Apelin-13 treatment protected lung tissue against injury by inhibiting cyclophosphamide-induced oxidative stress, inflammation, and apoptosis. This protective effect of apelin-13 was accompanied by upregulation of the Sirt1 and downregulation of NF-κB/p53 in the lungs.
Collapse
Affiliation(s)
- Arzu Keskin-Aktan
- Department of Physiology, School of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Özden Kutlay
- Department of Physiology, School of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| |
Collapse
|
15
|
Yu S, Jia J, Zheng J, Zhou Y, Jia D, Wang J. Recent Progress of Ferroptosis in Lung Diseases. Front Cell Dev Biol 2021; 9:789517. [PMID: 34869391 PMCID: PMC8635032 DOI: 10.3389/fcell.2021.789517] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 10/31/2021] [Indexed: 01/08/2023] Open
Abstract
Ferroptosis is a new form of programmed cell death due to iron-dependent excess accumulation of lipid peroxides and differs from other programmed cell deaths in morphological and biochemical characteristics. The process of ferroptosis is precisely regulated by iron metabolism, lipid metabolism, amino acid metabolism, and numerous signaling pathways, and plays a complex role in many pathophysiological processes. Recent studies have found that ferroptosis is closely associated with the development and progression of many lung diseases, including acute lung injury, pulmonary ischemia-reperfusion injury, lung cancer, chronic obstructive pulmonary disease, and pulmonary fibrosis. Here, we present a review of the main regulatory mechanisms of ferroptosis and its research progress in the pathogenesis and treatment of lung diseases, with the aim of providing new ideas for basic and clinical research of lung-related diseases.
Collapse
Affiliation(s)
- Shangjiang Yu
- Department of Clinical Medicine, Wenzhou Medical University, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jinqiu Jia
- Department of Pediatrics, Taizhou Women and Children's Hospital of Wenzhou Medical University, Taizhou, China
| | - Jinyu Zheng
- Department of Clinical Medicine, Wenzhou Medical University, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yiyang Zhou
- Department of Clinical Medicine, Wenzhou Medical University, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Danyun Jia
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Junlu Wang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
16
|
Apelin-13-Mediated AMPK ameliorates endothelial barrier dysfunction in acute lung injury mice via improvement of mitochondrial function and autophagy. Int Immunopharmacol 2021; 101:108230. [PMID: 34655850 DOI: 10.1016/j.intimp.2021.108230] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 01/04/2023]
Abstract
Maintaining the pulmonary endothelial barrier that prevents the exudation of inflammatory factors and proteins is the key to the treatment of acute lung injury (ALI). Apelin-13 plays an important role in vascular diseases; however, the protective effects of Apelin-13 on ALI with pulmonary endothelial barrier are unknown. Therefore, mice and human umbilical vein endothelial cells (HUVECs) were injured by LPS following Apelin-13 administration. ALI mice showed reduced pulmonary vascular permeability, adhesion junction, mitochondrial function, mitochondrial biogenesis, and autophagy compared to the control group. Apelin-13 administration in ALI mice ameliorated LPS-induced lung injury, pulmonary vascular permeability, mitochondrial function, and promoted autophagic flux in mice and HUVECs. However, the effect of Apelin-13 was reduced after AMPK inhibition using Compound C. These data suggest that Apelin-13 ameliorates pulmonary vascular permeability in mice with ALI induced by LPS, which may be related to enhanced phosphorylation of AMPK to regulate mitochondrial function and autophagy.
Collapse
|