1
|
Krishnan A, Callanan DG, Sendra VG, Lad A, Christian S, Earla R, Khanehzar A, Tolentino AJ, Vailoces VAS, Greene MK, Scott CJ, Kunimoto DY, Hassan TS, Genead MA, Tolentino MJ. Comprehensive Ocular and Systemic Safety Evaluation of Polysialic Acid-Decorated Immune Modulating Therapeutic Nanoparticles (PolySia-NPs) to Support Entry into First-in-Human Clinical Trials. Pharmaceuticals (Basel) 2024; 17:481. [PMID: 38675441 PMCID: PMC11054942 DOI: 10.3390/ph17040481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
An inflammation-resolving polysialic acid-decorated PLGA nanoparticle (PolySia-NP) has been developed to treat geographic atrophy/age-related macular degeneration and other conditions caused by macrophage and complement over-activation. While PolySia-NPs have demonstrated pre-clinical efficacy, this study evaluated its systemic and intraocular safety. PolySia-NPs were evaluated in vitro for mutagenic activity using Salmonella strains and E. coli, with and without metabolic activation; cytotoxicity was evaluated based on its interference with normal mitosis. PolySia-NPs were administered intravenously in CD-1 mice and Sprague Dawley rats and assessed for survival and toxicity. Intravitreal (IVT) administration in Dutch Belted rabbits and non-human primates was assessed for ocular or systemic toxicity. In vitro results indicate that PolySia-NPs did not induce mutagenicity or cytotoxicity. Intravenous administration did not show clastogenic activity, effects on survival, or toxicity. A single intravitreal (IVT) injection and two elevated repeat IVT doses of PolySia-NPs separated by 7 days in rabbits showed no signs of systemic or ocular toxicity. A single IVT inoculation of PolySia-NPs in non-human primates demonstrated no adverse clinical or ophthalmological effects. The demonstration of systemic and ocular safety of PolySia-NPs supports its advancement into human clinical trials as a promising therapeutic approach for systemic and retinal degenerative diseases caused by chronic immune activation.
Collapse
Affiliation(s)
- Anitha Krishnan
- Aviceda Therapeutics, Cambridge, MA 02142, USA; (A.K.); (D.G.C.); (A.L.); (S.C.); (R.E.); (A.K.); (M.K.G.); (C.J.S.); (D.Y.K.); (T.S.H.); (M.A.G.)
| | - David G. Callanan
- Aviceda Therapeutics, Cambridge, MA 02142, USA; (A.K.); (D.G.C.); (A.L.); (S.C.); (R.E.); (A.K.); (M.K.G.); (C.J.S.); (D.Y.K.); (T.S.H.); (M.A.G.)
| | - Victor G. Sendra
- Aviceda Therapeutics, Cambridge, MA 02142, USA; (A.K.); (D.G.C.); (A.L.); (S.C.); (R.E.); (A.K.); (M.K.G.); (C.J.S.); (D.Y.K.); (T.S.H.); (M.A.G.)
| | - Amit Lad
- Aviceda Therapeutics, Cambridge, MA 02142, USA; (A.K.); (D.G.C.); (A.L.); (S.C.); (R.E.); (A.K.); (M.K.G.); (C.J.S.); (D.Y.K.); (T.S.H.); (M.A.G.)
| | - Sunny Christian
- Aviceda Therapeutics, Cambridge, MA 02142, USA; (A.K.); (D.G.C.); (A.L.); (S.C.); (R.E.); (A.K.); (M.K.G.); (C.J.S.); (D.Y.K.); (T.S.H.); (M.A.G.)
| | - Ravinder Earla
- Aviceda Therapeutics, Cambridge, MA 02142, USA; (A.K.); (D.G.C.); (A.L.); (S.C.); (R.E.); (A.K.); (M.K.G.); (C.J.S.); (D.Y.K.); (T.S.H.); (M.A.G.)
| | - Ali Khanehzar
- Aviceda Therapeutics, Cambridge, MA 02142, USA; (A.K.); (D.G.C.); (A.L.); (S.C.); (R.E.); (A.K.); (M.K.G.); (C.J.S.); (D.Y.K.); (T.S.H.); (M.A.G.)
| | - Andrew J. Tolentino
- Department of Biology, University of California Berkeley, Berkeley, CA 94720, USA;
| | | | - Michelle K. Greene
- Aviceda Therapeutics, Cambridge, MA 02142, USA; (A.K.); (D.G.C.); (A.L.); (S.C.); (R.E.); (A.K.); (M.K.G.); (C.J.S.); (D.Y.K.); (T.S.H.); (M.A.G.)
- The Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry & Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7AE, UK
| | - Christopher J. Scott
- Aviceda Therapeutics, Cambridge, MA 02142, USA; (A.K.); (D.G.C.); (A.L.); (S.C.); (R.E.); (A.K.); (M.K.G.); (C.J.S.); (D.Y.K.); (T.S.H.); (M.A.G.)
- The Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry & Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7AE, UK
| | - Derek Y. Kunimoto
- Aviceda Therapeutics, Cambridge, MA 02142, USA; (A.K.); (D.G.C.); (A.L.); (S.C.); (R.E.); (A.K.); (M.K.G.); (C.J.S.); (D.Y.K.); (T.S.H.); (M.A.G.)
| | - Tarek S. Hassan
- Aviceda Therapeutics, Cambridge, MA 02142, USA; (A.K.); (D.G.C.); (A.L.); (S.C.); (R.E.); (A.K.); (M.K.G.); (C.J.S.); (D.Y.K.); (T.S.H.); (M.A.G.)
- Oakland University William Beaumont School of Medicine, Royal Oaks, MI 48067, USA
| | - Mohamed A. Genead
- Aviceda Therapeutics, Cambridge, MA 02142, USA; (A.K.); (D.G.C.); (A.L.); (S.C.); (R.E.); (A.K.); (M.K.G.); (C.J.S.); (D.Y.K.); (T.S.H.); (M.A.G.)
| | - Michael J. Tolentino
- Aviceda Therapeutics, Cambridge, MA 02142, USA; (A.K.); (D.G.C.); (A.L.); (S.C.); (R.E.); (A.K.); (M.K.G.); (C.J.S.); (D.Y.K.); (T.S.H.); (M.A.G.)
- Department of Ophthalmology, University of Central Florida School of Medicine, Orlando, FL 32827, USA
- Department of Ophthalmology, Orlando College of Osteopathic Medicine, Orlando, FL 34787, USA
| |
Collapse
|
2
|
Cetin Aluc C, Gok B, Kecel-Gunduz S, Budama-Kilinc Y. Glycyrrhizic acid Poly(D,L-lactide-co-glycolide) nanoparticles: anti-aging cosmeceutical formulation for topical applications. PeerJ 2022. [DOI: 10.7717/peerj.14139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glycyrrhizic acid (GA) is one of the components of licorice roots (Glycyrrhiza glabra L.). GA is a triterpenoid saponin can be used as a medicinal plant with its antiallergic, antiviral, anti-inflammatory, anti-ulcer, hepatoprotective, anticancer, anti-oxidation activities and several other therapeutic properties. The aim of this study is to develop an anti-aging formulation for topical application containing GA. In this context, GA-loaded Poly (D,L-lactide-co-glycolide) (PLGA) nanoparticles (NPs) were prepared using the double emulsion method, and were characterized by various spectroscopic methods. The efficacy of GA-PLGA NPs was evaluated with in vitro and in silico methods. The encapsulation efficiency and loading capacity were calculated. The in vitro release study was conducted, and the GA release profile was determined. The genotoxic activity of GA and GA-PLGA NPs was evaluated by the Ames test using TA98 and TA100 mutant strains of Salmonella typhimurium. The cytotoxic potential of GA-PLGA NPs was evaluated on the HaCaT cell line using the MTT assay. According to the genotoxicity and cytotoxicity results, it was found that the GA-PLGA NP formulation did not exhibit genotoxic and cytotoxic effects. Moreover, the efficacy of GA in preventing UVB-induced photo-aging in HaCaT cells and the clarification of the molecular mechanism of GA binding to MMPs were revealed by molecular docking analysis. In addition, through molecular dynamics (MD) analysis, the binding interaction of GA with MMPs in a dynamic system, and protein-ligand stability were predicted as a result of 50 ns MD simulation studies considering various analysis parameters. Finally, it was evaluated that GA-PLGA nanoformulation might be used as an alternative anti-aging skin care product candidate via topical application.
Collapse
Affiliation(s)
- Cigdem Cetin Aluc
- Graduate School of Natural and Applied Science, Yildiz Technical University, Istanbul, Türkiye
- Abdi Ibrahim Pharmaceuticals, Abdi Ibrahim Production Facilities, Istanbul, Türkiye
| | - Bahar Gok
- Graduate School of Natural and Applied Science, Yildiz Technical University, Istanbul, Türkiye
| | | | | |
Collapse
|