1
|
Zhu J, Chen Y, Chen Y, Lv Y, Chen T. STAT3 inhibition ameliorates renal interstitial inflammation in MRL/lpr mice with diffuse proliferative lupus nephritis. Ren Fail 2024; 46:2358187. [PMID: 38803234 PMCID: PMC11136473 DOI: 10.1080/0886022x.2024.2358187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Acute kidney injury (AKI) is one of the most common and severe clinical syndromes of diffuse proliferative lupus nephritis (DPLN), of which poor prognosis is indicated by aggravated renal function deterioration. However, the specific therapy and mechanisms of AKI in DPLN remain to be explored. METHODS The correlation between AKI and clinical pathological changes in DPLN patients was analyzed. Expression of STAT3 signaling was detected in MRL/lpr mice with DPLN using immunohistochemical staining and immunoblotting. Inhibition of STAT3 activation by combination therapy was assessed in MRL/lpr mice. RESULTS Correlation analysis revealed only the interstitial leukocytes were significantly related to AKI in endocapillary DPLN patients. MRL/lpr mice treated with vehicle, which can recapitulate renal damages of DPLN patients, showed upregulation of STAT3, pSTAT3 and caspase-1 in renal cortex. FLLL32 combined with methylprednisolone therapy significantly inhibited the STAT3 activation, improved acute kidney damage, reduced the interstitial infiltration of inflammatory cells and decreased the AKI incidence in MRL/lpr mice. CONCLUSION STAT3 activation may play an important role in the pathogenesis of DPLN and the development of AKI. Hence, STAT3 inhibition based on the combination of FLLL32 with methylprednisolone may represent a new strategy for treatment of DPLN with AKI.
Collapse
Affiliation(s)
- Jianfen Zhu
- Department of Internal Medicine Nursing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yijing Chen
- Department of clinical College, Wenzhou Medical University, Wenzhou, China
| | - Yulan Chen
- Department of clinical College, Wenzhou Medical University, Wenzhou, China
| | - Yinqiu Lv
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tianxin Chen
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
2
|
Liu J, Wang N, Wu Z, Gan Y, Ji J, Huang Z, Du Y, Wen C, Tian F, Fan Y, Xu L. Apigenin ameliorates lupus nephritis by inhibiting SAT3 signaling in CD8 + T cells. Food Funct 2024; 15:10020-10036. [PMID: 39283308 DOI: 10.1039/d4fo02773f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by widespread organ and tissue involvement, with lupus nephritis (LN) being one of its most severe complications. Dietary flavonoids, as for their anti-inflammatory and antioxidant properties, have shown therapeutic potential under various inflammatory conditions. Apigenin (AP) is one of the most studied phenolics and is found in many fruits, vegetables and herbs. This study aimed to investigate the therapeutic effects and underlying mechanisms of apigenin on LN. We evaluated the effects of apigenin on MRL/lpr mice, a well-established model for spontaneous LN. Apigenin treatment improved peripheral blood profiles, reduced serum inflammatory cytokines (IL-6, IFN-γ, IL-17, TGF-β), lowered levels of autoantibodies (ANA, anti-dsDNA) and alleviated renal damage caused by autoantibodies and inflammatory cell infiltration. The results of immunohistochemistry and transcriptome analysis showed that AP could inhibit the infiltration of CD8+ cells in renal tissues. Single-cell sequencing public data from LN patients identified cytotoxic T lymphocytes (CTLs) as the primary CD8+ T cell subtype in the kidneys, with their differentiation regulated by STAT3. In this study, cell experiments demonstrated that AP can induce apoptosis in CD8+ T cells and reduce their recruitment of macrophages by inhibiting the STAT3/IL-17 signaling pathway. These findings highlight that a diet rich in dietary flavonoids, particularly apigenin, can offer therapeutic benefits for patients with SLE.
Collapse
Affiliation(s)
- Jingqun Liu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Nianzhi Wang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Zhenyu Wu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Yihong Gan
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jinjun Ji
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Zixuan Huang
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu Du
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Chengping Wen
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Fengyuan Tian
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yongsheng Fan
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Xu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
3
|
Papachristodoulou E, Kyttaris VC. New and emerging therapies for systemic lupus erythematosus. Clin Immunol 2024; 263:110200. [PMID: 38582250 DOI: 10.1016/j.clim.2024.110200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/23/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
Systemic Lupus Erythematosus (SLE) and lupus nephritis treatment is still based on non-specific immune suppression despite the first biological therapy for the disease having been approved more than a decade ago. Intense basic and translational research has uncovered a multitude of pathways that are actively being evaluated as treatment targets in SLE and lupus nephritis, with two new medications receiving FDA approval in the last 3 years. Herein we provide an overview of targeted therapies for SLE including medications targeting the B lymphocyte compartment, intracellular signaling, co-stimulation, and finally the interferons and other cytokines.
Collapse
Affiliation(s)
- Eleni Papachristodoulou
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Vasileios C Kyttaris
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Liang CL, Wei YY, Chen Y, Luo Y, Qin F, Chen Y, Liu H, Qiu F, Wu J, Yang B, Liu Y, Dai Z. Zhen-Wu-Tang ameliorates lupus nephritis by diminishing renal tissue-resident memory CD8 + T cells via suppressing IL-15/STAT3 pathway. Biomed Pharmacother 2024; 174:116597. [PMID: 38643544 DOI: 10.1016/j.biopha.2024.116597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/01/2024] [Accepted: 04/10/2024] [Indexed: 04/23/2024] Open
Abstract
Zhen-Wu-Tang (ZWT), a conventional herbal mixture, has been recommended for treating lupus nephritis (LN) in clinic. However, its mechanisms of action remain unknown. Here we aimed to define the immunological mechanisms underlying the effects of ZWT on LN and to determine whether it affects renal tissue-resident memory T (TRM) cells. Murine LN was induced by a single injection of pristane, while in vitro TRM cells differentiated with IL-15/TGF-β. We found that ZWT or mycophenolate mofetil treatment significantly ameliorated kidney injury in LN mice by decreasing 24-h urine protein, Scr and anti-dsDNA Ab. ZWT also improved renal pathology and decreased IgG and C3 depositions. In addition, ZWT down-regulated renal Desmin expression. Moreover, it lowered the numbers of CD8+ TRM cells in kidney of mice with LN while decreasing their expression of TNF-α and IFN-γ. Consistent with in vivo results, ZWT-containing serum inhibited TRM cell differentiation induced by IL-15/TGF-β in vitro. Mechanistically, it suppressed phosphorylation of STAT3 and CD122 (IL2/IL-15Rβ)expression in CD8+ TRM cells. Importantly, ZWT reduced the number of total F4/80+CD11b+ and CD86+, but not CD206+, macrophages in the kidney of LN mice. Interestingly, ZWT suppressed IL-15 protein expression in macrophages in vivo and in vitro. Thus, we have provided the first evidence that ZWT decoction can be used to improve the outcome of LN by reducing CD8+ TRM cells via inhibition of IL-15/IL-15R /STAT3 signaling.
Collapse
Affiliation(s)
- Chun-Ling Liang
- Joint Immunology Program, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Yu-Yan Wei
- Joint Immunology Program, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Yi Chen
- Joint Immunology Program, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Department of Nephrology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Yini Luo
- Joint Immunology Program, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Fenglian Qin
- Joint Immunology Program, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Yuchao Chen
- Joint Immunology Program, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Huazhen Liu
- Joint Immunology Program, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Feifei Qiu
- Joint Immunology Program, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Junbiao Wu
- Joint Immunology Program, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Bin Yang
- Department of Cardiovascular Sciences, College of Life Sciences University of Leicester, Leicester LE1 9HN, UK; Nantong-Leicester Joint Institute of Kidney Science & Nephrology, Afiliated Hospital of Nantong University,. Nantong, Jiangsu, China
| | - Yuntao Liu
- Joint Immunology Program, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| | - Zhenhua Dai
- Joint Immunology Program, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
5
|
Wang S, Gong X, Xiao F, Yang Y. Recent advances in host-focused molecular tools for investigating host-gut microbiome interactions. Front Microbiol 2024; 15:1335036. [PMID: 38605718 PMCID: PMC11007152 DOI: 10.3389/fmicb.2024.1335036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
Microbial communities in the human gut play a significant role in regulating host gene expression, influencing a variety of biological processes. To understand the molecular mechanisms underlying host-microbe interactions, tools that can dissect signaling networks are required. In this review, we discuss recent advances in molecular tools used to study this interplay, with a focus on those that explore how the microbiome regulates host gene expression. These tools include CRISPR-based whole-body genetic tools for deciphering host-specific genes involved in the interaction process, Cre-loxP based tissue/cell-specific gene editing approaches, and in vitro models of host-derived organoids. Overall, the application of these molecular tools is revolutionizing our understanding of how host-microbiome interactions contribute to health and disease, paving the way for improved therapies and interventions that target microbial influences on the host.
Collapse
Affiliation(s)
- Siyao Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Ministry of Industry and Information Technology, Beihang University, Beijing, China
| | - Xu Gong
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Ministry of Industry and Information Technology, Beihang University, Beijing, China
| | - Fei Xiao
- Department of Thoracic Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Yun Yang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Ministry of Industry and Information Technology, Beihang University, Beijing, China
| |
Collapse
|
6
|
Xu JW, Wang MY, Mao Y, Hu ZY, Miao XL, Jiang F, Zhou GP. Inhibition of STAT3 alleviates LPS-induced apoptosis and inflammation in renal tubular epithelial cells by transcriptionally down-regulating TASL. Eur J Med Res 2024; 29:34. [PMID: 38184662 PMCID: PMC10770942 DOI: 10.1186/s40001-023-01610-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 12/21/2023] [Indexed: 01/08/2024] Open
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is a common autoimmune disease that impacts various organs. Lupus nephritis (LN) significantly contributes to death in children with SLE. Toll-like receptor (TLR) adaptor interacting with SLC15A4 on the lysosome (TASL) acts as an innate immune adaptor for TLR and is implicated in the pathogenesis of SLE. A transcription factor known as signal transducer and activator of transcription 3 (STAT3), which is known to be linked to autoimmune diseases, is also involved in the development of SLE. METHODS Bioinformatics and real-time quantitative PCR (qRT-PCR) was used to detect the expression of STAT3 and TASL in peripheral blood of SLE patients and their correlation. Bioinformatics analysis, qRT-PCR, luciferase assay and chromatin immunoprecipitation (ChIP) were used to verify the regulation of transcription factor STAT3 on TASL. The expression levels of STAT3, TASL and apoptosis-related genes in LPS-induced HK2 cells were detected by qRT-PCR and Western blot. TUNEL staining were used to detect the apoptosis of HK2 cells after LPS stimulation. ELISA and qRT-PCR were used to detect the levels of inflammatory cytokines in the cell culture supernatant. TASL knockdown in HK2 cells was used to detect the changes in apoptosis-related genes and inflammatory factors. The expression level of TASL in LPS-stimulated HK2 cells and its effect on cell apoptosis and inflammatory factors were observed by knocking down and overexpressing STAT3, respectively. It was also verified in a rescue experiment. RESULTS The expressions of STAT3 and TASL were higher in SLE than in healthy children, and the expression of STAT3 was positively correlated with TASL. Transcription factor STAT3 can directly and positively regulate the expression of TASL through the promoter region binding site. The expression of STAT3, TASL and inflammatory cytokines was elevated, and the change of apoptosis was up-regulated in LPS-stimulated HK2 cells. Inhibition of STAT3 alleviates LPS-stimulated apoptosis and inflammatory response in HK2 cells through transcriptional regulation of TASL. CONCLUSIONS These findings provide new insights into the transcriptional regulation of TASL and provide new evidence of a direct regulatory relationship between signaling nodes in the lupus signaling network.
Collapse
Affiliation(s)
- Jin-Wen Xu
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
- Department of Pediatric Nephrology, Wuxi Children's Hospital Affiliated to Jiangnan University, Wuxi, China
| | - Ming-Yan Wang
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yan Mao
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Zheng-Yun Hu
- Department of Pediatrics, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (Preparatory Stage), Shanghai, China
| | - Xiao-Lin Miao
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Feng Jiang
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.
| | - Guo-Ping Zhou
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
7
|
Zhao H, Zheng D. Revealing common differential mRNAs, signaling pathways, and immune cells in blood, glomeruli, and tubulointerstitium of lupus nephritis patients based on transcriptomic data. Ren Fail 2023; 45:2215344. [PMID: 37334926 DOI: 10.1080/0886022x.2023.2215344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/11/2023] [Accepted: 05/14/2023] [Indexed: 06/21/2023] Open
Abstract
Lupus nephritis (LN) is a potentially fatal autoimmune disease. The purpose of this study was to find potential key molecular markers of LN to aid in the early diagnosis and management of the disease. Datasets GSE99967_blood, GSE32591_glomeruli, and GSE32591_tubulointerstitium were included in this study. Differentially expressed mRNAs (DEmRNAs) were identified between the normal control and LN groups using the limma package in R. Common DEmRNAs in the three datasets were taken. Subsequently, functional enrichment analysis, immune correlation analysis, receiver operating characteristic (ROC) curve analysis and real-time polymerase chain reaction (RT-PCR) verification were performed. In this study, 11 common DEmRNAs were obtained and all of them were up-regulated. In protein-protein interaction (PPI) networks, we found that MX dynamin like GTPase 1 (MX1) and radical S-adenosyl methionine domain containing 2 (RSAD2) had the highest interaction score (0.997). Functional enrichment analysis revealed that MX1 and RSAD2 were enriched in influenza A and hepatitis C signaling pathways. The area under the curve (AUC) values of interferon-induced protein 44 (IFI44) and MX1 in GSE32591_glomeruli and GSE32591_tubulointerstitium datasets are 1, which is worthy of further study on their diagnostic value and molecular mechanism. The xCell analysis showed abnormal distribution of granulocyte-macrophage progenitor (GMP) cells in blood, glomeruli, and tubulointerstitium. Pearson's correlation analysis found that GMP cells were significantly correlated with lactotransferrin (LTF) and cell cycle. Identification of common DEmRNAs and key pathways in the blood, glomeruli, and tubulointerstitium of patients with LN provides potential research directions for exploring the molecular mechanisms of the disease.
Collapse
Affiliation(s)
- Haifang Zhao
- Department of Nephrology, Dongying People's Hospital, Dongying, China
| | - Dongxia Zheng
- Department of Nephrology, Dongying People's Hospital, Dongying, China
| |
Collapse
|
8
|
Foroudi MR, Yaghobi R, Afshari A, Roozbeh J, Miresmaeili SM, Javid A. The effect of the BK polyomavirus large T antigen on the function and maturity of the CD4 + T cell subsets in kidney transplant recipients. Transpl Immunol 2023; 80:101884. [PMID: 37422092 DOI: 10.1016/j.trim.2023.101884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 06/18/2023] [Accepted: 07/01/2023] [Indexed: 07/10/2023]
Abstract
BACKGROUND In kidney transplant recipients (KTRs) who are immunosuppressed, human BK polyomavirus (BKPyV) infection can be reactivated, resulting in BKPyV-associated nephropathy (BKPyVN). Considering that BKPyV inhibits CD4+ T cell differentiation, we investigated the effect of BKPyV large T antigen (LT-Ag) on the maturation of CD4+ T cell subsets during active BKPyV infection. METHODS In this cross-sectional study, we examined the following groups: 1) five KTRs with active viral infection (BKPyV+ KTRs), 2) five KTRs without active viral infection (BKPyV-KTRs), and 3) five healthy controls. We measured the frequency of CD4+ T cells and their different subsets, such as naive T cells, central memory T cells (Tcm), and effector memory T cells (Tem). All these subsets were analyzed by flow cytometry in peripheral blood mononuclear cells (PBMCs) stimulated with the overlapping BKPyV LT-Ag peptide pool. In addition, CD4+ T cell subsets were analyzed by flow cytometry for the presence of CD4, CCR7, CD45RO, CD107a, and granzyme B (GB). In addition, mRNA expression of transcription factors (TFs) such as T-bet, GATA-3, STAT-3, and STAT-6 was examined. The probability of inflammation with perforin protein was examined by SYBR Green real-time PCR. RESULTS After stimulation of PBMCs, naive T cells (CD4+CCR7+CD45RO-) (p = 0.9) and CD4+ T cells which release CD107a+ (CD4+CD107a+Geranzyme B-) (p = 0.9) T cells were more abundant in BKPyV+ KTRs than in BKPyV- KTRs. In contrast, central memory T cells (CD4+CCR7+CD45RO+) (p = 0.1) and effector memory T cells (CD4+CCR7-CD45RO+) (p = 0.1) were more abundant in BKPyV- KTRs than in BKPyV+ KTRs. The mRNA expression levels of T-bet, GATA-3, STAT-3, and STAT-6 were significantly higher (p < 0.05) in BKPyV- KTRs than in BKPyV+ KTRs which may be due to a higher differentiation level of CD4+ T cells. Due to inflammation, the mRNA expression level of perforin was higher in BKPyV+ KTRs, than in BKPyV- KTRs, but the difference was not significant (p = 0.175). CONCLUSIONS The high number of naive T cells after PBMC stimulation with the LT-Ag peptide pool was observed in BKPyV+ KTRs due to the interaction of LT-Ag with T cells. This means that BKPyV by using its LT-Ag can inhibit the naive T cell differentiation to other T cell subsets like central and effector memory T cells. However, the frequency of CD4+ T cell subsets and the combination of the activities of these cells with the expression profile of the target genes in this study may be efficient in treating and diagnosing BKPyV infections in kidney recipients.
Collapse
Affiliation(s)
| | - Ramin Yaghobi
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Afsoon Afshari
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jamshid Roozbeh
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Amaneh Javid
- Department of Biological Sciences, Faculty of Engineering and Science, Science and Arts University, Yazd, Iran
| |
Collapse
|
9
|
Yu JT, Fan S, Li XY, Hou R, Hu XW, Wang JN, Shan RR, Dong ZH, Xie MM, Dong YH, Shen XY, Jin J, Wen JG, Liu MM, Wang W, Meng XM. Novel insights into STAT3 in renal diseases. Biomed Pharmacother 2023; 165:115166. [PMID: 37473682 DOI: 10.1016/j.biopha.2023.115166] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a cell-signal transcription factor that has attracted considerable attention in recent years. The stimulation of cytokines and growth factors can result in the transcription of a wide range of genes that are crucial for several cellular biological processes involved in pro- and anti-inflammatory responses. STAT3 has attracted considerable interest as a result of a recent upsurge in study because of their role in directing the innate immune response and sustaining inflammatory pathways, which is a key feature in the pathogenesis of many diseases, including renal disorders. Several pathological conditions which may involve STAT3 include diabetic nephropathy, acute kidney injury, lupus nephritis, polycystic kidney disease, and renal cell carcinoma. STAT3 is expressed in various renal tissues under these pathological conditions. To better understand the role of STAT3 in the kidney and provide a theoretical foundation for STAT3-targeted therapy for renal disorders, this review covers the current work on the activities of STAT3 and its mechanisms in the pathophysiological processes of various types of renal diseases.
Collapse
Affiliation(s)
- Ju-Tao Yu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Shuai Fan
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230032 China; Department of Urology, Institute of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032 China
| | - Xiang-Yu Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Rui Hou
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xiao-Wei Hu
- Department of Clinical Pharmacy, Anhui Provincial Children's Hospital, Hefei 230051, China
| | - Jia-Nan Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Run-Run Shan
- School of Life Sciences, Anhui Medical University, Hefei 230032, China
| | - Ze-Hui Dong
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Man-Man Xie
- School of Life Sciences, Anhui Medical University, Hefei 230032, China
| | - Yu-Hang Dong
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xiao-Yu Shen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Juan Jin
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei 230032, China
| | - Jia-Gen Wen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ming-Ming Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Wei Wang
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230032 China; Department of Urology, Institute of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032 China.
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
10
|
Liu X, Chen J, Liu L. DUSP2 inhibits the progression of lupus nephritis in mice by regulating the STAT3 pathway. Open Life Sci 2023; 18:20220649. [PMID: 37483429 PMCID: PMC10358749 DOI: 10.1515/biol-2022-0649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/11/2023] [Accepted: 05/31/2023] [Indexed: 07/25/2023] Open
Abstract
One of the most severe side effects of systemic lupus erythematosus (SLE) is lupus nephritis (LN). To search for potential therapeutic targets in SLE is crucial for the progression of SLE. In this study, we selected C57BL/6J mice as controls and MRL/lpr mice as an LN model and obtained dual specificity phosphatase 2 (DUSP2)-overexpressed mice by injecting AAV-DUSP2 plasmid into the tail vein. Then, proteinuria, urea nitrogen, dsDNA and TNF-α, IL-6, and IL-1β levels were measured in each group of mice. In addition, renal histopathological damage was assessed by hematoxylin-eosin. Finally, STAT3 phosphorylation levels were detected by Western blot assay. The results showed that DUSP2 could reduce proteinuria, urea nitrogen, dsDNA and TNF-α, IL-6, and IL-1β levels and improve renal tissue injury in mice with LN. Mechanistically, DUSP2 inhibited STAT3 phosphorylation. These results demonstrated that DUSP2 played a role in ameliorating LN, which provided potential targets for LN research.
Collapse
Affiliation(s)
- Xingzhong Liu
- Department of Clinical Laboratory, Affiliated Sichuan Provincial Rehabilitation Hospital of Chengdu University of TCM, Sichuan, Chengdu Province, 611135, China
| | - Jie Chen
- Department of Nephrology, Wuhan Third Hospital, 241 Pengliuyang Road, Wuhan, Hubei Province, 430074, China
| | - Lu Liu
- Pediatric Clinic, Wuhan Third Hospital, Wuhan, Hubei Province, 430074, China
| |
Collapse
|
11
|
Ye F, Guo F, Huang Y, Wang S. Study of peripheral blood inflammatory factor levels and their clinical value in patients with lupus nephritis. Am J Transl Res 2023; 15:1446-1451. [PMID: 36915792 PMCID: PMC10006760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/06/2021] [Indexed: 03/16/2023]
Abstract
OBJECTIVE To explore the effect of traditional Chinese and western medicine on the levels of inflammatory cytokines in the peripheral blood of patients with lupus nephritis (LN). METHODS A total of 80 patients with LN admitted to the hospital from August 2016 to August 2017 were retrospectively analyzed. They were equally separated into an experimental group and a control group by the different types of medications. The control group was treated with western medicine, and the experimental group was treated with the combination of traditional Chinese and western medicines. The therapeutic effects were compared. RESULTS The levels of IL-6, IL-18 and TNF-α in the experimental group after treatment were (5.47±1.66) pg/ml, (31.66±3.87) pg/ml, and (9.28±3.06) pg/ml, respectively, which were significantly lower than (13.71±3.86) pg/ml, (68.47±4.26) pg/ml, and (22.17±6.54) pg/ml before treatment. The difference was statistically significant (t1 = 12.403, t2 = 40.450, t3 = 11.291, all P<0.001). In the control group after treatment, the levels of IL-6, IL-18 and TNF-α were (12.68±1.32) pg/ml, (68.22±3.42) pg/ml, and (19.78±5.57) pg/ml, respectively. The difference in control and experimental groups was statistically significant (t1 = 21.501, t2 = 44.771, t3 = 10.449, P<0.001). The total effective rate was 95.00% (38/40) in the experimental group and 80.00% (32/40) in control group, (X2 = 4.114, P<0.001). There SLEDAI scores of the experimental group were much lower than control after 8 and 12 weeks of treatment (t1 = 8.186, t2 = 20.776, P<0.001). Moreover, the liver and kidney Yin deficiency symptoms in both groups were significantly improved after treatment (P<0.01). CONCLUSION The combined treatment of traditional Chinese and western medicine can successfully prevent the secretion of serum IL-6, IL-18 and TNF-α, control the development of disease, boost the therapeutic outcome, and alleviate the immune injury of the body.
Collapse
Affiliation(s)
- Feng Ye
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Hainan Medical University Haikou, Hainan, China
| | - Feng Guo
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Hainan Medical University Haikou, Hainan, China
| | - Yanni Huang
- School of Tropical Medicine and Laboratory Medicine, Hainan Medical University Haikou, Hainan, China
| | - Shanzhi Wang
- Department of Nephrology, The First Affiliated Hospital of Hainan Medical University Haikou, Hainan, China
| |
Collapse
|
12
|
Xu L, Li Y, Ji J, Lai Y, Chen J, Ding T, Li H, Ding B, Ge W. The anti-inflammatory effects of Hedyotis diffusa Willd on SLE with STAT3 as a key target. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115597. [PMID: 35940466 DOI: 10.1016/j.jep.2022.115597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hedyotis diffusa Willd, also named Scleromitrion diffusum (Willd.) R.J. Wang, is one medical herb, which has been traditionally used by the She nationality in China. And H. diffusa represents a beneficial effect on Systemic lupus erythematosus (SLE) treatment in clinic. AIM OF THE STUDY The underlying mechanisms of the protective effects of H. diffusa on SLE remain unclear. In this study, we treated MRL/lpr mice with H. diffusa water extract (HDW) to assess its therapeutic effects and verified its regulating signalling pathway through cytological experiments. MATERIALS AND METHODS In the present study, the constituents of HDW were analysed through ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) and SCIEX OS software. The protective activity and underlying mechanisms were studied in a MRL/lpr lupus mouse model. The blood cells, autoantibodies, metabolites and the cytokines in serum were identified with a hematology analyzer, specific ELISA kit, GC/MS system and cytometric assays. The histological and immunohistochemical analysis were engaged in the morphologic, and the expression and translocation of the crucial protein observation. The dual luciferase reporter assay was applied to identifying the regulative activity of HDW. The transcription and translation expression of the protein was studied by real-time PCR and Western blot assays. The network pharmacology analysis was employed to predict the IL-6/STAT3 pathway regulators and the screen the STAT3 inhibitors in HDW. RESULTS The results revealed the capability of HDW to attenuate the production of autoantibodies, secretion of inflammatory cytokines (IL-6 and IFN-γ), and suppressed the IgG and C3 deposition, the development of glomerular lesions in MRL/lpr mice. Serum metabolomics study showed the improvement in serum metabolites, especially aminoacyl-tRNA biosynthesis, by HDW. IL-6 was clarified to be highly associated with the significantly changed metabolites in network analysis. We further demonstrated the effects of HDW on the IL-6/STAT3 pathway in vivo and in vitro. CONCLUSIONS This study suggested that HDW exerts a therapeutic effect in SLE model mice by suppressing the IL-6/STAT3 pathway.
Collapse
Affiliation(s)
- Li Xu
- College of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, PR China.
| | - Ying Li
- College of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, PR China.
| | - Jinjun Ji
- College of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, PR China.
| | - Yahui Lai
- College of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, PR China.
| | - Jing Chen
- College of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, PR China.
| | - Tao Ding
- College of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, PR China.
| | - Haichang Li
- College of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, PR China.
| | - Bin Ding
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, PR China.
| | - Weihong Ge
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, PR China.
| |
Collapse
|
13
|
Yu C, Li P, Dang X, Zhang X, Mao Y, Chen X. Lupus nephritis: new progress in diagnosis and treatment. J Autoimmun 2022; 132:102871. [PMID: 35999111 DOI: 10.1016/j.jaut.2022.102871] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 02/07/2023]
Abstract
Systemic lupus erythematosus (SLE) is a chronic multifactorial autoimmune disease that affects many organs, including the kidney. Lupus nephritis (LN) is a common manifestation characterized by heterogeneous clinical and histopathological findings, and often associates with poor prognosis. The diagnosis and treatment of LN is challenging, depending largely on renal biopsy, and there is no reliable non-invasive LN biomarker. Up to now, the complete remission rate of LN is only 20%∼30% after receiving six months of standard treatment, which is far from satisfactory. Moreover, adverse reactions to immunosuppressants, especially glucocorticoids, further compromise the prognosis of LN. Biological reagents targetting autoimmune responses and inflammatory pathways, bring hope to the treatment of intractable lupus. The European Renal Association-European Dialysis and Transplant Association (EULAR/ERA-EDTA) and KDIGO (Kidney Disease: Improving Global Outcomes) have been working on and launched the recommendations for the management of LN. In this review, we update our knowledge in the pathogenesis, diagnosis, and management of LN and prospect for the future potential targets in the management of LN.
Collapse
Affiliation(s)
- Chen Yu
- Department of Nephrology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Ping Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Xin Dang
- Department of Nephrology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xuan Zhang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yonghui Mao
- Department of Nephrology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China.
| |
Collapse
|
14
|
Du LJ, Feng YX, He ZX, Huang L, Wang Q, Wen CP, Zhang Y. Norcantharidin ameliorates the development of murine lupus via inhibiting the generation of IL-17 producing cells. Acta Pharmacol Sin 2022; 43:1521-1533. [PMID: 34552214 PMCID: PMC9159996 DOI: 10.1038/s41401-021-00773-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/03/2021] [Indexed: 02/07/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a devastating autoimmune disorder associated with severe organ damage. The abnormality of T cell apoptosis is considered as an important pathogenetic mechanism of SLE. Norcantharidin (NCTD), a derivative of Cantharidin, is an efficacious anti-cancer drug by inhibiting cell proliferation and inducing cell apoptosis. Besides, NCTD has also been proved to protect the function of kidneys, while damaged renal function is the most important predictor of morbidity and mortality in SLE. All these suggest the potential effects of NCTD in SLE treatment. In this study we investigated whether NCTD exerted therapeutic effects in a mouse SLE model. Lupus prone female MRL/lpr mice were treated with NCTD (1, 2 mg·kg-1·d-1, ip) for 8 weeks. We showed that NCTD administration significantly decreased mortality rate, diminished the expression of anti-dsDNA IgG antibody, a diagnostic marker for SLE, as well as restored renal structure and function in MRL/lpr mice. Moreover, NCTD administration dose-dependently inhibited lymphoproliferation and T cell accumulation in the spleens of MRL/lpr mice. We further revealed that NCTD specifically inhibited DN T cell proliferation and Th17 cell differentiation both via blocking activation of signal transducer and activator of transcription 3 (STAT3) signaling pathway. On the other hand, NCTD did not affect T cell apoptosis in MRL/lpr mice. Taken together, our data suggest that NCTD may be as a promising therapeutic drug through targeting T cells for the treatment of SLE.
Collapse
Affiliation(s)
- Li-jun Du
- grid.268505.c0000 0000 8744 8924Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053 China
| | - Yu-xiang Feng
- grid.268505.c0000 0000 8744 8924Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053 China
| | - Zhi-xing He
- grid.268505.c0000 0000 8744 8924Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053 China
| | - Lin Huang
- grid.268505.c0000 0000 8744 8924Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053 China
| | - Qiao Wang
- grid.268505.c0000 0000 8744 8924Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053 China
| | - Cheng-ping Wen
- grid.268505.c0000 0000 8744 8924Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053 China
| | - Yun Zhang
- grid.268505.c0000 0000 8744 8924Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053 China
| |
Collapse
|
15
|
Targeting Canonical and Non-Canonical STAT Signaling Pathways in Renal Diseases. Cells 2021; 10:cells10071610. [PMID: 34199002 PMCID: PMC8305338 DOI: 10.3390/cells10071610] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/16/2021] [Accepted: 06/22/2021] [Indexed: 01/05/2023] Open
Abstract
Signal transducer and activator of transcription (STAT) plays an essential role in the inflammatory reaction and immune response of numerous renal diseases. STATs can transmit the signals of cytokines, chemokines, and growth factors from the cell membrane to the nucleus. In the canonical STAT signaling pathways, upon binding with their cognate receptors, cytokines lead to a caspase of Janus kinases (JAKs) and STATs tyrosine phosphorylation and activation. Besides receptor-associated tyrosine kinases JAKs, receptors with intrinsic tyrosine kinase activities, G-protein coupled receptors, and non-receptor tyrosine kinases can also activate STATs through tyrosine phosphorylation or, alternatively, other post-translational modifications. Activated STATs translocate into the nucleus and mediate the transcription of specific genes, thus mediating the progression of various renal diseases. Non-canonical STAT pathways consist of preassembled receptor complexes, preformed STAT dimers, unphosphorylated STATs (U-STATs), and non-canonical functions including mitochondria modulation, microtubule regulation and heterochromatin stabilization. Most studies targeting STAT signaling pathways have focused on canonical pathways, but research extending into non-canonical STAT pathways would provide novel strategies for treating renal diseases. In this review, we will introduce both canonical and non-canonical STAT pathways and their roles in a variety of renal diseases.
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW Systemic lupus erythematosus (SLE) is a systemic autoimmune disease with multiple manifestations, with a majority of SLE patients having cutaneous involvement. Despite ongoing research, the relationship between SLE and cutaneous lupus erythematosus (CLE) pathogeneses remains unknown. This review will compare advances in understanding the cause and pathogenesis of SLE and CLE. RECENT FINDINGS Recently, mechanisms by which immune cell populations contribute to the pathogenesis of SLE and CLE have been queried. Studies have pointed to transitional B cells and B-cell activating factor (BAFF) signaling as potential drivers of SLE and CLE, with belimumab clinical data supporting these hypotheses. Ustekinumab trials and an exciting regulatory T cell (Treg) adoptive transfer in an SLE patient with cutaneous disease have suggested a role for T-cell-targeted therapies. The theory that neutrophil extracellular traps may be a source of autoantigens in SLE remains controversial, while neutrophils have been suggested as early drivers of cutaneous disease. Finally, plasmacytoid dendritic cells (pDCs) have been studied as a potential therapeutic target in SLE, and anti-blood DC antigen (anti-BDCA) antibody clinical trials have shown promise in treating cutaneous disease. SUMMARY Although recent findings have contributed to understanding SLE and CLE pathogenesis, the mechanistic link between these diseases remains an area requiring further research.
Collapse
|
17
|
IL-27 Protects the Brain from Ischemia-Reperfusion Injury via the gp130/STAT3 Signaling Pathway. J Mol Neurosci 2021; 71:1838-1848. [PMID: 33851350 DOI: 10.1007/s12031-021-01802-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 01/26/2021] [Indexed: 12/14/2022]
Abstract
The occurrence of ischemia-reperfusion (I/R) injury leads to dysfunction as well as high rates of morbidity and mortality in stroke, and new effective therapeutic strategies for I/R are still needed. We investigated the effect of IL-27 on I/R injury-induced neurological function impairment, cerebral infarction volume and variation in levels of inflammatory factors in mice with middle cerebral artery occlusion (MCAO), as well as concentration of LDH and neuronal apoptosis in a neuron oxygen-glucose deprivation and reperfusion (OGD/R) model mediated by gp130/STAT3 signaling in vitro. Our results indicated that IL-27 could bind to its receptor of gp130 to attenuate the I/R injury-induced impairment function and cerebral infarction volume, and decrease inflammatory cytokines TNF-α, IL-1β and MCP-1 but increase anti-inflammatory factors IL-10 and TGF-β in vivo, while inhibiting LDH leakage and neuronal apoptosis through activation of STAT3 to antagonize I/R induction. Our results suggest that IL-27 may protect the brain from I/R injury through the gp130/STAT3 signaling pathway.
Collapse
|
18
|
Goel RR, Nakabo S, Dizon BLP, Urban A, Waldman M, Howard L, Darnell D, Buhaya M, Carmona-Rivera C, Hasni S, Kaplan MJ, Freeman AF, Gupta S. Lupus-like autoimmunity and increased interferon response in patients with STAT3-deficient hyper-IgE syndrome. J Allergy Clin Immunol 2021; 147:746-749.e9. [PMID: 32768442 PMCID: PMC7862417 DOI: 10.1016/j.jaci.2020.07.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/09/2020] [Accepted: 07/16/2020] [Indexed: 10/23/2022]
Abstract
We report on patients with STAT3 loss-of-function (LOF) mutations who developed lupus-like autoimmunity. Immune dysregulation seen in STAT3 LOF patients suggests a susceptibility to systemic autoimmunity with important implications in monitoring and management of these patients.
Collapse
Affiliation(s)
- Rishi R Goel
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Md
| | - Shuichiro Nakabo
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Md
| | - Brian L P Dizon
- Rheumatology Training Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Md
| | - Amanda Urban
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Meryl Waldman
- Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Md
| | - Lillian Howard
- Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Md
| | - Dirk Darnell
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Munir Buhaya
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Carmelo Carmona-Rivera
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Md
| | - Sarfaraz Hasni
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Md
| | - Mariana J Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Md
| | - Alexandra F Freeman
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md.
| | - Sarthak Gupta
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Md.
| |
Collapse
|
19
|
Cytokines and Transgenic Matrix in Autoimmune Diseases: Similarities and Differences. Biomedicines 2020; 8:biomedicines8120559. [PMID: 33271810 PMCID: PMC7761121 DOI: 10.3390/biomedicines8120559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/16/2020] [Accepted: 11/26/2020] [Indexed: 12/14/2022] Open
Abstract
Autoimmune diseases are increasingly recognized as disease entities in which dysregulated cytokines contribute to tissue-specific inflammation. In organ-specific and multiorgan autoimmune diseases, the cytokine profiles show some similarities. Despite these similarities, the cytokines have different roles in the pathogenesis of different diseases. Altered levels or action of cytokines can result from changes in cell signaling. This article describes alterations in the JAK-STAT, TGF-β and NF-κB signaling pathways, which are involved in the pathogenesis of multiple sclerosis and systemic lupus erythematosus. There is a special focus on T cells in preclinical models and in patients afflicted with these chronic inflammatory diseases.
Collapse
|